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Speech enhancement: A source separation perspective

Source separation: Decoupling of two or more sources with no, little
or some prior information.
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Speech enhancement: A source separation perspective

Source separation: Decoupling of two or more sources with no, little
or some prior information.

Speech enhancement is a natural application for source separation.
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Speech enhancement: The application perspective

Goal: Increase the intelligibility/quality of noisy speech.

Practical constraints.

Computationally efficient: Real-time applications on mobile phones,
teleconferences.
A solution independent of the noise environment.
Stronger emphasis on reconstructing speech (different
objective/subjective measures).
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Objective

Present some of the well-established methods in the speech
enhancement literature and discuss the relationship between them.

Shed insight on how such methods differ in approach and
assumptions with methods that rely on matrix factorization and/or
prior training of sources.

Working code that can act as baselines for any speech enhancement
work.
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Speech enhancement: Model sources

Under-determined problem: Y (ω) = X(ω) +D(ω)

Train dictionaries (bases) of noise and/or speech to use as prior.

Model of the noise can be inaccurate.
Training online can be computationally expensive.

Assumption that noise varies more slowly compared to speech and
that speech is temporally sparse.

Use voice activity detectors and estimate noise when there is no speech.
Keep track of the minimum level of spectrum at certain frequency.
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Speech enhancement: Separate sources

Based on an estimate of the noise, how can we estimate the speech.

Spectral subtraction [Bol79]
Wiener filtering: MMSE Estimator [LO79]
Spectral Amplitude MMSE Estimator [EM84]
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Frequency domain approaches

Discuss approaches in the frequency domain: Y (ω) = X(ω) +D(ω)

Overall flow of STFT processing

y(n)
w(n − mR)

ym(n) Ym(w)

X̂m(w)x̂(n) x̂m(n)
Overlap add IFT 

FT 

Estimation 
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Spectral subtraction

|Ym(ω)|
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Spectral subtraction

|Ym(ω)|, |D̂m(ω)|
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Spectral subtraction

|Ym(ω)|, E [|Dm(ω)|]
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Spectral subtraction

|X̂m(ω)| = |Ym(ω)| − E [|Dm(ω)|]
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Spectral subtraction

|X̂m(ω)| = max{|Ym(ω)| − E [|Dm(ω)|] , 0}
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Spectral subtraction

|X̂m(ω)| = max{|Ym(ω)| − E [|Dm(ω)|] , 0}
∠X̂m(ω) = ∠Ym(ω)
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Power spectral subtraction

|X̂m(ω)|α = max{|Ym(ω)|α − E [|Dm(ω)|α] , 0}

The power spectral subtraction: α = 2

|X̂m(ω)|2 = max{|Ym(ω)|2 − E
[
|Dm(ω)|2

]
, 0}
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Gain for power spectral subtraction

From the power spectral subtraction,

|X̂m(ω)|2 = |Ym(ω)|2 − E
[
|Dm(ω)|2

]
the gain can be expressed as follows

Hm(ω) =
|X̂m(ω)|
|Ym(ω)|

=

√
|Ym(ω)|2 − E [|Dm(ω)|2]

|Ym(ω)|2
=

√
γ(ω)− 1

γ(ω)

γ(ω) is called the a-posteriori SNR. γ(ω) = |Ym(ω)|2
E[|Dm(ω)|2]

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 10 / 41



Gain for power spectral subtraction

From the power spectral subtraction,

|X̂m(ω)|2 = |Ym(ω)|2 − E
[
|Dm(ω)|2

]
the gain can be expressed as follows

Hm(ω) =
|X̂m(ω)|
|Ym(ω)|

=

√
|Ym(ω)|2 − E [|Dm(ω)|2]

|Ym(ω)|2
=

√
γ(ω)− 1

γ(ω)

γ(ω) is called the a-posteriori SNR. γ(ω) = |Ym(ω)|2
E[|Dm(ω)|2]

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 10 / 41



Gain for power spectral subtraction

From the power spectral subtraction,

|X̂m(ω)|2 = |Ym(ω)|2 − E
[
|Dm(ω)|2

]
the gain can be expressed as follows

Hm(ω) =
|X̂m(ω)|
|Ym(ω)|

=

√
|Ym(ω)|2 − E [|Dm(ω)|2]

|Ym(ω)|2
=

√
γ(ω)− 1

γ(ω)

γ(ω) is called the a-posteriori SNR. γ(ω) = |Ym(ω)|2
E[|Dm(ω)|2]

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 10 / 41



Gain for power spectral subtraction

Hm(ω) =

√
γ(ω)− 1

γ(ω)
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Gain for general spectral subtraction

|X̂m(ω)|α = |Ym(ω)|α − E [|Dm(ω)|α]
Different gain functions for various α

Hm(ω) =
|X̂m(ω)|
|Ym(ω)|

=

(
γ(ω)α/2 − 1

γ(ω)α/2

)1/α
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Example of spectral subtraction

Noisy speech

Power spectral subtraction

Magnitude spectral subtraction
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Musical noise

Q. Why do we get musical noise?

A1. Inaccurate estimate of unknown variables.

From Ym(ω) = Xm(ω) +Dm(ω),

|Xm(ω)|2 = |Ym(ω)|2 − |Dm(ω)|2
− (Xm(ω)D∗m(ω) +X∗m(ω)Dm(ω))

|Dm(ω)|2 ≈ E
[
|Dm(ω)|2

]
2Re{Xm(ω)D∗m(ω)} ≈ E [2Re{Xm(ω)D∗m(ω)}] = 0

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 14 / 41



Musical noise

Q. Why do we get musical noise?

A1. Inaccurate estimate of unknown variables.

From Ym(ω) = Xm(ω) +Dm(ω),

|Xm(ω)|2 = |Ym(ω)|2 − |Dm(ω)|2
− (Xm(ω)D∗m(ω) +X∗m(ω)Dm(ω))

|Dm(ω)|2 ≈ E
[
|Dm(ω)|2

]
2Re{Xm(ω)D∗m(ω)} ≈ E [2Re{Xm(ω)D∗m(ω)}] = 0

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 14 / 41



Noise estimation

Simple method is to average power spectra when there is no speech
activity |D̂m(ω)|2 = E

[
|Ym(ω)|2

]
= E

[
|Dm(ω)|2

]
Need an accurate voice activity detector (VAD)
Issues with non-stationary noise (babble noise) conditions

Issues with |D̂m(ω)|2 = E
[
|Dm(ω)|2

]
The noise power spectrum (periodogram) has high variance with
respect to the underlying power spectral density
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Cross term spectrum

2Re{Xm(ω)D
∗
m(ω)} requires the phase information which is difficult

to estimate
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Musical noise

Q. Why do we get musical noise?

A1. In accurate estimate of unknown variables.

A2. How we engineer situations when we have a bad estimate.

Half rectify negative values.

|X̂m(ω)|2 = max{|Ym(ω)|2 − E
[
|Dm(ω)|2

]
, 0}
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Artifacts from half-wave rectifying

1

1Image from [Bol79]
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Oversubtraction [BSM79]

Over-subtract the noise estimate to reduce noise peaks

|X̂m(ω)|2 = |Ym(ω)|2 − αE
[
|Dm(ω)|2

]
Comes at the expense of attenuating the underlying signal

0 1000 2000 3000 4000 5000 6000 7000 8000
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Freq (Hz)

P
o
w

e
r 

m
a
g
n
it
u
d
e
 (

d
B

)

α = 1, Frame 25

 

 
noisy speech

noise estimate

denoised speech

0 1000 2000 3000 4000 5000 6000 7000 8000
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Freq (Hz)

P
o
w

e
r 

m
a
g
n
it
u
d
e
 (

d
B

)

α = 2, Frame 25

 

 
noisy speech

noise estimate

denoised speech

0 1000 2000 3000 4000 5000 6000 7000 8000
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Freq (Hz)

P
o
w

e
r 

m
a
g
n
it
u
d
e
 (

d
B

)

α = 3, Frame 25

 

 
noisy speech

noise estimate

denoised speech

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 19 / 41



Oversubtraction [BSM79]

Fill in valleys at frequencies to mask residue noise

|X̂m(ω)|2 = max{|Ym(ω)|2 − αE
[
|Dm(ω)|2

]
,

βE
[
|Dm(ω)|2

]
}
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Oversubtraction [BSM79]

α should be dependent on the frame segmental SNR (γ)

Less attenuation (small α) for high SNR, and more attenuation (large
α) for low SNR
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Example of over spectral subtraction

Noisy speech

Power spectral subtraction

Spectral over subtraction: α = 15, β = 0.01
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Wiener filter

Find optimal linear filter that outputs the desired signal (clean speech)

e(n) = x(n)− x̂(n) = x(n)−
M−1∑
k=0

hky(n− k)

Find h∗ that minimizes E
[
e2(n)

]
by solving

∂E[e2(n)]
∂h = 0

h∗ = R−1
yy ryx = (Rxx + Rdd)

−1rxx
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Wiener filter in frequency domain

If we assume a non-causal IIR filter, using the convolution theorem,
i.e., x(n) ∗ h(n)↔ X(w)H(w)

E(ω) = X(w)−H(w)Y (w)

If we minimize E
[
|E(ω)|2

]
with respect to H(ω), we have

H(ω) =
E [X(ω)Y ∗(ω)]

E [|Y (w)|2] =
E [X(ω)(X(ω)∗ +D(ω)∗)]

E [|Y (w)|2]

=
E
[
|X(ω)|2

]
E [|Y (ω)|2] =

E
[
|X(ω)|2

]
E [|X(ω)|2] + E [|D(ω)|2]
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Parametric wiener filters

Wiener filter

H(ω) =
E
[
|X(ω)|2

]
E [|Y (ω)|2] =

E
[
|X(ω)|2

]
E [|X(ω)|2] + E [|D(ω)|2]

More generally,

H(ω) =

(
E
[
|X(ω)|2

]
E [|X(ω)|2] + αE [|D(ω)|2]

)β
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Connection with spectral subtraction

H(ω) =

(
E
[
|X(ω)|2

]
E [|X(ω)|2] + αE [|D(ω)|2]

)β

E
[
|X(ω)|2

]
is unknown

If α = 1, β = 1/2, and E
[
|X(ω)|2

]
= |X̂(ω)|2 then...

|X̂(ω)| = H(ω)|Y (ω)| =
√

|X̂(ω)|2
|X̂(ω)|2 + E [|D(ω)|2]

|Y (ω)|

|X̂(ω)|2(|X̂(ω)|2 + E
[
|D(ω)|2

]
) = |X̂(ω)|2|Y (ω)|2

gives two solutions |X̂(ω)|2 = |Ŷ (ω)|2 −E
[
|D(ω)|2

]
or |X̂(ω)|2 = 0.

which is essentially the power spectral subtraction algorithm
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[
|D(ω)|2

]
or |X̂(ω)|2 = 0.

which is essentially the power spectral subtraction algorithm

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 26 / 41



Connection with spectral subtraction

H(ω) =

(
E
[
|X(ω)|2

]
E [|X(ω)|2] + αE [|D(ω)|2]

)β

E
[
|X(ω)|2

]
is unknown

If α = 1, β = 1/2, and E
[
|X(ω)|2

]
= |X̂(ω)|2 then...

|X̂(ω)| = H(ω)|Y (ω)| =
√

|X̂(ω)|2
|X̂(ω)|2 + E [|D(ω)|2]

|Y (ω)|

|X̂(ω)|2(|X̂(ω)|2 + E
[
|D(ω)|2

]
) = |X̂(ω)|2|Y (ω)|2

gives two solutions |X̂(ω)|2 = |Ŷ (ω)|2 −E
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Connection with spectral subtraction

H(ω) =

(
E
[
|X(ω)|2

]
E [|X(ω)|2] + αE [|D(ω)|2]

)β

E
[
|X(ω)|2

]
is unknown

If α = 1, β = 1/2, and E
[
|X(ω)|2

]
= |X̂(ω)|2 then...

|X̂(ω)| = H(ω)|Y (ω)| =
√

|X̂(ω)|2
|X̂(ω)|2 + E [|D(ω)|2]

|Y (ω)|

|X̂(ω)|2(|X̂(ω)|2 + E
[
|D(ω)|2

]
) = |X̂(ω)|2|Y (ω)|2

gives two solutions |X̂(ω)|2 = |Ŷ (ω)|2 −E
[
|D(ω)|2

]
or |X̂(ω)|2 = 0.

which is essentially the power spectral subtraction algorithm
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Wiener filter gain

If we replace E[|X(ω)|2] = |Ŷ (ω)|2 − E
[
|D(ω)|2

]
Wiener filter

H(ω) =
E[|X(ω)|2]

E[|X(ω)|2] + E [|D(ω)|2] =
γ(ω)− 1

γ(ω)

, where γ(ω) = |Ŷ (ω)|2
E[|D(ω)|2] .

The square root wiener filter = power spectral subtraction

H(ω) 1
2
=

√
γ(ω)− 1

γ(ω)
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Wiener filter gain
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Connection with spectral subtraction

If α 6= 1, using the same method

|X̂(ω)|2 = |Ŷ (ω)|2 − αE
[
|D(ω)|2

]
which is the spectral over subtraction method

Note the Wiener filter is zero-phase, and thus ∠X̂(ω) = ∠Y (ω), just
like the spectral subtraction method
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MMSE-STSA Estimator

Suggested by Eprahim and Malah [EM84]

Estimator that minimizes the mean square error of the spectral
magnitude

Given X(ωk) = Xke
j∠X(ωk),

minE
[
(Xk − X̂k)

2
]
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Comparison of MMSE-STSA Estimator with Wiener filter

1 MMSE in the complex spectrum vs. magnitude spectrum

Wiener: minE
[
(X(ωk)− X̂(ωk))

2)
]

MMSE-STSA: minE
[
(Xk − X̂k)

2
]

2 Linear assumption vs. assumption on distribution of Xk

Wiener: minE
[
(X(ωk)−H(ωk)Y (ωk))

2
]

MMSE-STSA: minE
[
(Xk − X̂k)

2
]
, where expectation is taken over

p(Y (ωk), Xk)

Eunjoon Cho ( Stanford University, EE ) Source Separation Tutorial Mini-Series I April 2nd, 2013 31 / 41



MMSE-STSA Estimator

minE
[
(Xk − X̂k)

2
]

From Bayesian statistics the optimal MMSE estimator is,

X̂k = E [Xk|Y (ωk)]

=

∫ ∞
0

xkp(xk|Y (ωk))dxk

=

∫∞
0 xkp(Y (ωk)|xk)p(xk)dxk

p(Y (ωk))

We need knowledge on the distribution of X(ωk) and Y (ωk)
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Distribution assumption for X(wk), D(wk), and Y (wk)

Fourier transform coefficients (of both speech and noise) are Gaussian
distributed.

From central limit theorem: Y (ωk) =
∑N−1

n=0 y(n)e
−jωkn

CLT holds for weakly dependent signals too
The variance of the distribution E|Y (ωk)|2 is time varying

X(wk) ∼ N (0, E
[
|X(wk)|2

]
)

D(wk) ∼ N (0, E
[
|D(wk)|2

]
)

Y (wk) ∼ N (0, E
[
|X(wk)|2

]
+ E

[
|D(wk)|2

]
)

Xk ∼ Rayleigh(σ), with σ =
√
E [|X(wk)|2] /2
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Spectral gain of MMSE-STSA estimator

The spectral gain can be represented with two variables.

The a-priori SNR: ξk =
E[|X(ωk)|2]
E[|D(ωk)|2]

The a-posteriori SNR: γk = |Y (ωk)|2
E[|D(ωk)|2]

Using a temporary variable, νk =
ξk

1+ξk
γk,

X̂k =

√
π

2

√
νk
γk

exp
(
−νk

2

) [
(1 + νk)I0

(νk
2

)
+ νkI1

(νk
2

)]
Yk

= G(ξk, γk)Yk
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Gain as a function of a-priori SNR
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Estimating the a-priori SNR

ξk =
E
[
|X(ωk)|2

]
E [|D(ωk)|2]

Instantaneous SNR: ξ̂k =
|Y (ωk)|2−E[|D(ωk)|2]

E[|D(ωk)|2]
= |Y (ωk)|2

E[|D(ωk)|2]
− 1

Decision directed approach

ξ̂k(m) = a
X̂2
k(m− 1)

E [|D(ωk,m− 1)|2] + (1− a)
( |Y (ωk)|2
E [|D(ωk)|2]

− 1

)
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Effect of smoothed SNR

Instantaneous SNR:

ξ̂k = γ(ωk)− 1 =
|Y (ωk)|2

E [|D(ωk)|2]
− 1

Decision directed approach

ξ̂k(m) = a
X̂2
k(m− 1)

E [|D(ωk,m− 1)|2] + (1− a)
( |Y (ωk)|2
E [|D(ωk)|2]

− 1

)
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Examples with decision directed a-priori SNR estimation

Noisy speech

MMSE-STSA (Instantaneous SNR)

MMSE-STSA (Decision Directed SNR)
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Examples with decision directed a-priori SNR estimation

Noisy speech

Wiener Filter (Instantaneous SNR)

Wiener Filter (Decision Directed SNR)
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Summary

Model noise when speech is absent. |D̂(ω)| = E [|D(ω)|]
Separate speech by applying gain on the noisy spectrum.

1 Spectral subtraction: |X̂(ω)| = |Y (ω)| − |D̂(ω)|
2 Wiener filter: X̂(ω) =

E[|X(ω)|2]
E[|X(ω)|2]+E[|D(ω)|2]Y (ω)

3 STSA-MSME: X̂(ω) = G(ξ(ω), γ(ω))Y (ω)
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