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General Idea



Music Remixing and Content Creation

Music remixing and content creation



Audio Post-Production and Remastering

Audio post-production and remastering



Spatial Audio and Upmixing

Spatial audio and upmixing



Denoising

Denoising

• Separate noise speech

• Remove background music from music

• Remove bleed from other instruments
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Current Approaches I

• Microphone Arrays
• Beamforming to “listen” in a particular direction [BCH08]
• Requires multiple microphones

• Adaptive Signal Processing
• Self-adjusting filter to remove an unwanted signal [WS85]
• Requires knowing the interfering signal

• Independent Component Analysis
• Leverages statistical independence between signals [HO00]
• Requires N recordings to separate N sources
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Current Approaches II

• Computational Auditory Scene Analysis
• Leverages knowledge of auditory system [WB06]
• Still requires some other underlying algorithm

• Sinusoidal Modeling
• Decomposes sound into sinusoidal peak tracks [Smi11, Wan94]
• Problem in assigning sound source to peak tracks

• Classical Denoising and Enhancement
• Wiener filtering, spectral subtraction, MMSE STSA (Talk 1)
• Difficulty with time varying noise
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Current Approaches III

• Non-Negative Matrix Factorization & Probabilistic Models
• Popular technique for processing audio, image, text, etc.
• Models spectrogram data as mixture of prototypical spectra
• Relatively compact and easy to code algorithms
• Amenable to machine learning
• In many cases, works surprisingly well
• The topic of today’s discussion!
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Matrix Factorization

• Decompose a matrix as a product of two or more matrices

A = BC A ≈ BC

D = EFG D ≈ EFG

• Matrices have special properties depending on factorization

• Example factorizations:
• Singular Value Decomposition (SVD)
• Eigenvalue Decomposition
• QR Decomposition (QR)
• Lower Upper Decomposition (LU)
• Non-Negative Matrix Factorization



Matrix Factorization

• Decompose a matrix as a product of two or more matrices

A = BC A ≈ BC

D = EFG D ≈ EFG

• Matrices have special properties depending on factorization

• Example factorizations:
• Singular Value Decomposition (SVD)
• Eigenvalue Decomposition
• QR Decomposition (QR)
• Lower Upper Decomposition (LU)
• Non-Negative Matrix Factorization



Non-Negative Matrix Factorization

Data[
V

]
≈

Basis Vectors[
W

] Weights[
H

]

• A matrix factorization where everything is non-negative

• V ∈ RF×T+ - original non-negative data

• W ∈ RF×K+ - matrix of basis vectors, dictionary elements

• H ∈ RK×T+ - matrix of activations, weights, or gains

• K < F < T (typically)
• A compressed representation of the data
• A low-rank approximation to V
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Interpretation of V

Data[
V

]
≈

Basis Vectors[
W

] Weights[
H

]

• V ∈ RF×T+ - original non-negative data
• Each column is an F-dimensional data sample
• Each row represents a data feature
• We will use audio spectrogram data as V



Interpretation of W

Data[
V

]
≈

Basis Vectors[
W

] Weights[
H

]

• W ∈ RF×K+ - matrix of basis vectors, dictionary elements
• A single column is referred to as a basis vector
• Not orthonormal, but commonly normalized to one



Interpretation of H

Data[
V

]
≈

Basis Vectors[
W

] Weights[
H

]

• H ∈ RK×T+ - matrix of activations, weights, or gains
• A row represents the gain of corresponding basis vector
• Not orthonormal, but commonly normalized to one



NMF With Spectrogram Data

V ≈ W H

Figure : NMF of Mary Had a Little Lamb with K = 3 play stop

• The basis vectors capture prototypical spectra [SB03]

• The weights capture the gain of the basis vectors
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Factorization Interpretation I

Columns of V ≈ as a weighted sum (mixture) of basis vectors

v1 v2 ... vT

 ≈
 K∑
j=1

Hj1 wj

K∑
j=1

Hj2 wj ...
K∑
j=1

HjT wj





Factorization Interpretation II

V is approximated as sum of matrix “layers”

= + +

v1 v2 . . . vT

 ≈
w1 w2 . . . wK




h
T

1

h
T

2
...

h
T

K


V ≈ w1 h

T
1 +w2 h

T
2 + . . .+wK hT

K



Questions

• How do we use W and H to perform separation?

• How do we solve for W and H, given a known V?
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General Separation Pipeline

1 STFT

2 NMF

3 FILTER

4 ISTFT

NMF

STFT

ISTFT

FILTERx

\X
x̂S

x̂1

x̂2ISTFT

ISTFT

...

W H,

|X̂1|

|X̂2|

|X̂S |
V = |X|



General Separation Pipeline

1 STFT

2 NMF

3 FILTER

4 ISTFT

NMF

STFT

ISTFT

FILTERx

\X
x̂S

x̂1

x̂2ISTFT

ISTFT

...

W H,

|X̂1|

|X̂2|

|X̂S |
V = |X|



Short-Time Fourier Transform (STFT)

x

FFT

signal

windows

windowed
segments

spectrum |X| \X,

• Inputs time domain signal x

• Outputs magnitude |X | and phase ∠X matrices



Short-Time Fourier Transform (STFT)

Xm(ωk) = e−jωkmR

N/2−1∑
n=−N/2

x(n+mR)w(n)e−jωkn

x(n) = input signal at time n

w(n) = length M window function (e.g. Hann, etc.)

N = DFT size, in samples

R = hop size, in samples, between successive DFT

M = window size, in samples

wk = 2πk/N, k = 0, 1, 2, . . . , N − 1

• Choose window, window size, DFT size, and hop size

• Must maintain constant overlap-add COLA(R) [Smi11]



General Separation Pipeline

1 STFT
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Non-Negative Matrix Factorization

• Inputs |X |, outputs W and H

• Algorithm to be discussed
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Source Synthesis I

• Choose a subset of basis vectors Ws and activations Hs to
reconstruct source s

• Estimate the source s magnitude:

|X̂s| = WsHs =
∑
i∈s

(wi h
T
i )



Source Synthesis I

• Choose a subset of basis vectors Ws and activations Hs to
reconstruct source s

• Estimate the source s magnitude:
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Source Synthesis II

Example 1: “D” pitches as a single source

= + +

V ≈ w1 h
T
1 +w2 h

T
2 +w3 h

T
3

• |X̂s| ≈ w1 h
T
1

• Use one basis vector to reconstruct a source



Source Synthesis III

Example 2: “D” and “E” pitches as a source

= + +

V ≈ w1 h
T
1 +w2 h

T
2 +w3 h

T
3

• |X̂s| ≈ w1 h
T
1 +w2 h

T
2

• Use two (or more) basis vector to reconstruct a source



Source Filtering I

Alternatively, we can estimate |X̂s| by filtering |X | via:

1 Generate a filter Ms, ∀s

Ms =
(WsHs)

α

K∑
i=1

(WiHi)α
=
|X̂s|α
K∑
i=1
|X̂i|α

=

∑
i∈s

(wi h
T
i )
α

K∑
i=1

(wi h
T
i )
α

where α ∈ R+ is typically set to one or two.

2 Estimate the source s magnitude |Xs |

|X̂s| = Ms� |X |

where � is an element-wise multiplication
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Source Filtering II

Example: Choose “D” pitches as a single source w/one basis vector

1 Compute filter Ms =
w1 h

T
1

K∑
i=1

wi h
T
i

, with α = 1

= / ( + + )

2 Multiply with |X̂s| = Ms� |X |

= �



Source Filtering III

• The filter M is referred to as a masking filter or soft mask

• Tends to perform better than the reconstruction method

• Similar to Wiener filtering discussed in Talk 1
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Inverse Short-Time Fourier Transform (ISTFT)

PROCESS

IFFT

+

+

+

modified
spectrum

windowed
segments

reconstructed
signal

|X| \X,

x̂

• Inputs |X | and phase ∠X matrices

• Outputs time domain signal x
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Algorithms for NMF

• Question: How do we solve for W and H, given a known V?

• Answer: Frame as optimization problem

minimize
W,H≥0

D(V ||WH)

where D is a measure of “divergence”.
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Algorithms for NMF

Some choices for D:

• Euclidean: D(V ||V̂) =
∑
i,j

(Vij −V̂ij)
2

• Kullback-Leibler:

D(V ||V̂) =
∑
i,j

(
Vij log

Vij

V̂ij

−Vij +V̂ij

)
We will focus on KL divergence in today’s lecture.
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Geometric View of NMF



Algorithms for NMF

How does one solve

minimize
W,H≥0

∑
i,j

(
Vij log

Vij

(WH)ij
−Vij +(WH)ij

)
?

Tricks of the trade for minimizing a function f(x).

• closed-form solutions: solve ∇f(x) = 0.

• gradient descent: iteratively move in steepest descent dir.

x(`+1) ← x(`)−η∇f(x(`)).

• Newton’s method: iteratively minimize quadratic approx.

x(`+1) ← argmin
x

f(x(`)) +∇f(x(`))T (x−x(`))

+
1

2
(x−x(`))T∇2f(x(`))(x−x(`))
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Gradient Descent



Newton’s Method



Meta Algorithms

Coordinate descent

• Instead of minimizing f(x), minimize f(xi;x
(`)
−i) and cycle

over i.

• Useful when f(xi;x
(`)
−i) can be minimized in closed form.

Majorization-minimization

1 Find a majorizing function g for f at current iterate x(`).
• f(x) < g(x;x(`)) for all x 6= x(`)

• f(x(`)) = g(x(`);x(`))

2 Minimize the majorizing function to obtain x(`+1).
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Majorization-minimization
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Algorithms for NMF

To minimize

D(V ||WH) =
∑
i,j

(
Vij log

Vij

(WH)ij
−Vij +(WH)ij

)
cst.
=
∑
i,j

−Vij log
∑
k

WikHkj +
∑
i,j

∑
k

WikHkj

we use (block) coordinate descent: optimize H for W fixed,
then optimize W for H fixed (rinse and repeat).

Can we optimize this in closed form?
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Algorithms for NMF

D(V ||WH)
cst.
=
∑
i,j

−Vij log
∑
k

WikHkj +
∑
i,j

∑
k

WikHkj

Not quite, so let’s try to majorize the function. A useful tool is
Jensen’s inequality, which says that for convex functions f :

f(average) ≤ average of f

0 0.5 1 1.5 2
−1

0

1

2

3

4

5

x

f
(x
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Algorithms for NMF

D(V ||WH)
cst.
=
∑
i,j

−Vij log
∑
k

WikHkj +
∑
i,j

∑
k

WikHkj

To apply Jensen’s inequality, we introduce weights
∑

k πijk = 1.

=
∑
i,j

(
−Vij log

∑
k

πijk
WikHkj

πijk
+
∑
k

WikHkj

)

≤
∑
i,j

(
−Vij

∑
k

πijk log
WikHkj

πijk
+
∑
k

WikHkj

)

Now this function can be minimized exactly!

H∗kj =

∑
iVij πijk∑
iWik
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If we substitute πijk =
Wik H

(`)
kj∑

k Wik H
(`)
kj

, we obtain the updates:

H
(`+1)
kj ←

∑
iVij

Wik H
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kj∑

k Wik H
(`)
kj∑
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= H
(`)
kj ·

∑
i

(
V

WH(`)

)
ij
Wik∑

iWik

These are multiplicative updates. In matrix form:

H(`+1) ← H(`) .∗
WT V

WH(`)

WT 1
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Algorithms for NMF
Using D(V ||WH) = D(VT ||HT WT ), we obtain a similar
update for W.
Now we just iterate between:

1 Updating W.

2 Updating H.

3 Checking D(V ||WH). If the change since the last iteration
is small, then declare convergence.

The algorithm is summarized below:

Algorithm KL-NMF

initialize W,H
repeat

H← H .∗
WT V

WH

WT 1

W←W .∗
V

WH
HT

1HT

until convergence return W,H
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Caveats

• The NMF problem is non-convex.
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• The algorithm is only guaranteed to find a local optimum.

• The algorithm is sensitive to choice of initialization.
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STFT

FFTSIZE = 1024;

HOPSIZE = 256;

WINDOWSIZE = 512;

X = myspectrogram(x,FFTSIZE,fs,hann(WINDOWSIZE),-HOPSIZE);

V = abs(X(1:(FFTSIZE/2+1),:));

F = size(V,1);

T = size(V,2);

• https://ccrma.stanford.edu/~jos/sasp/Matlab_

listing_myspectrogram_m.html

• https://ccrma.stanford.edu/~jos/sasp/Matlab_

listing_invmyspectrogram_m.html

https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_myspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_myspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_invmyspectrogram_m.html
https://ccrma.stanford.edu/~jos/sasp/Matlab_listing_invmyspectrogram_m.html


NMF

function [W, H] = nmf(V, K, MAXITER)

F = size(V,1);

T = size(V,2);

rand(’seed’,0)

W = 1+rand(F, K);

H = 1+rand(K, T);

ONES = ones(F,T);

for i=1:MAXITER

% update activations

H = H .* (W’*( V./(W*H+eps))) ./ (W’*ONES);

% update dictionaries

W = W .* ((V./(W*H+eps))*H’) ./(ONES*H’);

end

% normalize W to sum to 1

sumW = sum(W);

W = W*diag(1./sumW);

H = diag(sumW)*H;



FILTER & ISTFT

phi = angle(X);

% reconstruct each basis as a separate source

for i=1:K

XmagHat = W(:,i)*H(i,:);

% create upper half of frequency before istft

XmagHat = [XmagHat; conj( XmagHat(end-1:-1:2,:))];

% Multiply with phase

XHat = XmagHat.*exp(1i*phi);

xhat(:,i) = real(invmyspectrogram(XHat,HOPSIZE))’;

end
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