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ABSTRACT

The Kalman filter is a well-known tool used extensively in robotics,
navigation, speech enhancement and finance. In this paper, we
propose a novel pitch follower based on the Extended Complex
Kalman Filter (ECKF). An advantage of this pitch follower is that
it operates on a sample-by-sample basis, unlike other block-based
algorithms that are most commonly used in pitch estimation. Thus,
it estimates sample-synchronous fundamental frequency (assumed
to be the perceived pitch), which makes it ideal for real-time im-
plementation. Simultaneously, the ECKF also tracks the amplitude
envelope of the input audio signal. Finally, we test our ECKF pitch
detector on a number of cello and double bass recordings played
with various ornaments, such as vibrato, portamento and trill, and
compare its result with the well-known YIN estimator, to conclude
the effectiveness of our algorithm.

1. INTRODUCTION

Pitch detection in music and speech has been an active area of
study. In [1], Gerhard gives a history of pitch recognition tech-
niques. He also establishes in the importance of pitch in carrying
much of the semantic information in tonal languages, which makes
it useful in the context of speech recognition. In music, its obvious
application is in automatic transcription. It is also to be noted that
pitch is a perceptual feature [2], whereas most pitch-detectors de-
tect fundamental frequency, which corresponds to perceived pitch
for periodic signals.

Algorithms for pitch detection can be classified into three broad
categories – time domain methods, frequency domain methods and
statistical methods. Time domain methods based on the zero-
crossing rate and autocorrelation function are particularly popular.
The best example of this is perhaps the YIN [3] estimator, which
makes use of a modified autocorrelation function to accurately de-
tect periodicity in signals. Among frequency domain methods, the
best known techniques are cepstrum [4], harmonic product spec-
trum [5] and an optimum comb filter algorithm [6]. Statistical
methods include the maximum likelihood pitch estimator [5, 7],
more recent neural networks [8] and hidden Markov models [9].

In [10] Cuadra et al. discuss the performance of various pitch
detection algorithms in real-time interactive music. They estab-
lish the fact that although monophonic pitch detection seems like
a well-researched problem with little scope for improvement, that
is not true in real-time applications. Some of the most common
issues in real time pitch tracking are optimization, latency and ac-
curacy in noisy conditions. The ECKF pitch detector proposed in
this paper can be easily implemented on hardware with less com-
putational power, has a maximum latency of 20 ms (a latency of

30–40 ms is tolerable) and has excellent performance in presence
of a high amount of noise. It also yields pitch estimates on a fine-
grained, sample-by-sample basis, resulting in very accurate pitch
tracking. Instruments like the cello and flute which have strong
harmonics, pose an additional challenge in pitch detection, which
makes testing on cello recordings a reasonable way to check the
performance of our algorithm.

The Kalman filter [11] has several applications in power sys-
tem frequency measurements, and one such brilliant application
inspired this work. For example, in [12], the extended Kalman
filter was used to track the harmonics of the 60Hz power signal.
Several models of the extended Kalman filter exist for tracking the
fundamental frequency in power signals, but the one we use here
was proposed by Dash et al. [13] The extended complex Kalman
filter (ECKF) developed here is ideal for use in real-time, with a
high tolerance for noise. The complex multiplications can be car-
ried out on a floating point processor. The ECKF simultaneously
tracks fundamental frequency, amplitude and pitch, in presence of
harmonics and noise. The assumption is that the strength of the
harmonics is less than that of the fundamental. Of course, several
modifications need to be made before applying it to audio signals,
in which correct pitch detection has to happen within milliseconds
and which can have large variations in pitch in a short amount of
time.

The rest of this paper is organized as follows – in Section 2 we
give details of the model used for ECKF pitch tracking. In Section
3, details of its implementation are given, including calculation of
initial estimates for attaining steady state values quickly, resetting
the error covariance matrix based on silent frame detection, and an
adaptive process noise variance based on the measurement resid-
ual. In Section 4, we give the results of testing our algorithm on
audio data. In Section 4.1, we note some limitations of our algo-
rithm and delineate scope for improvement. Finally we conclude
the paper in Section 5, and talk about the scope for future work.

2. ECKF MODEL AND EQUATIONS

We make use of the sines+noise model for music [14] (that matches
the model used in [13]) to derive our state space equations. The
non-linear nature of the model calls for an extended Kalman fil-
ter [15], which linearizes the function about the current estimate
by using its Taylor series expansion. Only the first order term is
kept in the Taylor series expansion, and higher order terms are ig-
nored. In vector calculus, the first derivative of a function is found
by computing its Jacobian.

Let there be an observation yk at time instant k, which is a sum
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of additive sines and a residual noise.

yk =

N∑
i=1

ai cos (ωitk + φi) + vk (1)

where ai, ωi and φi are the amplitude, frequency and phase of
the ith sinusoid and vk is a normally distributed Gaussian noise
v ∼ N(0, σ2

v). Of course in music signals, the residual is never
precisely a Gaussian white noise but we make that assumption for
this model. σ2

v is known as the measurement noise variance. We
also assume that the fundamental is considerably stronger than the
partials, and 1 reduces to

yk = a1 cos (ω1kTs + φ1) + vk (2)

where a1, w1 and φ1 are the fundamental amplitude, frequency
and phase respectively and Ts is the sampling interval. The state
vector is constructed as

xk =

 αuk
u∗k

 (3)

where

α = exp(jω1Ts)

uk = a1 exp(jω1kTs + jφ1)

u∗k = a1 exp(−jω1kTs − jφ1)

(4)

This particular selection of state vector ensures that we can track
all three parameters that defines the fundamental – frequency, am-
plitude and phase. The relative advantage of choosing this com-
plex state vector has been described in [13]. The state vector
estimate update rule xk+1 relates to xk as

 α
uk+1

u∗k+1

 =

1 0 0
0 α 0
0 0 1

α

 αuk
u∗k


xk+1 = f(xk)

f(xk) =
[
α αuk

u∗k
α

]T
(5)

yk relates to xk as

yk = Hxk + vk

H =
[
0 0.5 0.5

] (6)

where H is the observation matrix. We can see that

Hxk =
a1
2

[exp (jω1kTs + jφ1) + exp (−jω1kTs − jφ1)]

= a1 cos (ω1kTs + φ1)

(7)

2.1. Kalman Filter equations

The recursive Kalman filter equations aim to minimize the trace
of the error covariance matrix. The EKF equations are given as
follows

Kk = P̂k|k−1H
∗T [HP̂k|k−1H

∗T + 1]−1 (8)

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) (9)

x̂k+1|k = f(x̂k|k) (10)

P̂k|k = (I −KkH)P̂k|k−1 (11)

P̂k|k+1 = FkP̂k|kF
∗T
k + σ2

wI (12)

where Fk is the Jacobian given by

Fk =
∂f(xk)

∂xk

∣∣∣∣
xk=x̂k|k

=

 1 0 0
x̂k|k(2) x̂k|k(1) 0

− x̂k|k(3)
x̂2
k|k(1)

0 1
x̂k|k(1)


(13)

• x̂k|k−1, x̂k|k, x̂k|k+1 are the a priori, current and a posteri-
ori state vector estimates respectively.

• P̂k|k−1, P̂k|k, P̂k|k+1 are the a priori, current and a poste-
riori error covariance matrices respectively.

• Kk is the Kalman gain that acts as a weighting factor be-
tween the observation yk and a priori prediction x̂k|k−1 in
determining the current estimate.

• σ2
w is modeled as the process noise variance and I is an

identity matrix of dimensions 3 × 3.

• Initial state vector and error covariance matrix are denoted
as x̂1|0 and P̂1|0 respectively

The fundamental frequency, amplitude and phase estimates at
instant k are given as

f1,k =
ln (x̂k|k(1))

2πjTs

a1,k =
√
x̂k|k(2)× x̂k|k(3)

φ1,k =
1

2j
ln

(
x̂k|k(2)

x̂k|k(3)x̂k|k(1)2k

) (14)

The state vector multiplied with the observation matrix essentially
gives the low passed observation signal with the cutoff frequency
of the LPF approximately at the signal’s fundamental frequency.

3. IMPLEMENTATION DETAILS

For best performance, our proposed ECKF pitch estimator needs
to be modified in many ways. This includes keeping track of silent
regions in the signal, resetting the error covariance matrix when-
ever there is a transition from silence to transient, giving it correct
initial estimates for a low settling time and calculating an adaptive
process noise variance.

3.1. Detection of Silent Zones

It is important to keep track of note-off events (unpitched mo-
ments) in the signal because the estimated frequency for such silent
regions should be zero. Moreover, whenever there is a transition
from note-off to note-on, the Kalman filter error covariance matrix
needs to be reset. This is because the filter quickly converges to
a steady state value, and as a result the Kalman gain Kk and er-
ror covariance matrix P̂k|k settle to very low values. If there is a
sudden change in frequency of the signal (which happens at note
onset), the filter will not be able to track it unless the covariance
matrix is reset.

To keep track of silent regions, we divide the signal into frames
of 20 ms. One way to determine if a frame is silent or not is to cal-
culate its energy. The energy of the ith frame, Ei is given as the
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Figure 1: Spectral flatness varying across frames. A high value
indicates silent frame.

sum of the square of all the signal samples in that frame. If the
energy is below -60dB, then the frame is classified to be silent. If
the frame has N samples, then

Ei = 20 log10

N−1∑
n=0

y(n)2. (15)

However, for noisy input signals, the energy in silent frames is
significant. To find silent frames in noisy signals, we make use of
the fact that noise has a fairly flat power spectrum. Therefore, for
each frame, we calculate the spectral flatness [16]. If spectral flat-
ness ≈ 1, then the frame is classified to be silent. Figure 1 shows
spectral flatness v/s frame number for an audio file containing a
single note preceded and followed by some silence.

The power spectral density (PSD) of the observed signal, Φyy ,
is given as

Φyy(ejω) =

∞∑
n=−∞

φyy(n)e−jωn (16)

where φyy(n) is the autocorrelation function of the input signal y,
given as

φyy(n) =

∞∑
m=−∞

y(m)y(n+m). (17)

The power spectrum is the DTFT of the autocorrelation function
and one way of estimating it is Welch’s method [17] which makes
use of the periodogram. The power spectral density can be calcu-
lated in Matlab with the function pwelch. The spectral flatness
is defined as the ratio of the geometric mean to the arithmetic mean
of the PSD.

spf =

K

√∏K−1
k=0 Φ̂yy(ejωk )

1
K

∑K−1
k=0 Φ̂yy(ejωk )

(18)

where Φ̂yy(ejωk ) is the estimated power spectrum for K frequency
bins covering the range [−π, π].

For white noise v∼ N(0, σ2
v) corrupting the measurement sig-

nal, y, the silent frames of y will have pure white noise with the

following properties

φyy(n) = σ2
vδ(n)

Φyy(ejω) = σ2
v ∀ ω ∈ [−π, π]

spf =
K
√
σ2K
v

1
K

(Kσ2
v)

= 1

(19)
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Figure 2: Frequency spectrum used for calculating initial esti-
mates of the state vector.

3.2. Calculating Initial State and Resetting the Error Covari-
ance Matrix

It has already been established that resetting the error covariance
matrix is necessary whenever there is a change in the frequency
content of the signal (i.e., whenever a new note is played). Along
with resetting the covariance matrix, we need to recalculate our
initial estimates for the state vector. This is because the rate of
convergence of the Kalman filter depends on the accuracy of its
initial estimates. Basically, we need to calculate x̂1|0 and P̂1|0
whenever there is a note onset, i.e., whenever there is a transition
from silent frame to non-silent frame.

Depending on how strong the attack of the instrument is, we
may need to skip a few audio frames until we reach steady state
to accurately estimate initial states. This is because the transient is
noisy which makes frequency estimates go haywire, and we must
wait for the signal to settle. The number of frames to skip after
detecting a transition from silent to non-silent frame can be a user-
defined parameter.

To calculate the initial estimates of the state vector x̂1|0 we
take an FFT of the first non-silent frame following a silent frame,
after multiplying it with a Blackman window and zero-padding it
by a factor of 4. Zero padding increases the FFT size which in-
creases the sampling density along the frequency axis. We calcu-
late the magnitude and frequency of the peaks in the magnitude
spectrum, and take f1,0 as the minimum of the frequencies corre-
sponding to the largest peaks. a1,0 is the magnitude corresponding
to f1,0 normalized by the mean of the window and number of points
in the FFT. φ1,0 is the corresponding phase. Next, we perform
parabolic interpolation on f1,0, a1,0, φ1,0 to get more accurate es-
timates. A typical plot of the spectrum used to calculate initial
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Figure 3: Plot of a) Ground Truth (blue) b) ECKF pitch detector (red) c) YIN estimator (green)
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Figure 4: ECKF: Estimated amplitude and unwrapped phase for same input

estimates is given in Figure 2. The initial states are as follows

x̂1|0 = E[x1]

=

 e(2πjf1,0Ts)

a1,0e
(2πjf1,0Ts+jφ1,0)

a1,0e
(−2πjf1,0Ts−jφ1,0)


P̂1|0 = E[(x1 − x̂1|0)(x1 − x̂1|0)∗T ]

= 0(3,3)

(20)

where P̂1|0 is a null matrix of order 3 × 3.

3.3. Adaptive Process Noise

We only reset the covariance matrix when there is a transition from
silent to non-silent frame. However, new notes may be played
without any rest in between, and dynamics such as vibrato also
need to be captured. To track these changes, an additional term is
added to equation 12. σ2

w is modeled as the process noise variance
given as

log10 (σ2
w) = −c+ |yk −Hx̂k|k| (21)

where c∈ Z+ is a constant. 1 The term yk−Hx̂k|k is known as the
innovation. It gives the error between our predicted value and the
actual data. Whenever the innovation is high, there is a significant
discrepancy between the predicted output and the input, which is

1for this paper, c lies in the range 7–9 but its value can be tuned accord-
ing to the input

probably caused by a change in the input that the ECKF needs to
track. In that case, σ2

w increases and there’s a term added to the
a posteriori error covariance matrix P̂k|k+1. This increase in the
error covariance matrix causes the Kalman gain Kk to increase in
the next iteration according to equation 8. As a result, the next
state estimate x̂k|k+1 depends more on the input, and less on the
current predicted state x̂k|k. Thus, the innovation reduces in the
next iteration, and so does σ2

w. In this way, the process noise acts
as an error correction term that is adaptive to the variance in input.

4. RESULTS

The ECKF pitch detector was tested on cello notes downloaded
from the MIS database, which contains ground truth labels in the
form of annotated note names, and on cello and double bass notes
played with various ornaments that we recorded ourselves.2 The
data was summed with white noise normally distributed with 0
mean and 0.01 variance, to test the performance of our algorithm
with noisy input.

Figure 3 shows the output when the notes A3-Bb3-E3-G3 were
played on the cello one after another with pauses in between. The
pitch detected by the ECKF is compared with the ground truth
and YIN estimator output. Figure 4 shows the corresponding esti-
mated amplitude and phase plots for the same input given by the
ECKF estimator. The mean and standard deviation of absolute er-

2The Matlab implementation can be cloned from https://
github.com/orchidas/Pitch-Tracking
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ror is given in Table 1. A zoomed in plot can be seen in Figure
5 which explains the cause of higher standard deviation of error
with the ECKF. Unlike the YIN estimator which yields a single
pitch estimate for an entire block of data, the ECKF yields a unique
pitch value for every sample of data, and it fluctuates about a mean
value. The frequency of these oscillations is approximately equal
to the fundamental frequency of the note being played. The os-
cillations maybe caused due to the resonance of the bridge of the
instrument or some artifact introduced by the tracker. However,
the amplitude of the oscillations is small, so in reality it is percep-
tually insignificant, hence we neglect it. It would be interesting to
explore the cause of these fluctuations in a future work.

Mean Std. Dev
YIN 5.195 9.637
ECKF 5.181 14.778

Table 1: Error statistics for Figure 3
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Figure 5: Higher variance of ECKF is caused by rapid fluctuations
of estimated pitch about a mean value.

Figure 6a shows the pitch detector output when the input is
a portamento played on the note D3 and glided to E3. Figure 6b
shows the output when the input is a vibrato on the note D3, and
Figure 6c shows the output when the input is a vibrato trill on
the notes D3-Eb3. Figures 6a and 6b were notes played on the
cello whereas Figure 6c was a note played on the double bass. All
three plots show excellent agreement with what we expect and the
output of the YIN estimator. In fact, in Figure 6c the output of
the ECKF is much smoother than that of the YIN estimator and
shows less drastic fluctuations. Moreover, the YIN estimator gets
the pitch wrong in a number of frames where it dips and peaks sud-
denly. It can be concluded that the ECKF pitch follower is ideal
for detecting ornaments and stylistic elements in monophonic mu-
sic. It could also be used successfully in tracking minute changes
in speech formants.

4.1. Limitations

Although our proposed pitch detector performs well in many cases,
it has certain drawbacks. Firstly, the additional processing that in-
cludes detecting silent frames and estimating initial state makes its
implementation more computationally expensive than the one in
[13], which is a drawback in real-time processing. This is because
estimating the power spectrum with Welch’s method requires com-
puting an FFT for each block of data, which is of complexity
O(N log2N ). However, depending on the noise environment, a
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(a) D3 to E3 portamento
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(b) D3 vibrato
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(c) D3-Eb3 vibrato trill

Figure 6: ECKF estimated pitch for various ornaments played on
the cello and double bass

cheaper algorithm can be used to distinguish between non-silent
and silent frames. Calculating initial estimates also requires com-
puting an FFT but we only need to do that whenever there is a
transition from silent to non-silent frame, not for every block of
data.

Secondly, if the initial states estimated from the FFT are off
by 20 Hz or more, then the filter is slow to converge to its steady
state value. In Figure 6a, it is observed that the ECKF gets the
pitch wrong during the transient, but that is expected since there is
no well-defined pitch during the transient. To avoid getting a spu-
rious value of pitch, the method of skipping a few buffers to wait
until the steady state can be used as described in Section 3.2. Per-
haps the ECKF pitch tracker’s biggest limitation is tracking notes
played quickly together without any pause, as demonstrated in Fig-
ure 7. ECKF is slow in tracking very rapid and large changes. The
faster the notes are played, the higher the latency in convergence.
A solution to this could be to observe note onsets and estimate ini-
tial state and reset the covariance matrix whenever there is an onset
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detected. However, we leave this problem open for future work.
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Figure 7: ECKF is slow in tracking fast note changes. Notes
played are descending fifths from the A string on the double bass.

5. CONCLUSION

In this paper, we have proposed a novel real-time pitch detector
based on the Extended Complex Kalman Filter (ECKF). Several
adjustments have been made for optimum tracking. An algorithm
based on spectral flatness has been proposed to detect silence in
incoming noisy audio signal. The importance of accurate initial
state estimates and resetting the error covariance matrix has been
explained. A correction factor, σ2

w, has been included to track fast,
small changes in input signal.

After all these changes have been incorporated into the ECKF
pitch detector, the results match those of robust and successful
pitch detectors like the YIN estimator. Perhaps its greatest ad-
vantage is the fact that it estimates pitch on a sample-by-sample
basis, against most methods which are block-based. Moreover, its
performance is robust to the presence of noise in the measurement
signal. The ECKF has been observed to be well suited for track-
ing fine changes in playing dynamics and ornamentation, which
makes it an excellent candidate for real-time transcription of solo
instrument music. Additionally, the ECKF also yields the ampli-
tude envelope and phase of the signal, along with its fundamental
frequency.

5.1. Future Work

We hope this work will encourage new uses of the Kalman filter in
audio and music. In recent years, the Kalman filter has been used
in music for online beat tracking [18] and partial tracking [19, 20].
It has also been used for frequency tracking in speech [21]. Since
the Kalman filter is such a powerful tool that can work for any
valid model with the right state-space equations, we believe it can
have many more potential real-time applications in music. Some
of the other topics we wish to explore include partial tracking and
real-time onset detection with the Kalman filter. A real-time pitch
detector along with an onset detector lays the groundwork for real-
time transcription, which remains an exciting and advanced prob-
lem.
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