MoMu: A Mobile Music Toolkit

Nicholas J. Bryan, Jorge Herrera, Jieun Oh, Ge Wang
Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University
660 Lomita Drive
Stanford, CA, USA

{njb, jorgeh, jieun5, ge}@ccrma.stanford.edu

ABSTRACT

The Mobile Music (MoMu) toolkit is a new open-source
software development toolkit focusing on musical interac-
tion design for mobile phones. The toolkit, currently im-
plemented for iPhone OS, emphasizes usability and rapid
prototyping with the end goal of aiding developers in cre-
ating real-time interactive audio applications. Simple and
unified access to onboard sensors along with utilities for
common tasks found in mobile music development are pro-
vided. The toolkit has been deployed and evaluated in the
Stanford Mobile Phone Orchestra (MoPhQO) and serves as
the primary software platform in a new course exploring
mobile music.

Keywords

instrument design, iPhone, mobile music, software develop-
ment, toolkit

1. INTRODUCTION

Motivated by the newly blossoming field of mobile music [4,
3,13, 7,2, 16, 15], the Mobile Music (MoMu) toolkit offers a
collection of application programming interfaces (API) and
utilities focusing on mobile music development and design.
The initial MoMu release focuses on usability and rapid
prototyping for the iPhone OS with a particular emphasis
toward unifying audio input/output, synthesis, and graph-
ics with the onboard sensors now available on commodity
mobile phones including accelerometer, compass, location,
and multi-touch as seen in Fig. 1. More specifically, the
fundamental design goals of MoMu include:

Real-time audio, synthesis, and control
Consistent conventions for external sensor access

[]
[]
e Unified common functionality for mobile music

e Focus on ease of use, setup, and installation

e Open source C, C++, and Objective-C code
The design focus enables programmers with little or no
prior mobile development experience to rapidly develop in-
teractive audio applications, while concentrating on musi-
cal and aesthetic considerations. MoMu builds upon the
iPhone OS SDK as well as several open source software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME2010, June 15-18, 2010, Sydney, Australia

Copyright 2010, Copyright remains with the author(s).

| Audio | ____________________
(MoAudio)
3 ->
— :

(MoG£x)

User _»| Multi-Touch —
p MoTouch utpu
Input | __! (MoTouch)] o]
i Utilities
i__»| Accelerometer (MoThread)
(MoAccel) (MoFilter)

(MOFFT)

— Location
Other H (MoLocation)
1

Input | __:

|
i_p| Networking-OSC | ___________________.
(MoNet)

o= M= M == |

Figure 1: MoMu Overview.

packages including the Synthesis ToolKit (STK) for sound
synthesis and processing [11, 12], OSCpack [1] for network-
ing via Open Sounds Control [17], and a Fast Fourier Trans-
form (FFT) implementation adapted from the CARL soft-
ware distribution [9]. To maximize performance on current
mobile hardware, MoMu has been implemented largely in
a low-level language (C/C++). The open-source nature al-
lows for custom modifications or additions for production
level applications. As far as our experience has shown, such
an approach tends to be more familiar to computer musi-
cians and audio developers alike, easier to learn, and lends
itself to greater code reuse for future platforms. To encour-
age academic researchers and commercial developers to fo-
cus on more musical and interactive applications, MoMu is
released under a BSD-like license. In the remaining paper,
we discuss the components of MoMu and evaluate its use in
a mobile phone orchestra [15] and classroom setting.

2. API

The design of MoMu can be divided into two general top-
ics involving mobile music development: access to onboard
sensors and other useful programming abstractions. The
incredibly diverse onboard sensors now available on cur-
rent smartphones include audio input/output, accelerome-
ter, compass, location, networking, and multi-touch. For
our purposes of mobile music, such sensors have a trans-
formative effect on the gamut of new musical experiences.

As a result, we have focused our design efforts on specific
APIs for providing easy access to these elements (as found
in §2.1.1 and §2.2). The more general category of other use-
ful programming tools including audio synthesis, analysis,
and processing, common graphics functionality, and gen-
eral utilities such as threading, filtering, and fast Fourier
transform (FFT) functionality.

Onboard sensor functionality encourages a unified design
when considering the goals outlined in §1. MoMu treats
each sensor as a “singleton” resource server—each individ-
ually managing its respective data that can be dispatched to
the clients of the given API. Because of this, MoMu builds
upon the iPhone SDK, providing an added layer of abstrac-
tion with the hope of simplifying setup and usage. Such
a design is not limited to iPhone OS and should lend itself
to similar implementations for alternative platforms such as
Android or webOS platforms.

MoMu provides global access to necessary sensor data
through a number of static C4++ classes. No objects need
to be instantiated or maintained. For a given resource, the
necessary data is accessible either via polling, interrupt-
driven event handling, or both. Event handling is achieved
via the registration of client callbacks, typically requiring a
single line setup. More specifically, a client of the resource
implements a callback method of a predefined prototype,
registers with the resource, and instantly begins processing.
Additionally, all resources allow users to pass data through
the callback structure (via a void * function parameter)
and register multiple client callbacks per API (audio is lim-
ited to one callback).

2.1 Audio

At the foundation of MoMu is a powerful and simple-to-
use API (MoAudio) for real-time audio input/output (I/0),
routing, and computing. The API abstracts the compli-
cated audio setup, while exposing the core interface for au-
dio I/0O needed for full-duplex real-time audio. The goal is
to significantly reduce the start-up cost for experimenting
and developing high-performance digital audio applications.
Additional functionality is added with a port of the Synthe-
sis Toolkit (STK) for the iPhone OS.

2.1.1 1/0 and Routing

A low-latency, full-duplex solution for audio I/O is funda-
mental to interactive audio processes. The iPhone SDK pro-
vides access to the audio subsystem in a variety of manners,
each of which requires significant setup. MoMu’s MoAudio
API encapsulates the most advanced audio I/O access on
the iPhone (using the Remote I/O AudioUnit). This ap-
proach requires sophisticated initialization, but is also the
only approach to support full-duplex audio I/O, and gen-
erally has the most favorable audio latency. As a concrete
measure of MoAudio’s usefulness, the code to set up au-
dio processing and routing encapsulates over seven hundred
lines of iPhone SDK code as two function calls exposing
only the key parameters (e.g., sample rate, buffer size, and
number of channels).

MoAudio is modeled loosely after RtAudio [6, 5], and pro-
vides the mechanism to register a callback that handles both
audio input (from the onboard or headset mic) as well as
stereo audio output. The callback function is to be proto-
typed as follows:

void <AudioCallback>

(Float32 * buffer, Uint32 numFrames, void * userData)

As in earlier versions of Rt Audio, buffer is processed inline—
initially containing input audio samples (from the A-to-D

converter) requiring the user to overwrite the buffer with au-
dio output (for the D-to-A converter /speakers). This leaves
maximal flexibility for the programmer to “wire in” any
audio analysis and synthesis algorithms, using the callback
as the interface to the audio subsystem. Note the buffer
contains samples in 32-bit floating-point values (internally,
MoAudio converts fixed-point to floating point before enter-
ing the callback, and converts back to fixed point to render
the audio).

Another task of MoAudio is to set up and handle audio
routing. On devices such as the iPhone, there is a fairly
complex routing system that must reconcile the onboard
speaker and microphone against possible outboard headsets
(with or without a microphone). These routes can change
dynamically, requiring different responses and changes to
the behavior of the program. MoAudio currently handles
these route changes internally in an isolated method. While
this is not yet exposed in MoMu, it is possible to modify the
source of MoAudio directly and achieve any desired routing
behavior.

2.1.2 Sound Synthesis

As a foundation for audio signal processing and synthesis,
an iPhone OS port of the Synthesis ToolKit (STK) is in-
cluded with the initial release of MoMu. This is not the first
instance of STK on mobile devices—MobileSTK previously
ported STK to the Symbian OS [4]. STK offers a collection
of signal processing and algorithmic synthesis tools designed
for rapid development and ease of use, complimenting the
similar design goals of this work. While a vast majority
of the STK has been ported, some less commonly used
classes (for mobile music) have been left unsupported in-
cluding socket-related functionality and RTAudio/RTMidi
functionality. Because of the extremely common use, au-
dio file loading and playback as supported by STK also has
been added in the form of MoAudioFileIn in a single file
light-weight adaptation.

2.2 Sensors

In addition to full-duplex audio input and output, typical
smartphones offer a collection of additional sensors. The
iPhone 3GS includes a three-axis accelerometer, compass,
networking, and location tracking technology. Accelerome-
ter, compass, and location sensing all offer unique control
that can be creatively leveraged in conjunction with net-
working technology. The following sections will address the
individual access of such sensors via MoMu, all following
the design outlined in §2.

2.2.1 Accelerometer

The three-axis accelerometer is accessible via polling or call-
back structure in the MoAccel class and built upon the
iPhone SDK’s UIAccelerometerDelegate protocol and

UIAccelerometer class. Using MoAccel, the accelerometer
is typically accessed through the following callback proto-

type:

void <AccelCallback>
(double x, double y, double z, void * userData).

Once inside the registered callback, any further accelerom-
eter processing such as smoothing or tilt processing can be
performed and connected to outside data via the void *
parameter. A method for sample rate control is also pro-
vided.

2.2.2 Location

Location sensing, either in the form of Global Positioning

Systems (GPS) or cellular/wifi network-based techniques,
can give accurate location data such as latitude, longitude,
altitude, and speed. MoLocation encapsulates the iPhone
OS CoreLocation Framework and conveys data back to API
clients via a callback:

void <LocationCallback>
(CLLocation * newLoc, CLLocation * oldLoc,
void * userData).

As with compass sensing, location-based mobile music is
relatively unexplored, showing great promise for locative
music and media interaction where musical interaction is
parametrized by the location or heading of a given user
across the globe.

2.2.3 Compass

Starting with the 3GS model (June 2009), iPhone hardware
provides access to one of the first instances of a digital com-
pass on commodity mobile phones. Layered on top of the
Core Location Framework, MoCompass provides quick access
to heading direction (true and magnetic), time stamp, and
heading accuracy. Clients of MoCompass can poll compass
values or register a callback with the following prototype:

void <CompassCallback>
(CLHeading * heading, void * userData)

The novelty of compass sensing for mobile music has shown
promise and offers an exciting new method of control, fur-
ther enhancing the connection between mobile devices and
the physical world.

2.2.4 Multi-touch

As the iPhone offers a multi-touch interface that detects up
to five points of contact, the MoTouch class has been writ-
ten to provide easy access to the touch information. Clients
of MoTouch implement their multi-touch callback using the
following syntax:

void <TouchCallback>

(NSSet * touchSet, UlView * view,

const std::vector<UITouchx*> & touchVec,
void * userData)

Users can access the multi-touch data using either an un-
ordered NSSet * touchSet or time-ordered

std: :vector<UITouch*> & touchVec. The former set is
natively provided (via subclassing UIResponder), provid-
ing location and attributes of touches, as well as instance
methods provided by the UITouch class. In contrast, the lat-
ter (C++ Standard Template Library std::vector) adds
a time-ordered structure to the touch information, giving
users a consistent way of tracking touches over time. MoTouch
currently leverages the Objective-C runtime system to dy-
namically subclass any UIView within a running application,
simplifying multi-touch setup, and unifying syntax under
the event-based callback paradigm [8].

2.3 Networking

As established in the music technology community, Open
Sound Control (OSC) has greatly simplified communica-
tion with ubiquitous implementations across multiple lan-
guages [17]. MoMu’s MoNet API builds upon OSCpack and
handles all OSC related network activity in a simplified
manner [1]. More specifically, MoNet wraps the method calls
required to send and receive OSC messages into a single
method call. This limits the possibilities offered by OSC-

pack, but provides a fast and simple way of dealing with
common tasks. For more complicated or specific tasks, the
provided and slightly modified version of OSCpack can be
used as a stand-alone API. A common scenario of sending a
simple three parameter message to IP address 192.168.0.1
over port 8888 can be performed as follows:

const int n = 3;

char types[n] = {?i’,’f’,’s’};
MoNet: : sendMessage("192.168.0.1", 8888,
"/message", types, n, 5, 3.14, "some text");

The variables n and types define the number and types of
arguments to be sent, respectively.

Similar to onboard sensor access, handling incoming OSC
messages is done by callback registration. MoNet is capable
of handling different incoming messages simultaneously via
multiple callbacks, therefore requiring the user to associate
each message to a callback. For example:

MoNet: :addAddressCallback("/messageA",
messageACallback, userData);

MoNet: :addAddressCallback("/messageB",
messageBCallback, NULL);

In this example, "/messageA" and "/messageB" will trig-
ger messageACallback and messageBCallback respectively.
In this case, messageACallback receives userData, while
messageBCallback receives NULL. It is important to men-
tion that each callback runs on a different thread and not
on the main thread of the application. This allows con-
tinuous listening to incoming messages, but imposes slight
complications when managing Objective-C data structures.
In particular, additional considerations in terms of memory
management and user interface element manipulation may
be required.

2.4 Graphics

The iPhone hardware (and those of many modern mobile
devices) has a dedicated graphics processing unit (GPU)
for accelerated 3D graphics and operations. In terms of
software, iPhone OS complements the added graphics hard-
ware and provides support for OpenGL ES—a subset of the
OpenGL standard for powerful 3D and 2D graphics capabil-
ities. From our experience, utilizing such functionality for
mobile phone instrument development encourages a more
interactive, responsive, and immersive experience [10, 14].

The OpenGL ES API, however, does not provide many
of the higher-level OpenGL functions and does not support
the GLU (GL Utility) API. To address these missing func-
tionalities, MoMu’s MoGfx provides a set of helper functions
that implements the traditionally useful utility functions
not found in OpenGL ES. They include projection matrix
construction (both perspective and orthographic), camera
control, loading of 2D images for texture mapping, as well
as a “homebrew” 3D vector implementation for physical
simulation.

2.5 Utilities

In addition to the core functionality for access to audio,
sensors, networking, and graphics, MoMu also provides a
number of useful utilities collected from our past work in
computer music development.

2.5.1 Threading

The iPhone OS supports preemptive concurrency via kernel
threads, identical in use to those found on desktop operat-
ing systems. MoMu’s MoThread provides a familiar C/C++

abstraction for easily creating and spawning new concur-
rent processes. The abstraction is a thin layer above the
pthread interface, and it further simplifies thread set up
and creation.

2.5.2 Filtering

MoMu’s MoFilter provides a number of commonly used ba-
sic filter elements not limited to first and second-order filters
(e.g., OnePole, PoleZero, BiQuad) that can be used both
for audio, accelerometer, video, or other signal processing.
Common tasks such as slewing audio control parameters or
smoothing object motion in graphics are ideal examples of
where MoFilter might be useful.

2.5.3 FFT

Based on UCSD’s CARL distribution of music software,
MoFFT adds simple C-based Fast Fourier Transform func-
tionality and commonly used window generators to MoMu.
It should be noted that the function prototype parameters
of rfft, previously defined in CARL, are slightly modified
for ease of use.

3. EVALUATION

MoMu was initially developed to facilitate the design, proto-
typing, and implementation of instruments for the Stanford
Mobile Phone Orchestra. This has provided a closed-loop
design and evaluation cycle in a practical setting, allowing
us to identify and iterate key design issues. For further eval-
uation, an initial version of MoMu was released as part of
an introductory course on mobile music development and
design. With the aid of MoMu, students with no prior
iPhone programming experience were able to develop ap-
plications utilizing full-duplex audio, accelerometer control,
multi-touch, and user interface elements all within a single
week. Furthermore, students with past iPhone program-
ming experience have given positive feedback regarding the
benefits of the APIL. In addition to an initial classroom re-
lease, the authors have collectively worked with the toolkit
over several months, developing numerous musical instru-
ment applications for a mobile phone concert as further
discussed in [10].

4. CONCLUSIONS

The MoMu toolkit greatly simplifies mobile music appli-
cation development by unifying onboard sensor access and
providing a collection of other useful tools and utilities com-
mon in mobile music development. By providing an addi-
tional layer of abstraction on top of the iPhone SDK frame-
works, developers can quickly integrate full-duplex audio,
accelerometer, compass, location, networking, and multi-
touch interaction under a common design. Each such sen-
sor can be accessed either by polling or interrupt based
event handling and can be initialized with a single line
of code. In addition to simplifying onboard sensor man-
agement, MoMu offers a collection of other useful utilities
used for audio synthesis and processing, graphics, thread-
ing, and general purpose filtering. As mentioned before, in
the hope that the toolkit provides useful functionality for
mobile phone music application development, MoMu has
been released under a BSD-like license. For more informa-
tion on retrieving and installing the MoMu toolkit, please
see http://momu.stanford.edu.

5. ACKNOWLEDGMENTS

The development of MoMu has been made possible by a
National Science Foundation Creative IT grant No. IIS-
0855758. We would like to thank Spencer Salazar of Smule

for being an essential author to the development of MoAudio
and MoLog as well as early adopters of MoMu including Luke
Dahl, Rob Hamilton, and Turner Kirk. Additionally, we
would like to thank the winter 2010 Mobile Music class at
Stanford University. Lastly, we would like to thank the
multiple authors of the prior work incorporated into MoMu.

6. REFERENCES

[1] R. Bencina. oscpack, Nov. 2006.
http://www.audiomulch.com/~rossb/code/oscpack/.

[2] W. Carter and L. S. Liu. Location33: A mobile
musical. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 176-179, May 2005.

[3] G. Essl, G. Wang., and M. Rohs. Developments and
Challenges turning Mobile Phones into Generic Music
Performance Platforms. In Proceedings of the Mobile
Music Workshop, Vienna, 2008.

[4] G. Essl and M. Rohs. Mobile STK for Symbian OS.
In Proceedings of the International Computer Music
Conference, pages 278281, New Orleans, 2006.

[5] G. P. Scavone. RtAudio: A Cross-Platform C++
Class for Realtime Audio Input/Output. In
Proceedings of the International Computer Music
Conference, pages 196-199, Gotborg, Sweden, 2002.
ICMA.

[6] G. P. Scavone and P. R. Cook. RTMidi, RTAudio,
and a Synthesis ToolKit (STK) Update. In
Proceedings of the International Computer Music
Conference, Barcelona, Spain, 2005.

[7] G. Levin. Dialtones - a telesymphony.
www.flong.com/telesymphony, Sept. 2, 2001.
Retrieved on April 1, 2007.

[8] M. Ali. iPhone SDK 8 Programming: Advanced
Mobile Development for Apple iPhone and iPod
touch. John Wiley and Sons, New Jersey, 2009.

[9] F. R. Moore, G. Loy, M. Dolson, R. Wright, and et al.
Carl software, 1980. http://crca.ucsd.edu/cmusic/.

[10] J. Oh, J. Herrera, N. J. Bryan, L. Dahl, and
G. Wang. Evolving mobile phone orchestra. In
Proceedings of the International Conference on New
Instruments for Musical Ezpression, June 2010.

[11] P. R. Cook. Synthesis ToolKit in C++, Version 1.0.
In SIGGRAPH 1996, Course #17 & 18, Creating and
Manipulating Sound to Enhance Computer Graphics.,
volume Available from ACM SIGGRAPH, 1996.

[12] P. R. Cook and G. P. Scavone. The Synthesis ToolKit
(STK). In Proceedings of the International Computer
Music Conference, Beijing, China, 1999.

[13] A. Tanaka. Mobile Music Making. In Proceedings of
the International Conference on New Interfaces for
Musical Expression, pages 154—156, June 2004.

[14] G. Wang. Designing smule’s iphone ocarina. In In
Proceedings of the International Conference on New
Interfaces for Musical Expression, Pittsburgh, 2009.

[15] G. Wang, G. Essl, and H. Penttinen. Do mobile
phones dream of electric orchestras? In In
Proceedings of the International Computer Music
Conference, Belfast, 2008.

[16] D. Waters. Mobile Music Challenges ‘iPod Age’. BBC
News Online, Monday, 7 March 2005. Available online
at news.bbc.co.uk/1/hi/technology/4315481.stm.

[17] M. Wright. Open sound control 1.0 specification.
2002.

