
CLUSTERING AND SYNCHRONIZING MULTI-CAMERA VIDEO

VIA LANDMARK CROSS-CORRELATION

Nicholas J. Bryan^{1*} Paris Smaragdis^{2,3} Gautham J. Mysore³

¹ Center for Computer Research in Music and Acoustics, Stanford University ² University of Illinois at Urbana-Champaign

³Advanced Technology Labs, Adobe Systems Inc.

Introduction

Problem: Cluster and synchronize multiple videos of the same event as fast and efficiently as possible.

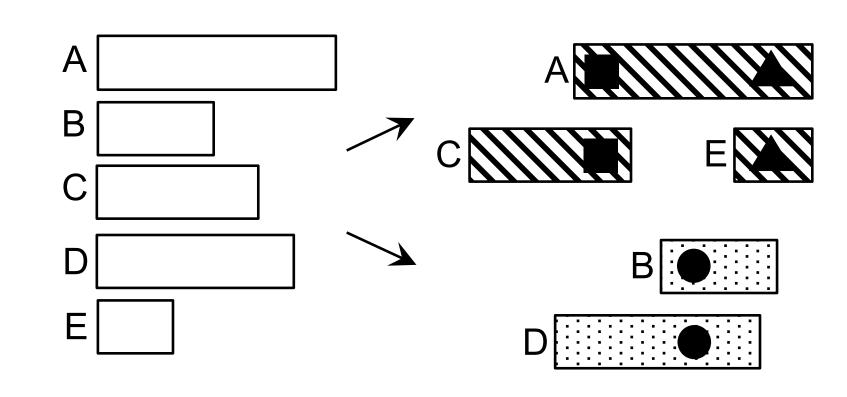


Fig. 1. Clustering and synchronizing an unogranized video/audio collection.

Proposed Method

Method: Use landmark-based audio fingerprinting for a fast and efficient method to both cluster and synchronize videos.

More specifically, the method is outlined in five sections:

- Non-linear transform
- Time-difference-of-arrival estimation
- Agglomerative clustering
- Efficient computation
- Synchronization refinement

Non-Linear Transform

The audio signal is transformed into a set of combinatoriallypaired frequency peak onsets [4] and stored in a sparse highdimensional discrete time signal $\mathbf{L}(t)$.

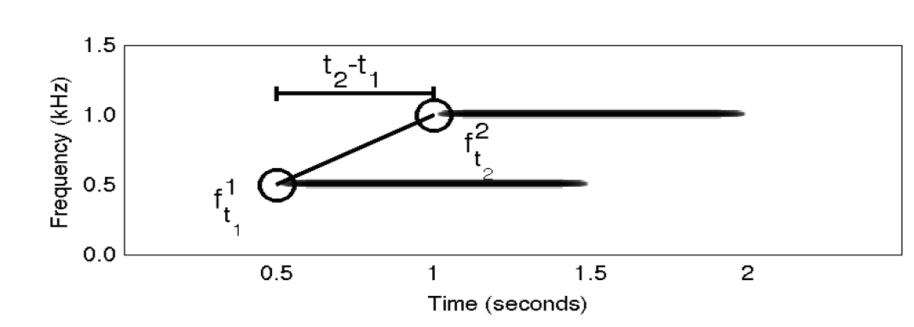
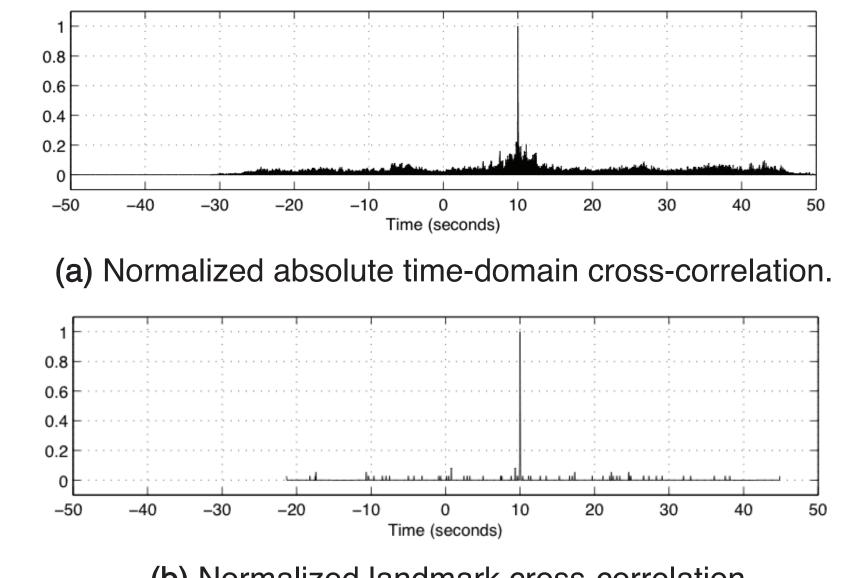



Fig. 2. An example landmark created from a 1kHz tone starting at .5 seconds and a 2kHz tone starting at 1 second.

Time-Difference-Of-Arrival Estimation

(b) Normalized landmark cross-correlation. Fig. 3. Example cross-correction of speech signals.

Agglomerative Clustering

Initialize each recordings as a separate cluster and then merged into successively larger clusters if $\hat{R}_{\mathbf{L}_i,\mathbf{L}_j} \geq \theta$, where $\hat{R}_{\mathbf{L}_i,\mathbf{L}_j} = \max_{\mathbf{L}} R_{\mathbf{L}_i,\mathbf{L}_j}(t)$.

Other useful decision rules include:

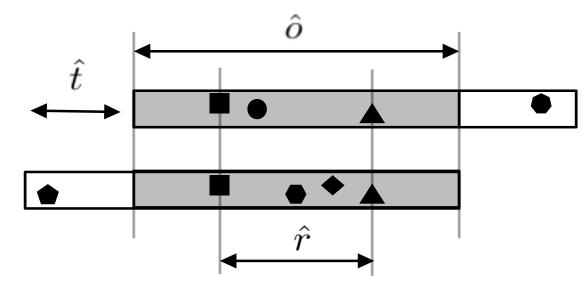


Fig. 4. Two different recordings of the same event.

- 1. Reject merges with a small percentage of total matching landmarks (in both files) in the overlap region \hat{o} .
- 2. Reject merges with a small overall time range \hat{r} defined by the set of matching landmarks.
- 3. Reject merges with a small overlap region \hat{o} .

Efficient Computation

- Cross-correlation traditionally requires O(N²) operations or O(N log N) operations for FFT-based correlation, where N is the file length.
- Slight modification to the map structure of [4] can be interpreted as a sparse correlation method, requiring only the initial cost of building the map structure + O(N) operations, where N is the number of matching landmarks.

Synchronization Refinement

Refinement is required for clusters of three or more when:

- pairwise TDOA estimates do not satisfy all triangle equalities
- one or more TDOA estimates within any cluster is unknown.

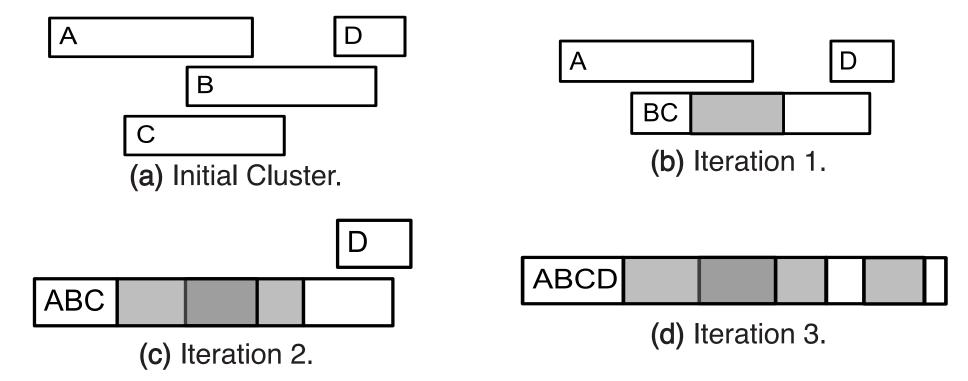


Fig. 5 Match-and-merge synchronization refinement.

Match-and-Merge Algorithm

- 1. Find the most confident TDOA estimate \hat{t}_{ij} within the cluster in terms of $\hat{R}_{\mathbf{L}_i,\mathbf{L}_i}$ or similar confidence score.
- 2. Merge the landmark signals $L_i(t)$ and $L_j(t)$. First time shift $\mathbf{L}_{i}(t)$ by \hat{t}_{ij} and then multiply or add the two signals together (depending on the desired effect).
- 3. Update the remaining TDOA estimates and confidence scores to respect the file merge.
- 4. Repeat until all files within the cluster are merged.

Evaluation

Speech dataset - 180 speech recordings from a film set with 114 clusters averaging 20-40 seconds in length.

- 23 cell-phone recordings of three live music Music dataset concerts averaging 3-6 minutes in length.

	Speech	Music	Speech + Music				
Precision	100.0 %	100.0 %	100.0 %		Speech	Music	Speech + Music
Recall	97.0 %	100.0 %	99.2 %	Proposed	47.0 / 164.6	41.1 / 146.5	90.1 / 152.7
F-Score	98.5 %	100.0 %	99.6 %	Traditional	1550 / 5.0	197 / 30.5	3600 / 3.9

Table 1. Precision, recall, and F1-scores.

Table 2. Computation time (s) and throughput (s/s).

Conclusions

- Cluster and synchronize audio via landmark audio fingerprinting.
- Improvements on event identification and synchronization refinement.
- Presented within the framework of cross-correlation.
- High accuracy with efficient computation.

References

- of multi-camera video recordings based on audio," in Proc. 15th Intl. Conf. on Multimedia, 2007.
- [2] J. Haitsma and T. Kalker, "A highly robust audio fingerprinting system with an efficient search strategy," Journal of New Music Research, vol. 32, no. 2, 2003.
- [3] L. Kennedy and M. Naaman, "Less talk, more rock: automated organization of community-contributed collections of concert videos," in Proc. 18th Conf. on World Wide Web, 2009.
- [1] P. Shrestha, M. Barbieri, and H. Weda, "Synchronization [4] A. L. Wang, "An Industrial-strength audio search algorithm," in Proc. 4th Int. Symposium on Music Information Retrieval (ISMIR), October 2003.
 - [5] C.V. Cotton and D.P.W. Ellis, "Audio fingerprinting to identify multiple videos of an event," in Proc. ICASSP,
 - [6] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, "A review of audio fingerprinting," J. VLSI Signal Processing Sys, vol. 41, November 2005.