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ABSTRACT

Geometric acoustic models have a lower computational complexity than wave-based methods due to the assumption
that sound propagates as rays, however this fails to consider the wave-like properties of sound such as diffraction.
Historically, tthe Biot-Tolstoy-Medwin (BTM) model and the Uniform Theory of Diffraction (UTD) have been
used to augment geometric acoustic models with diffraction. Computational efficiency is essential for real-time
application and recently two more efficient models, the Volumetric Diffraction and Transmission (VDaT) model
and an infinite impulse response filter (IIR) approximation, were proposed to approximate these solutions. A
higher-order IIR filter approximation is proposed in this paper. An experiment is carried out to evaluate the
perceived naturalness of these approximations compared to the more accurate analytical solutions. Stationary and
moving receivers were considered in simple geometries with a single edge. The results suggest that the higher order
IIR approximation is perceptually similar to the BTM model. VDaT and the low order IIR approximation were
found to be less natural in some cases. While in dynamic scenes, VDaT was found to be significantly more natural
than the other models. The experiment was limited in scope by the simplicity of the scenes considered, however
the results suggest the models are perceptually similar. Improvements to the higher-order IIR approximation are
suggested and a recommendation is made for future perceptual evaluations.

1 Introduction

In recent years, there has been a rising focus on room
acoustic models tailored for applications in extended
reality (XR), a term encompassing virtual reality (VR),
augmented reality (AR) and mixed reality (MR). In this
context, the main challenge is to simulate complex en-
vironments while keeping a computational complexity
suitable for real-time operation. Wave-based methods
yield the most physically accurate results, but they re-
quire significant computational resources to run [1].

Amongst the most popular models for real-time ap-
plications are delay-network based models [2, 3] and
geometric acoustic (GA) models [4], which have a sig-
nificantly lower computational complexity than wave-
based ones. Diffraction is not inherently accounted for
by GA models, but a number of methods can be used
to augment GA models with diffraction. Most promi-
nently, the Biot-Tolstoy-Medwin (BTM) model [5] is a
time-domain model considered to be amongst the most
physically accurate methods in the literature, and the
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Uniform Theory of Diffraction (UTD) model [6] is a
frequency domain model and a high frequency approx-
imation assuming infinitely long wedges. Both models,
however, carry a significant computational penalty.
Recently, a very active area of research has been the
efficient modelling of diffraction for real-time GA. In
2021, Schissler et al. [7] proposed a dynamic method
to efficiently find diffraction paths in complex geome-
tries. In 2020, Pisha et al. proposed VDaT [8], an
approximate model that applies diffraction to a path
based on whether it, and sub paths around it, collides
with the scene geometry. In 2021, Kirsch and Ewert [9]
proposed a 2nd-order infinite impulse response (IIR)
filter designed to approximate the frequency response
of UTD while having a very low computational com-
plexity. New diffraction models are usually validated
using objective measurements [8, 9], most often in the
frequency domain, while, to the best of the authors’
knowledge, their perceptual effect is yet to be assessed.
The aim of this paper is to evaluate low-complexity
diffraction models perceptually. Twenty subjects par-
ticipated in a formal listening test comparing the fol-
lowing diffraction models: BTM [10, 5], UTD [6],
VDaT [8], and the 2nd-order IIR model proposed by
Kirsch and Ewert [9]. A similarly-designed 5th-order
IIR approximation is also proposed in this paper and is
included amongst the tested models.
This paper focuses on the simple and as-of-yet untested
case of a single edge in free field. Participants rated
the stimuli in terms of “naturalness,” using a modi-
fied Multi Stimulus test with Hidden Reference and
Anchor (MUSHRA) methodology. Four static scenes
were tested with the receiver in different positions
around an edge. Two dynamic scenes were tested with
the receiver moving towards a source occluded by a
building or wall. Results of the experiment indicate
that (a) the 5th-order IIR approximation is perceptu-
ally similar to BTM, (b) VDaT is perceptually similar
to BTM at large bending angles, (c) the 5th-order IIR
approximation is more natural than the 2nd-order IIR
approximation at large bending angles, but lower near
the shadow boundary, and (d) UTD is perceptually sim-
ilar to BTM.
The paper is organised as follows. Section 2 outlines
the five compared diffraction models. Section 3 de-
scribes the experimental methodology and setup. Sec-
tion 4 presents an analysis and discussion of the results.
Finally, Section 5 presents conclusions and suggests
avenues for future research.

2 Compared edge diffraction models
This section gives an overview of the models compared
as part of the perceptual experiments. Fig. 1 shows the
cylindrical coordinates reference system used through-
out the paper, and Fig. 2 shows the zones around the
edge characterised by direct, reflected and diffracted
components.

2.1 Biot-Tolstoy-Medwin

The BTM model is a physical model that is generally
considered to be the most accurate diffraction model
available [10]. The model is formulated in the time
domain and is based on Huygen’s principle whereby
the sound field is expressed as an integral summation
of secondary sources lying on the edge. In its origi-
nal formulation, BTM modelled the response from a
point source around an infinite rigid wedge. It has sub-
sequently been extended to the finite-edge case and
second-order diffraction [12, 13]. More recent work
has focussed on analytical solutions for the source di-
rectivity functions of secondary edge sources [14], be-
haviour at the shadow boundary [11] and efficient edge
division and integration methods [5]. Several studies
have shown good agreement between the model predic-
tions and real-world measurements [12, 13, 15, 16].

2.2 Uniform Theory of Diffraction

In the high-frequency regime, sound wave fronts are
well approximated by sound rays [17]. This approx-
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Fig. 1: Edge geometry and coordinate system. Locations
are specified in cylindrical coordinates where x is the radial
distance from the edge, θ is the angle between two planes and
z is the distance along the edge. Ps and Pr are virtual planes
that contain the edge and the source and receiver respectively.
The apex point za is defined by the shortest path between the
source and receiver via the edge. Adapted from [5].
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Fig. 2: Zones around an edge where direct (Dir), reflected
(Ref) and diffracted (Diff) sound components will be present.
Adapted from [11].

imation holds true as long as the boundary sections
are much larger than the wavelength, and the surface
roughness is much smaller than the wavelength [4].
The UTD model proposed in [6] is an extension of the
Geometrical Theory of Diffraction (GTD) model [18].
It is a frequency-domain method that assumes infinitely
long edges. While diffraction is generally present in
the specular, direct and shadow zones, in order to re-
duce complexity, most implementations [19, 7] only
consider it in the shadow zone, where it is dominant. In
the implementations described in [20, 7], edge visibil-
ity maps were precomputed for more efficient diffrac-
tion path finding. Runtime processing, which included
calculating the frequency response of each diffraction
edge, took 0.14ms to 7.5ms per source.

2.3 Volumetric Diffraction and Transmission
The VDaT model approximates diffraction by calcu-
lating sub paths in concentric rings around the direct
path between the source and receiver (or around the
reflective path connecting them) [8]. The model uses
the number of sub paths blocked by the scene geometry
to determine the frequency response applied to the path.
Fig. 3 shows an example of a path with a single ring and
eight sub paths. The model was created by using BTM
to calculate the average frequency response across hun-
dreds of arbitrary planes that blocked every path in one
ring and none in the next size up. They created parame-
ters to approximate the frequency response as constant
up to a frequency where it rolls off at 10dB/decade.
This method ignores precise time of arrival differences
and direction of arrival differences between diffraction
paths. Therefore, it ignores the comb filtering effect
resulting from interference between multiple diffrac-
tion paths around an obstacle. The authors of [8] argue

Fig. 3: Geometry of a single VDaT path. The direct path
from source to receiver is in bold. Four obstructed sub paths
are shown as dashed lines, while unobstructed sub paths
are solid lines. The diameter of the cylinder determines the
frequency being considered. Adapted from [8].

that this is perceptually irrelevant since non anechoic
conditions cause an averaging effect across frequency
much like VDaT. Another limitation is that objects are
treated as acoustically transparent as the direction of
arrival is not modelled via a specified edge. They argue
that the shortest path is the sound transmitted through
obstacles. Therefore, the precedence effect (that the
first sound arrival tends to determine the perceived di-
rection of arrival [21]), means accurate direction of
arrival may be less perceptually important. To the best
of the authors’ knowledge, these arguments have not
yet been validated via perceptual experiments. VDaT
has been implemented in real time up to 6th order of
reflection paths with runtime processing completed in
1.7 to 4.95 ms per source. The model does not require
a precomputation step.

2.4 Kirsch and Ewert’s 2nd-order IIR filter
Kirsch and Ewert [9] recently proposed approximating
edge diffraction from an infinite edge using a low-pass
filter with a 3 dB per octave roll-off with a cut-off fre-
quency (fc) determined by the edge geometry. They
approximated the UTD frequency response using a
modified fractional order low-pass filter, found heuris-
tically, with the transfer function

H(f) =
[
j

(
f

fc

)0.625
+1
]−0.8

, (1)

fc = c ·mw ·mp

3πd(1− cosθb)sin2 φ
, (2)

where mp and mw are defined as

mp = 1−0.75tanh 1
2θb

√
tanh2θmin ,

mw =
(

1−0.75
(

θb

θb,max

)√
sin −θw

2

)−1

,
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and d = 2m·l
m·l , θb = max[10−4,θr −(θs +π)] , θmin =

min[θs,θw − (θb + θs + π)] , and θb,max = θw −
(θmin + π) . When the bending angle (θb) is less than
zero, the receiver is in the direct zone and no fil-
tering is applied. In other words, this model does
not consider the effect of diffraction outside of the
shadow zone. Kirsch and Ewert proposed approximat-
ing this filter using a combination of first-order low-
pass filters (LPF) and high shelf filters (HSF) in series
and parallel, the transfer functions of each are given
by HLP F (z) = K+Kz−1

K+2+(K−2)z−1 and HHSF (z) =
K+2Bπ+(K−2Bπ)z−1

K+2+(K−2)z−1 , where Bπ is the high shelf gain

in dB, K = 2π fc
fs

, and fs is the sample rate. More
specifically, the filter of equation (2) is approximated
as a low-pass filter and a high shelf filter in series, with
cut-off frequencies f0 and fsh respectively given by

f0 = 1.11fc

(
15.6
fc

)0.141
; fsh = 209fc

(
15.6
fc

)0.827
.

The parameter Bπ , for the high shelf filter, is taken as
the difference in dB between the first-order low-pass
filter and the fractional filter given in equation (1) at
20kHz. A scaling factor can be added as A = 1

r to
account for attenuation over distance. This model will
be referred to as IIRlo henceforth.

2.5 Proposed 5th-order IIR filter
Expanding on the 2nd-order IIR approximation sug-
gested in [9], this paper proposes a 5th-order approxi-
mation that combines three low-pass filters in parallel
followed by four high shelf filters connected in series.
This will be referred to as IIRhi for the remainder of
this paper. The cut-off frequencies of the associated
filters are defined as follows:

Low-pass filter High shelf filter

f0 = 1.11fc

(
15.6
fc

)0.141
; fsh0 = 209fc

(
15.6
fc

)0.827
,

f1 = 2f0 ; fsh1 = 1080 fsh0
4320−θrπ

,

f2 = 3f0 ; fsh2 = 2fsh1 ,

fsh3 = 1188 fsh0
1.3

4320−θrπ
.

The gain of the first high shelf filter is the same as for
IIRlo. The gains for the second, third and fourth high
shelf filters are given as

Bπ1 = 9
[

θb

θw
2 −π

−min
(

1,
20θb

π

)]
,
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Fig. 4: Deviation by the IIR approximations from the BTM
model in the frequency domain for diffraction around an
edge. Geometrical parameters were: θw = 270°, θs = 30°,
θr = 260°, φ = 90°, rs = rr = 1m.

Bπ2 = −9; Bπ3 = 15 ,

when the receiver is in the shadow zone. They are zero
in all other cases. The following modified scaling factor
was added to account for attenuation over distance, and
to adjust the level at large bending angles and small
edge angles:

A = 2.1π −θw

2.9r(2.1π −θw)+0.1max[0,θr −θs − 3π
4 ]0.2 .

The parameters of the model were tuned by comparing
frequency responses against those produced by BTM
for receivers spaced 10 degrees apart around infinite
wedges from 5 to 175 degrees. Fig. 4 reports an exam-
ple of the frequency deviation of IIRhi and IIRlo from
BTM. Fig. 5 shows examples corresponding to the
static scenes described in Fig. 6a and in Section 3.1,
where it can be seen that IIRhi has a closer match to
BTM compared to IIRlo.

3 Experiment
A listening experiment was carried out to evaluate the
naturalness of the models described in Section 2.

3.1 Stimuli

The stimuli for each model were generated as follows:

BTM: Using the EDtoolbox [22] which is based on
the implementations described in [14] and [11].

UTD: Python code in [8] ported to Matlab.
VDaT: Python code in [8] ported to Matlab.
IIRlo: Second-order IIR filter as described in [9]. Im-

plemented in Matlab.
IIRhi: Same as above using the filter structure de-

scribed in Section 2.5.
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(b) Shadow zone 1
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Fig. 5: Frequency responses of the diffraction models for the static scenes described in Fig. 6a and in Section 3.1.

For BTM, the length of the impulse response (IR) is
dependent on the length of the edge. An IR length of
512 was chosen for VDaT and the IIR models. Since
UTD models the phase shift as sound propagates along
the direct and diffraction paths, the IR length for UTD
was extended to 2048 samples to account for the initial
time delay and to prevent wrapping in the time domain.
For the VDaT and IIR models, which do not model
phase, an initial time delay was added based on the
geometric path length. A 256-sample delay was added
to the other models to allow for direct comparison in
the time domain with the VDaT model.
A sample rate (fs) of 44,100 Hz was used across all the
models and the stimuli were obtained by convolving the
respective IRs with the programme material. Fractional
delay finite impulse response (FIR) filters [23, 24] and
overlap-add with the Hanning window was used to
interpolate the time delay as the receiver moved.
The aim of the experiment was to determine the natural-
ness of the models as a function of the bending angle.
Static scenes were chosen to compare how the models
perform in different zones around the edge. Dynamic
scenes were chosen to compare how the models behave
as the receiver moves, since this is important for XR
and gaming applications.
For static scenes, a single edge with θw = 270°, θs =

30° and a length of 7 m was chosen to approximate
the side of a building. Four evenly spaced receiver
positions at 200°, 220°, 240° and 260° were selected
so that one lies in the direct zone and the others lie in
the shadow zone with increasing bending angles. This
is summarised in Fig. 6a. The source and the receivers
were placed at xs = xr =1 m and 1.6 m above the floor.
A floor plane was added in order to prevent VDaT
subpaths from traveling below the wedge.
The aim for the dynamic scenes was to design scenarios
the participants could relate to. Two scenarios were
designed, shown in Fig. 6b and Fig. 6c. The first sce-
nario involves a 5x5x7 m3 cube with a source at xs =
1 m and θs = 30°, which is intended to replicate the
experience of walking around the corner of a building.
The second scenario involves a 2 m high plane with a
source at xs = 1 m and θs = 90°, which is intended
to replicate the experience of walking around a free-
standing wall. In both cases the receiver travels parallel
to the wall or building, from the shadow zone to the di-
rect zone. For all models, diffraction was considered up
to 1st-order (i.e. including only diffraction paths that
travel via up to a single edge). This was motivated by
the fact that, compared to (BTM-computed) 3rd-order
diffraction, the maximum error across all four static
scenes was just 0.6 dB. In the dynamic wall scene this
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(a) Static scenes.

(b) Dynamic (building) (c) Dynamic (wall)

Fig. 6: Diagram showing the layout for static and dynamic
scenes with a source (S) and receiver positions or path.

was less than 1 dB, except at the comb filtering notches
where it reached 3 dB.
The programme material was chosen to represent sce-
narios the subjects would be familiar with. Three ane-
choic items were sourced from the Zip Archive [25]:
street performers, factory noise and male speech. This
choice was supported by a pilot listening test where
participants commented that having programme mate-
rial representative of real-world experiences was useful.
Specifically, the music stimulus was noted to be the
most relatable. It was hypothesised that the transition
across the shadow boundary would be perceptually im-
portant. So, for dynamic scenes, care was taken to
ensure that the programme material was not silent at
the moment of transition.

3.2 Experimental Method

The experimental method was based on the MUSHRA
method as standardised in the ITU-R BS.1534-3 rec-
ommendation [26] with modifications similar to those
made in [27]. No reference was provided to subjects
because in the applications envisioned here, physical ac-
curacy was considered less important than convincing
rendering in terms of naturalness. The definition of nat-
uralness was adapted from the definition given in [28]
and provided to participants as "The degree to which the
stimuli conform to your experience of a source around
a corner." A 1 kHz high-pass filter was used as an an-

chor instead of the standard 1.5 kHz low-pass filter as
it was not degraded enough to be consistently ranked
lowest, as shown during a pilot experiment.
The participants were asked to judge the five models
described in section 3.1. The grading phase consisted
of 36 pages in a randomised order and each test page
consisted of a diagram representing the scene, the orig-
inal anechoic audio and the ranking scale with sliders
randomly assigned to each model or the anchor. Ev-
ery page was repeated twice to check for consistency.
Participants completed a familiarisation phase, where
they could listen to each of the unprocessed items of
programme material and random selections of the static
and dynamic scenes, and two training pages to famil-
iarise themselves with the user controls.

3.3 Equipment and subjects
The listening tests were conducted in Edit Rooms at
the University of Surrey with stimuli reproduction over
Beyerdynamic DT 770 PRO headphones. Participants
were able to adjust the listening level during the famil-
iarisation phase. In total 20 participants completed the
listening test. All participants had experience with criti-
cal listening and did not report any hearing impairment.

4 Results
4.1 Preliminary data analysis
A Kolmogorov–Smirnov test found that 34 out of 90
stimuli violated the assumption of normality required
for an Analysis of variance (ANOVA) test. Investiga-
tion of the data using histograms and normality curves
revealed that many of the stimuli groups exhibited
significant non-normal distributions. Mendonca [29]
found that MUSHRA tests often violate the interval
scale, normality, equal variances and independence as-
sumptions made in an ANOVA test which can lead to
Type-I errors. Hence non-parametric tests were used
for the remainder of the paper.
The mean naturalness of the models split by scene
is plotted in Fig. 7. The ratings show that naturalness
varies between different scenes and models. The results
for BTM, IIRhi and UTD have little variation among
the four static scenes. The results for IIRlo show a
downward trend in naturalness as θr increases, whereas
the results for VDaT show an upward trend. These
observations motivated dividing the analysis by type
of scene: dynamic scenes (Wall and Building), static
scenes near the shadow boundary (Static Direct Zone
and Shadow Zone 1) and static scenes in the shadow
zone (Static Shadow Zone 2-3).
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Fig. 7: Mean naturalness as a function of diffraction model for each scene. Error bars indicate the 95% confidence intervals.

Scene (Mean Rank)

Model Dynamic

Static,
Near

shadow
boundary

Static,
Shadow

zone

BTM 538.76 606.89 604.31

IIRhi 622.85 614.66 639.76

IIRlo 561.97 676.03 485.06

UTD 509.44 632.52 583.78

VDaT 769.48 472.39 689.59

Asymp. Sig. <0.001 <0.001 <0.001

Table 1: Kruskal-Wallis tests showing statistically significant
differences between models for three types of scenes. The
mean naturalness ratings of each scene type are ranked from
1 (lowest) to 1200 (highest) and the cells show the mean
ranking of results corresponding to each model.

4.2 Kruskal-Wallis and Friedman tests

Kruskal-Wallis tests reveal that a statistically signifi-
cant difference is observed between the compared mod-
els for all three types of scenes (see Table 1). Friedman
tests were also carried out as recommended in [29],
with stepwise step-down comparisons to reveal where
the differences are observed between groups. The re-
sults are shown in Table 2.

4.3 Static scenes

Table 2 shows that no statistically significant differ-
ences are observed between BTM and IIRhi. This sug-
gests that the approximate models may be used in ap-

plications with tight computational constraints without
significant loss of perceptual quality. It should be noted,
however, that in more complex cases than the single
edge case, particularly with multiple small edges, the
BTM model could be perceived as more natural since
IIRhi overestimates the low-frequency response.
In the shadow zone, there is a statistically significant
difference between IIRlo and the other models. IIRlo is
ranked lower, which shows its limitations at large bend-
ing angles and highlights the benefits of IIRhi. Fig. 5d
suggests that this is because IIRlo over-emphasises high
frequencies in the shadow zone. In the shadow zone, no
statistically significant difference is observed between
BTM, IIRhi and VDaT.
IIRlo is ranked highest near the shadow boundary. This
is likely because IIRlo does not attenuate the high fre-
quencies as much as the other models at small bending
angles, as shown in Fig. 5b. This is a somewhat un-
expected result. A possible cause is that the top-down
view affected participants’ judgments on the scene ge-
ometry as the lack of direct sound may not have been
clear at small behind angles. VDaT was ranked low-
est near the shadow boundary. Fig. 5a suggests this is
because it underestimates the low-frequency response.
Previous studies have found that in some cases diffrac-
tion outside the shadow zone is audible [30]. However,
the results here do not show any statistically signifi-
cant differences between IIRhi, which does not model
diffraction in the direct zone, and BTM and UTD,
which do. Torres [31] conjectures that in a more com-
plex scene with many and smaller edges, diffraction in
the direct and specular zones would be more audible.
Testing this hypothesis is left for future work.
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Subsets

Model 1 2 3

Dynamic

UTD 2.629

BTM 2.719 2.719

IIRlo 2.796 2.796

IIRhi 3.094

VDaT 3.763

Test Statistic 0.325 5.819 .

Sig. (2-sided test) 0.850 0.055 .

Adjusted Sig. (2-sided test) 0.958 0.089 .

Static, Near
shadow
boundary

VDaT 2.263

BTM 3.040

IIRhi 3.079

UTD 3.160

IIRlo 3.458

Test Statistic . 1.094 .

Sig. (2-sided test) . 0.579 .

Adjusted Sig. (2-sided test) . 0.763 .

Static, Shadow
Zone

IIRlo 2.421

UTD 2.888

BTM 3.081 3.081

IIRhi 3.288

VDaT 3.323

Test Statistic . 1.350 3.381

Sig. (2-sided test) . 0.245 0.184

Adjusted Sig. (2-sided test) . 0.505 0.288

Table 2: Friedman test results showing statistically signifi-
cant differences between models for three criteria: dynamic
scenes, static scenes near the shadow boundary and static
scenes within the shadow zone. Homogeneous subsets are
based on asymptotic significances. The significance level
is 0.05. The Sig. value is the significance between models
within subsets and models in separate subsets have a signifi-
cance level < 0.05. Cells show the average rank of models.

4.4 Dynamic scenes

In the dynamic scenes, the participants clearly preferred
VDaT. Participants’ feedback suggest that this may
be due to the fact that VDaT is the only method that

(a) Dynamic (wall)

(b) Dynamic (building)

Fig. 8: Plot of mean naturalness as a function of edge diffrac-
tion model split by programme material for the two dynamic
scenes. Error bars indicate the 95% confidence intervals.

does not result in audible comb filtering effects as the
receiver moves. This is because it does not correctly
model the time of arrival between multiple diffraction
paths. In the dynamic wall scene, comb filtering would
physically be present due to the interference pattern
between the path over the top of the wall and the one
around the vertical edge. In the dynamic building scene,
only a single edge is considered in the shadow zone.
Once the receiver is in the direct zone, BTM and UTD
include diffraction along with the direct path. The IIR
approximations do not model diffraction in the direct
zone, so, in this scenario, they consider a single path,
and hence do not exhibit any comb filtering effects.
Fig. 7 shows that they are consequently ranked higher.
The noise stimuli resulted in a lower mean score in
all the cases where comb filtering is present as shown
in Fig. 8. Because of the stimulus broadband nature,
these effects are more perceivable. It is concluded that,
despite comb filtering being present in real situations,
it is perceived negatively by participants. It can be ar-
gued that the simplicity of the monaural scene, which
neglects source directivity, reflections, higher order
diffraction, late reverberation and direction of arrival,
highlights the effects of comb filtering. In real world

AES 2022 AVAR Conference, Redmond, WA, USA, 2022 August 15–17
Page 8 of 10



Mannall, Das, Calamia and De Sena Perceptual evaluation of diffraction models

experiences, all these factors reduce the effect of comb
filtering between two prominent paths. A more com-
plete room acoustic model might reduce the audibility
of comb filtering and be perceived more favourably.

4.5 Participant feedback

After the test, participants were asked what aspects of
the stimuli influenced their decisions, with the aim to
ascertain a broader picture of important criteria for
diffraction models. Most participants said that the
frequency spectrum was an important characteristic,
with dominance of low frequencies preferable when at
large bending angles. For dynamic sources, participants
said that the transition across the shadow boundary im-
pacted their ratings. A few participants said that the
phasing (comb filtering) effects in some stimuli had a
significant negative effect on their ratings, and some
participants commented that the test was conceptually
challenging as they found it difficult to imagine the
given geometry. However, a majority of participants re-
ported that the choice of stimuli aided in the task which
suggests that aiming to replicate common experiences
is useful when conducting tests of this nature.

5 Conclusions and future work
This paper presented an evaluation of the perceived nat-
uralness of state-of-the-art diffraction models suitable
for use in real-time rendering of acoustics in XR appli-
cations. Four existing models and a proposed model
for edge diffraction were compared perceptually: Biot-
Tolstoy-Medwin, Uniform Theory of Diffraction, Volu-
metric Diffraction and Transmission, a low-order IIR
filter model (IIRlo) and a proposed high-order IIR filter
(IIRhi). The stimuli were compared in terms of per-
ceived naturalness for the simple case of a single edge
in free field using both static and dynamic scenarios.
The results indicated that (a) there is no statistically sig-
nificant difference in naturalness between the proposed
IIRhi model and the BTM model, (b) there is no statis-
tically significant difference in naturalness between the
UTD model and the BTM model, (c) there is no statis-
tically significant difference in naturalness between the
VDaT model and the BTM model at large bending an-
gles, (d) increasing the order of the IIR approximation
leads to a statistically significant increase in naturalness
at large bending angles, but not near the shadow bound-
ary, and (e) despite comb filtering being physically
present in the tested dynamic scenarios, it is perceived
negatively by participants. The results support the use
of efficient models based on IIR-based approximations.

They also support the assumptions made in the VDaT
model [8], that not modelling comb filtering between
diffraction paths is preferable in dynamic scenes.
While the simple scenarios considered here are more
akin to outdoor conditions, future work is needed to as-
sess the models’ performances in more complex scenar-
ios such as fully auralised room acoustics with multiple
edges, reverberation, higher-order diffraction paths and
binaural rendering. The computational complexity of
the infinite impulse response approximations increases
with the order, and a computational complexity anal-
ysis is needed to contrast it with the improvement in
naturalness, and to explore optimal trade-offs. Also,
considering that IIRlo was shown to be the more nat-
ural at small bending angles but less natural at large
bending angles, adaptive strategies could be designed
to adjust the order according to the bending angle. A
further promising direction is to generalise the IIR ap-
proximation models to higher order diffraction.
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