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Spatial Audio and Upmixing

Spatial audio and upmixing
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HOTV screen
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Viewing position

‘ Rear speaker ‘




Denoising

Denoising
e Separate noise speech

e Remove background music from music

e Remove bleed from other instruments
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e Microphone Arrays

e Beamforming to “listen” in a particular direction [BCHO8]
e Requires multiple microphones

e Adaptive Signal Processing

e Self-adjusting filter to remove an unwanted signal [WS85]
e Requires knowing the interfering signal

e Independent Component Analysis

o Leverages statistical independence between signals [HOO0]
e Requires N recordings to separate IV sources
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Current Approaches Il

e Computational Auditory Scene Analysis

o Leverages knowledge of auditory system [WBO06]
o Still requires some other underlying algorithm

e Sinusoidal Modeling

e Decomposes sound into sinusoidal peak tracks [Smill, Wan94]
e Problem in assigning sound source to peak tracks

e Classical Denoising and Enhancement

o Wiener filtering, spectral subtraction, MMSE STSA (Talk 1)
o Difficulty with time varying noise



Current Approaches Il|

e Non-Negative Matrix Factorization & Probabilistic Models
e Popular technique for processing audio, image, text, etc.
e Models spectrogram data as mixture of prototypical spectra
o Relatively compact and easy to code algorithms
e Amenable to machine learning
e In many cases, works surprisingly well
e The topic of today's discussion!
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Matrix Factorization

e Decompose a matrix as a product of two or more matrices
A=BC A~BC

D=EFG D=EFG

e Matrices have special properties depending on factorization
e Example factorizations:

e Singular Value Decomposition (SVD)
e Eigenvalue Decomposition

¢ QR Decomposition (QR)

e Lower Upper Decomposition (LU)

e Non-Negative Matrix Factorization
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Non-Negative Matrix Factorization

Data Basis Vectors Weights

A matrix factorization where everything is non-negative

V € RE*T - original non-negative data

W ¢ RiXK - matrix of basis vectors, dictionary elements

H € RE*T - matrix of activations, weights, or gains
K < F < T (typically)

e A compressed representation of the data
e A low-rank approximation to V



Interpretation of V

Data Basis Vectors Weights
[ v

o Ve RiXT - original non-negative data
e Each column is an F-dimensional data sample
e Each row represents a data feature
e We will use audio spectrogram data as V

Q

w H ]



Interpretation of W

Data Basis Vectors Weights

\% ~ A%% H

e Wc RiXK - matrix of basis vectors, dictionary elements

e A single column is referred to as a basis vector
e Not orthonormal, but commonly normalized to one



Interpretation of H

Data Basis Vectors Weights

e Hc RfXT - matrix of activations, weights, or gains

e A row represents the gain of corresponding basis vector
e Not orthonormal, but commonly normalized to one



NMF With Spectrogram Data

Figure : NMF of Mary Had a Little Lamb with K = 3  ston J



NMF With Spectrogram Data

Figure : NMF of Mary Had a Little Lamb with K = 3  ston J

e The basis vectors capture prototypical spectra [SB03]

e The weights capture the gain of the basis vectors



Factorization Interpretation |

Columns of V = as a weighted sum (mixture) of basis vectors

\\ﬁ;g_j\l\j\'\\i
B N
‘ [ [ N
W H

K K K
Vi Vg ... V7| = Zl Hjl W Zl ng W, o ... Zl HjT W
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Factorization Interpretation |l

V is approximated as sum of matrix “layers”

V,’:ﬁwlth—l—Wgthr—I—...—i—th}F{
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Questions

e How do we use W and H to perform separation?

e How do we solve for W and H, given a known V7



Roadmap of Talk

@ Source Separation via NMF



General Separation Pipeline

@ STFT
® NMF
© FILTER S
O ISTFT

ST X

X

FILTER




General Separation Pipeline

® STFT
® NMF
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Short-Time Fourier Transform (STFT)

windowed %
segments me

FFT

spectrum 1X|, zX

e Inputs time domain signal x

e Outputs magnitude | X | and phase Z X matrices



Short-Time Fourier Transform (STFT)

N/2—1
Xpn(wp) = e Jowmht Z z(n + mR)w(n)e J"
n=—N/2

x(n) = input signal at time n

w(n) = length M window function (e.g. Hann, etc.)
N = DFT size, in samples
R = hop size, in samples, between successive DFT
M = window size, in samples

w, = 2mk/N, k=0,1,2,...,N—1

e Choose window, window size, DFT size, and hop size
e Must maintain constant overlap-add COLA(R) [Smill]
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Non-Negative Matrix Factorization

e Inputs | X |, outputs W and H

e Algorithm to be discussed
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Source Synthesis |

f\"k f\"“\

e Choose a subset of basis vectors W and activations H; to
reconstruct source s

e Estimate the source s magnitude:

X =W,H,=> (w;h)

€S



Source Synthesis |l

Example 1: “D" pitches as a single source

V%Wlhir+W2hg+W3hg
° \Xsyzwlh?

e Use one basis vector to reconstruct a source



Source Synthesis |

Example 2: “D" and “E" pitches as a source

V ~wi h{ +wyh) +wshj

o |X8| ~wihi +woh)

e Use two (or more) basis vector to reconstruct a source



Source Filtering |

Alternatively, we can estimate |X,| by filtering | X | via:
@® Generate a filter Mg, Vs

(Ws Hs)a ‘Xs|o¢ 1€8

MS: = =

K K K .
;(WiHi)“ Z:l!Xi\“ Zl(wz‘hi)“

where o € R is typically set to one or two.



Source Filtering |

Alternatively, we can estimate |X,| by filtering | X | via:
@® Generate a filter Mg, Vs

M; = (WSHS)Q — ‘X8|a __ i€s ‘
s = = =

K K K .
;(WiHi)“ Z:l!Xi\“ Zl(wz‘hi)“

where o € R is typically set to one or two.

@® Estimate the source s magnitude | X |
X = M,© |X|

where @ is an element-wise multiplication



Source Filtering Il

Example: Choose “D" pitches as a single source w/one basis vector

w1 h;f

@ Compute filter My = — ,with a =1




Source Filtering Il

e The filter M is referred to as a masking filter or soft mask
e Tends to perform better than the reconstruction method

e Similar to Wiener filtering discussed in Talk 1
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Inverse Short-Time Fourier Transform (ISTFT)

. x
modified  Jy |

windowed + W

segments n W
n MIUWW
reconstructed

signal X mewvmmvm

e Inputs | X | and phase £ X matrices

e Outputs time domain signal x
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Algorithms for NMF

e Question: How do we solve for W and H, given a known V?

e Answer: Frame as optimization problem

minimize D(V || W H)
W,H>0

where D is a measure of “divergence”.



Algorithms for NMF

Some choices for D:
« Euclidean: D(V |[V) =Y (V; — V)2

.3



Algorithms for NMF

Some choices for D:
e Euclidean: D(V |[V) =) (V;; —Vy;)?
,J
e Kullback-Leibler:
A~ VZ : A
D(V[|[V) =) [ Vilog ij —Vij +Vz‘j>

ij ij



Algorithms for NMF

Some choices for D:
« Euclidean: D(V |[V) =Y (V; — V)2
e Kullback-Leibler: v
D(V||V) = Z V,jlog :;” — Vi —i—Vz‘j)
i3 )
We will focus on KE divergence in today’s lecture.



Geometric View of NMF
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How does one solve

A Vij
minimize Vijlog ——+— —V;; +(WH )?
- < 18 Ry, ~ Vo T W
Tricks of the trade for minimizing a function f(x).

e closed-form solutions: solve V f(x) = 0.
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How does one solve

—_ Vij
mvl‘anmZ%e - <sz log - (W H) - Vi +(W H)ij>?

Tricks of the trade for minimizing a function f(x).
e closed-form solutions: solve V f(x) = 0.

e gradient descent: iteratively move in steepest descent dir.

xHD  xO _pvr(x®).



Algorithms for NMF

How does one solve

V..
minimize <Vz‘j log ﬁ - Vij +(W H)ij) ?
ij

1,J
Tricks of the trade for minimizing a function f(x).

e closed-form solutions: solve V f(x) = 0.

e gradient descent: iteratively move in steepest descent dir.
xHD  xO _pvr(x®).
e Newton's method: iteratively minimize quadratic approx.

xHY argmin f(x9) + VF(x)T (x —x9)

+ 5 (e x )TV (xO) (x— x)



Gradient Descent

Gradient Method




Newton's Method

Newtons Method
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Meta Algorithms

Coordinate descent
(5))

e Instead of minimizing f(x), minimize f(x;;x_;

) and cycle
over 1.

O

e Useful when f(x;;x;) can be minimized in closed form.

Majorization-minimization

® Find a majorizing function ¢ for f at current iterate x(©).
o f(x) < g(x;x®) for all x # x()

® Minimize the majorizing function to obtain x(‘+1),



Majorization-minimization
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Majorization-minimization

-3 -2 -1 0 1 2
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i, Y
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we use (block) coordinate descent: optimize H for W fixed,
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Algorithms for NMF

To minimize

D(V;\WH):Z(Vijlog(“YI’_i) — Vi + (WH)~)

CSt Z Vz] IOg Z Wzkz Hk] + Z Z Wzk ij

we use (block) coordinate descent: optimize H for W fixed,
then optimize W for H fixed (rinse and repeat).

Can we optimize this in closed form?



Algorithms for NMF

D(V||WH) = Z—sz IOgZWzk Hy; +ZZWik Hy,;
i,j k i k
Not quite, so let's try to majorize the function. A useful tool is
Jensen’s inequality, which says that for convex functions f:

f(average) < average of f
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D(V||WH) =) " - szlogZWIkHwZZWmHm
4, uj ok

To apply Jensen's inequality, we introduce weights >, 7, = 1.
Wi Hy;
= Z <— V,‘j log ; WijkT + gwlk ij
17-]
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W,. H;
T
1,J

Tijk



Algorithms for NMF

D(V||WH) =) " - szlogZWIkHwZZWmHm
4, uj ok

To apply Jensen's inequality, we introduce weights >, 7, = 1.
W, Hy:
= —V.:l . ’ J o H
Z < ij ngﬂ'z]k Tiih + ZW’Lk k‘j)
,J k k
S [ Sy
2%

W Hy;
ik 2Tk Z W, Hk]>
Now this function can be minimized exactly!

Tijk
o 2o Vij Tijik
e L L L
/ Zz Wik



Algorithms for NMF

W, H
D(V||WH) =Y < Vi 1ogzmjkM + ZWm Hk]>

. Tk
7’7]

W, Hy
< Z <— Vij Zm’jk log # + szk‘ Hk:j)
irj 2 k

ijk



Algorithms for NMF

W, H
D(V||WH) =Y < Vi 1ogzmjkM + ZWm Hk]>

i Tijk
W, Hy
<> <— Vij Y mijilog # +) Wy ij)
i) k v k

o _ 220 Vij mijk
g Zz Wik



Algorithms for NMF

W, H
D(V||WH) =Y < Vi 1ogzmjkM + ZWm ij>

ij Tijk
W, Hy.:
< Z <— Vij Zﬂi]‘k log # + szk Hk:j)
ij k v k

o 22 Vi Tijik

ki = T A

/ Zz Wik
But I haven't told you what 7;;;, is. We have to choose ;) to
make the function a majorizing function.



Algorithms for NMF

W, H
D(V||WH) =Y < Vi 1ogzmjkM + ZWm ij>

ij Tijk
W, Hy.:
< Z <— Vij Zﬂi]‘k log # + szk Hk:j)
ij k v k

o 22 Vi Tijik

ki = T A

/ Zz Wik
But I haven't told you what 7;;;, is. We have to choose ;) to
make the function a majorizing function.

Wi Hy)

W does the trick.
k

Tijk =
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Wi HY)

If we substitute 7;;;, = c k”@), we obtain the updates:
k
Wik Hg])
(0+1) ZZ Vii > Wik H"
ij+ — ki

Zz’ Wi



Algorithms for NMF

Wir 219
If we substitute 7;;;, = c ’”(e), we obtain the updates:
k
Wik H§fj)
YiVij o
gD 2o Wi Hy
kj S W,
i ik
\%
0 & <WH<Z>>-~WZ"c
=H)". Y
kj

Zi Wi



Algorithms for NMF

]
. W, H
If we substitute 7;;;, = c ’”@), we obtain the updates:
k
S v W HY)
i Vij S a0
D LY, Wy HY
& Zz Wi
v .
o i (s, Wa
! > Wik

These are multiplicative updates. In matrix form:

T _V
HED O .*W WH®
wTi



Algorithms for NMF
Using D(V ||WH) = D(VT ||HT WT), we obtain a similar
update for W.
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Algorithms for NMF
Using D(V ||WH) = D(VT ||HT WT), we obtain a similar
update for W.
Now we just iterate between:

@® Updating W.

® Updating H.

©® Checking D(V || W H). If the change since the last iteration
is small, then declare convergence.

The algorithm is summarized below:

Algorithm KL-NMF

initialize W, H
repeat
wT _V_

H+—H" T

N HT
‘N] L ‘N7 WH
. © 1HT
until convergence return W, H

-




Caveats

e The NMF problem is non-convex.

e The algorithm is only guaranteed to find a local optimum.

e The algorithm is sensitive to choice of initialization.
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STFT

FFTSIZE = 1024;

HOPSIZE = 256;

WINDOWSIZE = 512;

X = myspectrogram(x,FFTSIZE,fs,hann(WINDOWSIZE) ,-HOPSIZE) ;
V = abs(X(1:(FFTSIZE/2+1),:));

F = size(V,1);

T = size(V,2);

e https://ccrma.stanford.edu/~jos/sasp/Matlab_
listing_myspectrogram_m.html

e https://ccrma.stanford.edu/~jos/sasp/Matlab_
listing_invmyspectrogram _m.html


https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_myspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_myspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_invmyspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_invmyspectrogram_m.html

NMF

function [W, H] = nmf(V, K, MAXITER)

F
T

size(V,1);
size(V,2);

rand(’seed’,0)
W = 1+rand(F, K);
H = 1+rand(K, T);

ONES = ones(F,T);

for i=1:MAXITER
% update activations
H=H .x (Wx( V./(WkH+eps))) ./ (W’*ONES);
% update dictionaries
W =W .x ((V./(WxH+eps))*H’) ./(ONES*H’);
end

% normalize W to sum to 1
sumW = sum(W);

W = Wxdiag(1l./sumW);

H = diag(sumW)*H;



FILTER & ISTFT

phi

= angle(X);

% reconstruct each basis as a separate source

for

end

i=1:K
XmagHat = W(:,i)*H(i,:);

% create upper half of frequency before istft
XmagHat = [XmagHat; conj( XmagHat(end-1:-1:2,:))];

% Multiply with phase
XHat = XmagHat.*exp(li*phi);

xhat(:,i) = real(invmyspectrogram(XHat ,HOPSIZE))’;
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