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ABSTRACT

Audio production is a difficult process for many people, and
properly manipulating sound to achieve a certain effect is non-
trivial. In this paper, we present a method that facilitates this
process by inferring appropriate audio effect parameters in
order to make an input recording sound similar to an unrelated
reference recording. We frame our work as a form of para-
metric style transfer that, by design, leverages existing audio
production semantics and manipulation algorithms, avoiding
several issues that have plagued audio style transfer algorithms
in the past. To demonstrate our approach, we consider the
task of controlling a parametric, four-band infinite impulse
response equalizer and show that we are able to predict the
parameters necessary to transform the equalization style of
one recording to another. The framework we present, however,
is applicable to a wider range of parametric audio effects.

Index Terms— Parametric style transfer, one-shot learn-
ing, deep learning, parametric equalization

1. INTRODUCTION

Obtaining high-quality recordings (e.g. speech, music) that
can be directly used for commercial use (e.g. podcasting) is
challenging. Everyday users, for example, typically record in
poor acoustic conditions and use low-quality recording equip-
ment, resulting in substandard recording quality. To perform
enhancement on these recordings, audio engineers typically
employ digital audio effects (DAFX) or a series of signal ma-
nipulations that sequentially improve the sound quality along
semantically meaningful axis (e.g. noise level, reverberation
level, equalization, and loudness). This process is commonly
referred to as audio production [1]. Although there are a
plethora of tools for this purpose these tools can be difficult
and time-consuming to use for both novice and expert users.

To automate audio production, deep learning approaches
have shown promise [2, 3, 4, 5, 6, 7, 8]. These approaches
can be organized into two categories. The first category aims
at replacing existing DAFX by directly mapping untreated
recordings to an enhanced output [4, 9, 5] and the second aims
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Fig. 1. One-shot parametric production style transfer.

to predict parameters to control existing tools that themselves
manipulate the recording [3, 6, 7]. The latter approach is
appealing because existing tools typically use semantically
meaningful control, induce minimal audible artifacts, and al-
low end-users to refine the predicted parameters.

Past methods for parameter prediction typically focus on
transforming recordings into a single production style. As a re-
sult, they must be retrained to change the predicted production
style and require large, expensive human-labeled datasets per
style. Recent work [8] avoids this issue by proposing a method
that receives both an untreated recording and a paired produced
reference example recording and then uses a deep Siamese
network and decision tree estimator to predict parameters that
control a dynamic range compressor. While promising, this
approach has several limitations including 1) assuming the
reference signal is the exact produced version of the untreated
recording (paired reference) and 2) requiring a two-step train-
ing process involving both deep learning and decision trees,
complicating both the training and inference design steps.

To address these limitations, we present a new method
for multiple-style one-shot parameter prediction by example
as illustrated in 1. Compared to prior work, 1) we eliminate
the need for paired inputs and develop a general method that
learns directly from unpaired data in a self-supervised manner
to control discrete, quantized parameters 2) we frame our ap-
proach as a parametric style transfer in the context of one-shot
learning [10], 3) we propose an updated network architecture
compared to past work that enables the analysis and process-
ing of signal of varying lengths, and 4) we experimentally
demonstrate our proposed approach on the task of controlling
a parametric 4-band infinite impulse response (IIR) equalizer.



Fig. 2. Overview of our proposed model F . (A) Front-end
Mel-spectrogram feature extraction module, (B) latent feature
extractor module (with shared weights), (C) learned compari-
son module, and (D) parameter prediction module.

2. PROPOSED MODEL

Our proposed model F inputs an untreated recording X(i) and
an unpaired produced recording Y (i) and predicts the DAFX
parameters Θ(i). The proposed model consists of four modules.
The latter three are learnable.

2.1. Signal analysis

The signal analysis module, M, computes a decibel-scaled
Mel-spectrogram of the input signal(s). The computation is
based on the short-time Fourier transform with 20ms window
size, 3ms hop size, and a 128 Mel-band filter-bank.

2.2. Latent feature extractor

Our latent feature extraction module has two parallel, identi-
cal branchesH that follow a Siamese architecture [11]. Each
branch independently extracts a latent representation (embed-
ding) using five blocks of non-linear operations. This module
is loosely based on [8]. Each block includes a two-dimensional
(2D) convolutional operator using multiple convolutional ker-
nels, followed by 2D batch-normalization [12]. For batch-
normalization, we use a single scalar for the average and vari-
ance, respectively, for each convolution channel.

After batch-normalization, we use the leaky rectified linear
unit (LReLU) activation function [13] with a negative slope of
1e−2, followed by a max-pooling operator. Compared to the
model presented in [8], we added a max-pooling operator that
is applied across time. The shape of the max-pooling operator
is (2, 1). The size of the convolutional kernels in each set is
(3, 3). The main difference between the blocks is the number
of the employed convolutional kernels. Specifically, for the
first set, 10 kernels are used, whereas for the second and third
sets, 15 kernels are employed. For the last two sets, the number
of kernels is 20. Following the convolutional layers, we com-
pute a global average across spectrogram time frames. The
global averaging reduces learnable time-based dependencies
and enables the usage of variable-length recordings as inputs
to our model. The resulting features are denoted as ξ̂(i)X ∈ RF

and ξ̂(i)Y ∈ RF for the untreated and the reference signals,
respectively.

2.3. Learned comparison

Following the latent feature extractor module, we feed the
feature embeddings ξ̂X and ξ̂Y into a learned comparison
module G. This is in contrast to prior work, which uses an
element-wise subtraction comparison [8]. The learned compar-
ison employs two steps. The first step is a location-preserving
concatenation of ξ̂X and ξ̂Y that creates a matrix Z ∈ R2×F

of two “channels” and each channel is of size F . The second
step is to perform a one-dimensional convolution of Z with a
filter, that is subject to training, and projects down the number
of channels to one. In addition to this, the one-dimensional
filter has length B, essentially taking into account B elements
for the comparison. We set B = 129, based on the frequency
dimension of the feature extraction model. To avoid changes in
the dimensionality of the resulting feature vector after convolu-
tion, we apply zero-padding of the order B−1

2 . The motivation
for using a learnable comparison module comes from 1) re-
cent advances in one-shot (few-shot) learning in alternative
domains [14] and 2) the following observation of the behavior
ofH in the employed Siamese setting.

Since we have a single target variable and a single opti-
mization objective, it follows that in a directed hierarchical
model like ours, we have also a single latent variable ξ that
conditions the input of P . In an ideal scenario, let ξ be a latent
variable that delivers accurate parameter prediction by means
of P(ξ). Furthermore, assume thatH is an unbiased estimator
of the ideal ξ. Since ξ is dependent on both signals X(i) and
Y (i), we expect the following:

E[H(X(i))− ξ(i)] + E[H(Y (i))− ξ(i)] = 0 , where (1)

the expectations depend on both X(i) and Y (i), and leads to:

E[H(X(i))−H(Y (i))] = 0 . (2)

In the unbiased case, (2) suggests thatH will enforce, on av-
erage, identical latent information between the untreated and
produced signal representations. For the biased case, some
minor differences could be expected. In our pilot experiments,
practically employing a biased estimator, little-to-no differ-
ences between H(X(i)) and H(Y (i)) were found during op-
timization. This explains a limitation of the element-wise
subtraction-based comparison model presented in [8], that re-
quires additional training stages and possibly poor prediction
performance using unpaired data. Consequently, using the
subtraction-based comparison [8] the module P is conditioned
on degenerate latent information.

2.4. Parameter prediction

The output of the comparison module is given to our parameter
prediction module P . Here, we predict the parameters needed



to transform the style of one recording into another. P is
implemented using two feed-forward neural networks (FNN)
and a one-hot decoding function. The number of input nodes
in the FNNs are 2560 and 440, respectively. The number of
output nodes of the second FNN is dependent on the number of
parameters times the number of discrete values. After the first
FNN, the LReLU activation function is used. The resulting
information is passed to the final FNN. A reshaping operation
is applied to the vector containing the log-probabilities com-
puted by the last FNN layer, which rearranges the previously
mentioned vector into a matrix with dimensionality consisting
of the number of parameters times the number of quantized pa-
rameter values. The soft-max activation function is computed
with respect to the number of discrete steps for each parameter
and further decoded to recover the corresponding numerical
DAFX values. The one-hot encoding/decoding steps are used
only for representing the numerical values of the DAFX opera-
tors as categorical variables, which we found more convenient
for modeling generic DAFX.

3. DATA GENERATION
Based on our proposed modifications to the Siamese model
in Sec.2.3–2.4 that allow learning from unpaired data, we
employ a self-supervised learning approach to optimize the
parameters of our model. In Algorithm 1, we outline the
complete data generation process, i.e., generating a dataset
DO for self-supervised learning using an input dataset DI

(e.g. speech recordings). By acoustic scene augmentation,
we generally refer to any technique that can help simulate a
diverse set of acoustic scene changes (i.e. background noise,
reverberation, frequency equalization, etc.) that are relevant
to the corresponding DAFX being modeled. By using this
approach, we simultaneously avoid having to use any form of
(expensive) human-labeled training data and are able to train
our model using an effectively infinite number of unpaired
style transfer examples. This is a significant advantage and
opens up a wide range of production style transfer applications.

Algorithm 1 Data generation for self-supervised learning
Require: Input recording dataset DI , iteration count M

1: Initialize empty data-set: DO ← {}
2: for all M do
3: Randomly sample X and Y from DI .
4: Apply identical acoustic scene augmentation to X , Y .
5: Divide X,Y into N overlapping segments X(i), Y (i).
6: Shuffle the segments.
7: for all N do
8: Randomly sample one-hot categorical parameters.
9: Compute Θ(i) by one-hot decoding.

10: Update each Y (i) using Θ(i) and the DAFX.
11: Append (X(i), Y (i), Θ(i)) to D0.
12: end for
13: end for
14: return Dataset: DO

4. EXPERIMENTAL PROCEDURE

To demonstrate the power of our proposed method, we apply
our method to the task of parametric frequency equalization
(EQ). More specifically, we use our method to match the fre-
quency EQ between two speech recordings using a multi-band
parametric EQ. While parametric EQs are a commonly used
for audio production, they are inherently difficult to optimize
to fit a desired frequency response (non-convex), let alone per-
form matching between two speech signals [15, 16, 17, 18, 19].
For this task, we employ a parametric 4-band EQ [20] consist-
ing of a low-shelving filter (Low), a low-mid range band pass
filter (Mid1), a mid-high range bandpass filter (Mid2), and a
high shelving filter (High). Each band has the following con-
trol parameters: center frequency (Hz), gain (dB), and quality
factor (Q-factor) which controls the bandwidth of the filter.

All of the EQ parameters are discretized in each band to 21
values. The values for the Q-factor are logarithmically spaced
in the interval [0.01 – 10], whereas the values for the gain
parameter are linearly spaced in the interval of [-10, +10] dB.
The center frequencies for all the bands are logarithmically
spaced. For the Low band, the values lie in the interval of [85 –
255] Hz, [260 – 2000] Hz for the Mid1 band, [2005 – 4000]
Hz for the Mid2 band, and [4005 – 16000] Hz for the High.
We chose these values following common frequency settings
available in commercial production tools for EQ, e.g. [21].
The implementation of the EQ is based on the open source
project “yodel” [22].

We employ the “clean” and ”clean-raw” subsets from the
Device and Produced Speech (DAPS) dataset [23], sampled
at 44.1kHz for our input dataset DI . The collection of the
recordings is split into training, validation, and test sets. The
splitting is performed on the file level to ensure each sub-
set includes the same number of female and male speakers
and, between speakers, the same number of scripts are used.
The splitting ratios used are 50% (∼ 2.3 hours) for training,
10% (∼ 0.42 hours) for validation and 40% (∼ 1.75 hours)
for testing. Each split is given to Algorithm 1 with M =
{100, 80, 20} for each split respectively. The random acoustic
scene augmentation is based on random equalization via a
separate finite impulse response Linkwitz-Riley style filter-
bank [24]. The length of each sub-band filter is 16,384 samples
(370 ms), and the corresponding center frequencies for the
filters are 200, 500, 2, 000, and 8, 000 Hz. The gain values for
each band are randomly sampled from a uniform distribution
in the range of [-10 – +10] dB. Segments with loudness below
-55 dB LUFS are discarded from the data-sets.

The total number of parameters in our model is 1.2 mil-
lion. We randomly initialize the parameters of our model
by sampling from a normal distribution and scaled according
to [25]. Stochastic gradient descent is performed to minimize
the negative log-likelihood using the Adam optimizer [26],
with a learning rate set to 5e−4 and a batch size equal to 8. Af-
ter each update, we enforce the first convolutional layer to be
loudness invariant by subtracting its current average value [27].



Every 2e3 weight updates, the model is evaluated using the
validation set. The absolute errors for each band in the respec-
tive units of each parameter is computed. After 20 consecutive
sets of 2e3 updates with non-decreasing error, we terminate
the training of the model. The maximum number of weight
updates is set to 2e5. At the end of optimization, we test our
proposed method using the test sub-set and report the mean
absolute error average (MAE) and standard deviation (STD)
per frequency band.

5. RESULTS & DISCUSSION

We compare the estimation results using our proposed method
and two baselines. The first baseline (BL-linear) is an adapted
network from [8], which we modify for our parametric EQ
estimation task and train on unpaired data. The second baseline
is an updated version of the first baseline, but uses a decibel-
valued Mel-spectrogram input (BL-log) as opposed to a linear-
valued Mel-spectra. The mean absolute error (MAE) and
standard deviation (STD) results for the EQ center frequencies,
gains, and Q-factor are shown in Table 1, Table 2, and Table 3,
respectively, for 3 second input samples.

By analyzing the results, we first notice that simply using
a decibel-scaled Mel-spectrogram increases performance by a
noticeable amount, particularly for the center frequency and
Q-factor parameters. This effect, however, is much smaller for
the gain parameter, which is a surprising result. We hypothe-
size, however, that because the gain parameters in all models
perform relatively well, it is more difficult to improve the per-
formance further. Second, for nearly all parameters, applying
our learnable comparison module improves the results. This is
particularly true for the center frequency, Q-factor parameters,
and high-frequency bands of the gain and is consistent with
our comparison analysis described above. Also, the improve-
ment caused by the learnable comparison is more prevalent
in the higher-frequency filter bands. From this observation
and qualitative listening, we found this to be a consistent issue.
We believe this is because low-frequency speech content can
change dramatically depending on the linguistic information
content in the recording. This is less prevalent for higher fre-
quency content. In a sense, we found it is more difficult to
disentangle the style and content of low-frequency speech EQ
compared to high-frequency EQ.

Third, we show results of our model trained on 3-second
data, but using 12-second input at inference time in Table 4.
We do this to 1) illustrate the fact that our proposed model
can handle varying length input and 2) try to improve the
performance of the low frequency filter bands. When we
compare these results to Tables 1-3, we see that the Q-factor
results improve, but the center frequency and gain parameters
are roughly comparable. We hypothesize that long-speech
pauses cause issues and leave it to future work to improve the
global time-averaging by training on varying length inputs and
investigating an attention mechanism to better combine latent
style features across time.

Models
Band BL-linear [8] BL-log [8] Proposed
Low 69.2 (±51.1) 54.4 (±40.4) 48.1 (±45.3)
Mid1 578.8 (±514.9) 566.8 (±445.4) 440.4 (±409.8)
Mid2 1.1k (±604.6) 695.7 (±497.6) 515.5 (±494.0)
High 6.3k (±3.3k) 3.5k (±2.7k) 2.5k (±2.9k)

Table 1. Center frequency (Hz) MAE (± STD).

Models
Band BL-linear [8] BL-log [8] Proposed
Low 5.2 (±3.0) 4.9 (±4.3) 4.1 (±3.1)
Mid1 5.3 (±3.0) 4.6 (±3.9) 4.2 (±4.0)
Mid2 5.3 (±3.0) 4.5 (±3.9) 2.5 (±2.6)
High 5.2 (±3.1) 5.2 (±4.2) 0.8 (±0.9)

Table 2. Gain (dB) MAE (± STD).

Models
Band BL-linear [8] BL-log [8] Proposed
Low 1.7 (±2.6) 2.3 (±2.8) 1.2 (±1.6)
Mid1 5.7 (±2.0) 2.1 (±2.5) 2.1 (±2.8)
Mid2 8.3 (±2.7) 2.7 (±2.9) 1.8 (±2.9)
High 1.7 (±2.7) 2.1 (±2.9) 0.5 (±1.2)

Table 3. Q-factor MAE (± STD).

Parameters
Band Freq. (Hz) Gain (dB) Q-factor
Low 50.0 (±46.2) 5.3 (±4.7) 1.1 (±1.7)
Mid1 426.9 (±457.9) 4.2 (±4.0) 1.75 (±2.7)
Mid2 513.6 (±500.4) 2.2 (±2.2) 1.3 (±2.5)
High 2.5k (±2.9)k 0.8 (±0.9) 0.4 (±1.0)

Table 4. MAE (± STD) with 12-second inputs at inference
time.

6. CONCLUSIONS
In this work, we present a method to transform an untreated
speech recording into the production style of a reference
recording. Our method receives as input an untreated record-
ing and an unrelated reference recording, and predicts a set of
parameters. The parameters are then used to control digital
audio effects, which are, in turn, used to transform the pro-
duction style of the untreated recording into the style of the
reference recording. We frame our work as a form of one-shot
parametric audio product style transfer that, by design, lever-
ages existing audio production semantics and manipulation
algorithms. To demonstrate our approach, we consider the
task of controlling a parametric, four-band infinite impulse
response equalizer and show that we are able to predict the
parameters necessary to transform the equalization style of
one recording to another. For future work, we plan to inves-
tigate our proposed method on additional audio production
effects, including speech enhancement and production tools
(i.e. denoisers, dereverberators). For additional results see:
https://js-mim.github.io/sp-demo/.

https://js-mim.github.io/sp-demo/
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