CLUSTERING AND SYNCHRONIZING MULTI-CAMERA VIDEO
VIA LANDMARK CROSS-CORRELATION

Nicholas J. Bryan'™

Paris Smaragdis*3

Gautham J. Mysore®

! Center for Computer Research in Music and Acoustics, Stanford University
2 University of Illinois at Urbana-Champaign
3 Advanced Technology Labs, Adobe Systems Inc.

ABSTRACT

We propose a method to both identify and synchronize multi-
camera video recordings within a large collection of video
and/or audio files. Landmark-based audio fingerprinting is
used to match multiple recordings of the same event together
and time-synchronize each file within the groups. Compared
to prior work, we offer improvements towards event identi-
fication and a new synchronization refinement method that
resolves inconsistent estimates and allows non-overlapping
content to be synchronized within larger groups of record-
ings. Furthermore, the audio fingerprinting-based synchro-
nization is shown to be equivalent to an efficient and scalable
time-difference-of-arrival method using cross-correlation per-
formed on a non-linearly transformed signal.

Index Terms— Video and audio synchronization, audio
fingerprinting

1. INTRODUCTION

Through the proliferation of smartphones and low-cost portable
electronics, video and audio recording devices have become
ubiquitous. As a result, tens, hundreds, or even thousands of
people can simultaneously record a single moment in history,
creating large collections of unorganized and unprocessed
audio and video recordings. To properly playback, edit, and
analyze these collections, distinct event identification and
time synchronization is required as shown in Fig. 1. Event
identification groups or clusters all recordings of the same
event together, while synchronization time aligns each video
within a cluster. The synchronized recordings of each cluster
provide multiple viewing angles and listening perspectives of
a single event and collectively create multi-camera video.

In the past, both event identification and synchronization
within large video collections have been considered difficult
problems, requiring manual labelling and/or specialized hard-
ware. Recent work, however, has shown great promise in
using fingerprinting techniques on the audio signals of each
video as a solution for both tasks. Presumably the first work
towards the synchronization task using audio fingerprints is
Shrestha et al. [1], based on the technique of [2]. Similarly,
Kennedy and Naaman [3] use fingerprinting for synchroniza-
tion with a discussion on event identification, but employ the

*This work was performed while interning at Adobe Systems Inc.

A|:| AN
i% S NN Y N
B[@]

2
:

o] ™
e

Fig. 1. Clustering and synchronizing an unorganized
video/audio collection.

fingerprinting strategy of [4]. Most recently, Cotton and El-
lis [5] explicitly discuss audio fingerprinting for event iden-
tification, but do not address synchronization. For a general
review of audio fingerprinting methods (not applied to video
synchronization), please also see [6].

Within this work, we propose a method to both identify
and synchronize distinct audio events using audio fingerprint-
ing. The method is based on that of [3] and [4], but offers
several improvements. Most notably, further improvements
on event identification are discussed as well as a refinement
method that resolves any inconsistent synchronization esti-
mates within clusters that also allows non-overlapping con-
tent within larger groups to be synchronized. In addition, in-
sight into landmark-based fingerprinting for the purpose of
synchronization is presented, showing the procedure to be
equivalent to time-difference-of-arrival (TDOA) using cross-
correlation on a non-linearly transformed audio signal. The
equivalence reformulates the fingerprinting technique into an
efficient, scalable, and general TDOA method.

2. PROPOSED METHOD

While the clustering and synchronization method is collec-
tively presented across [3] and [4], we describe the process
from an alternative perspective. The modified interpretation
allows the landmark feature extraction process and database
search structure of [4] to be thought of as an efficient TDOA
method outlined in four sections beginning with landmark
feature extraction posed as a non-linear transform, followed
by TDOA estimation, clustering, and computational issues.

2.1. Non-Linear Transform

The landmark feature extraction converts each audio signal
z(f) € R into a sparse high-dimensional discrete-time sig-
nal denoted by the landmark signal L(¢). The transform first
begins by computing the magnitude of the short-time Fourier
transform (STFT) for each audio signal, typically downsam-
pling the time axis via the STFT hop-size. Second, the on-
sets of local frequency peaks are computed from the STFT,
resulting in time-indexed frequency values ffj where ¢ =
1,2,...,N, 5 = 1,2,...., M and N and M are the number
of frequency values and time indices respectively.

Third, the time-indexed frequency values are combinato-
rially paired to nearby values within a limited time-frequency
region to create a set of unique time-indexed landmarks, each
consisting of two frequencies and the time between (see [4]
for more information). When ftl1 and ftz2 are paired, for ex-

5]

Frequency (kHz)
o -
0)
—v_"N

o4
o

0.5 1 1.5 2
Time (seconds)

Fig. 2. An example landmark created from a .5kHz tone at
starting .5 seconds and a 1kHz tone starting at 1 second.
ample, the landmark (f7, f2, t2 — t1)s, is produced, where
the subscript ¢ denotes the start time of the landmark. The
combinatorial pairing of the landmarks significantly increases
the power of the landmark representation and is advantageous
for both the clustering and synchronization. Fig. 2 shows an
example spectrogram with a single landmark overlaid.
Finally, each landmark is hashed (or quantized and
packed) into a B-bit length integer value h, converting the
landmarks to discrete time-indexed features analogous to a
words of a text document. The hashes A and time indices ¢
are then used to create the final N = 25-dimensional land-
mark signal L(¢) € {0,1}" by setting L(¢,h) = 1, with L
initialized to all zeros. Typically, B can range from twenty to
thirty, creating one million or more possible landmarks.

2.2. Time-Difference-Of-Arrival Estimation

To synchronize each file pair with one another, time-difference-
of-arrival estimation (TDOA) via generalized cross-correlation
is used. Assuming different recordings of the same event dif-
fer only by a time shift and additive noise on the signal z(%),
the estimated time-difference-of-arrival or time offset be-
tween file ¢ and j is computed as the time of the maximum of
the cross-correlation signal Ry, 1, (1),

l;j = arg max Ry, L, (1), (1

which defines the time shift fij needed to align the two sig-
nals appropriately. Instead of performing cross-correlation on

the time-domain audio signal x(t), however, we perform the

process on the derived landmark signal L(t) with a more effi-
cient computational structure as addressed in Section 2.4. The
cross-correlation between L; and L for file ¢ and j is defined
by

Ry, ()= > Li(r)"Lj(t+7). 2)
T=—00

For a given time 7, the inner product of the two binary vec-
tors gives the number of matching landmarks in both signals.
When summed up over all 7, the total number of matching
landmarks is computed for a time-shift ¢ between L; and L;.
Fig. 3 shows two cross-correlation signals computed us-
ing () (with absolute value) and L(#) between two different
60-second recordings of speech with an offset of 10 seconds.
As seen, both correlation signals correctly identify the TDOA

T T T T T

Time (seconds)

(a) Normalized absolute time-domain cross-correlation.

-50 -40 -30 -20 -10 0 10 20 30 40 50
Time (seconds)

(b) Normalized landmark cross-correlation.

Fig. 3. Example cross-correlation of speech signals.

of 10 seconds within the time quantization of the STFT hop-
size, but are indeed different otherwise. Depending on the
required accuracy, the time resolution of the STFT may or
may not be sufficient. If needed, a final time-domain cross-
correlation post-processing can be computed on a small over-
lapping region of the two files to refine the time resolution of
the landmark correlation with minimal sacrifice to computa-
tional cost.

2.3. Agglomerative Clustering

To identify distinct events within a larger collection, we
use agglomerative clustering based on the landmark cross-
correlation signals for each file pair combination. To do so,
each recording or audio file is initialized as a separate cluster
and then merged into successively larger clusters representing
the different events of the larger collection. The two clusters
of Fig. 1, for example, are defined by a merge between file A
to C, AtoE, and B to D.

The most straightforward way to decide if two files should
be merged together is to use the maximum of the correlation

RLi,Lj = mtax RLi,Lj (t) (3)

as a confidence score and compare it to a minimum threshold
0. If RL“LJ > 0, amerge is accepted, otherwise it is rejected.
For the task of recognizing different recordings of the same
event across unseen datasets, however, more robust solutions
are required to minimize the occurrence of false merges (or
false positives), particularly when processing varying length
files.

To improve this threshold-based decision rule, we keep
track of the specific landmarks (or non-zero elements of L(¢))
that caused each TDOA estimate and compute various statis-
tics on this set of landmarks to better inform the merge de-
cisions and remove false-positive merges. Three useful addi-
tional decision rules include:

1. Reject merges with a small percentage of total match-
ing landmarks (in both files) in the overlap region 0.

2. Reject merges with a small overall time range 7 defined
by the set of matching landmarks.

3. Reject merges with a small overlap region 0.

Rejecting matches based on the percentage of total matching
landmarks helps remove issues due to varying file lengths.
In Fig. 4, the percentage of matching landmarks within the

D>

A
\ 4

He L [o]
[[W o%i

Fig. 4. Two different recordings of the same event.

top file is 66%, while the percentage of matching landmarks
within the bottom file is 50%. Rejecting matches with a
small time range, defined by the set of matching landmarks,
eliminate merges resulting from densely packed landmarks
in a small time region and no where else. Finally, rejecting
matches with improbably small overlap regions can help fur-
ther filter out erroneous matches. Although not discussed fur-
ther, the frequency of matching landmarks over time and/or
adaptive thresholds ([3]) on Ry, 1., can also be used.

2.4. Efficient Computation

To cluster and synchronize a collection of P audio files, each
pairwise cross-correlation is needed. When performed on the
time-domain audio signal z(#), each correlation traditionally
requires O(NN?) operations or O(N log N) operations for fast
FFT-based correlation, where N is equal to the file length.
For large P, this quickly becomes burdensome and motivates
landmark-based correlation. As a result, an alternative algo-
rithm is used for computation.

To correlate two landmark signals and leverage the sparse
discrete nature of L, a hash table or map structure is created

associating each non-zero landmark (map key) to a vector of
tuples (map value), where each tuple stores the time of occur-
rence and file id (¢, id) of its respective landmark. Once the
map structure is created, we iterate over all keys of the map
and find all values that have multiple unique file ids. These
values are then used to compute time difference estimates be-
tween the given two files, which are then summed into the ap-
propriate position of Ry, 1,; creating a non-negative discrete-
time signal. The map structure computation allows time dif-
ferences to be computed only for matching landmarks be-
tween files and reduces the number of operations for cross-
correlation to approximately O(N), where N is the number
of unique matching landmarks between the two files (typi-
cally 10-100), plus the cost of building the map structure and
linear time of feature extraction.

The significant savings is particularly noticeable when
synchronizing and clustering large file collections with a
small number of matching recordings per event. In this case,
only matching landmarks will be found for files of the same
event and little to no matching landmarks will be found
for files of different events. In doing so, the process only
computes cross-correlation signals between files of the same
cluster and ignores all other irrelevant pairwise combinations,
combinatorial reducing the computation.

3. SYNCHRONIZATION REFINEMENT

Once initial synchronization and clustering is computed, syn-
chronization refinement may be needed. Refinement is re-
quired for clusters of three or more in two cases: when incon-
sistent pairwise TDOA estimates do not satisfy all triangle
equalities (e.g. tac #* tap+1t Bc) of the cluster and/or when
one or more TDOA estimates within any cluster is unknown
caused by non-overlapping clips. Both scenarios are com-
mon and must be addressed to adequately align all recordings
within each cluster to a common time clock.

To appropriately handle these situations, we can refine the
synchronization estimates within a cluster using the follow-
ing “match-and-merge” algorithm and iteratively time-align
all files within a cluster to a common clock:

1. Find the most confident TDOA estimate #;; within the
cluster in terms of RL,;,Lj or similar confidence score.

2. Merge the landmark signals L;(¢) and L;(¢). First time
shift L; (¢) by 'Eij and then multiply or add the two sig-
nals together (depending on the desired effect).

3. Update the remaining TDOA estimates and confidence
scores to respect the file merge.

4. Repeat until all files within the cluster are merged.

Step 2 and 3 can be either accomplished by recomputing the
necessary cross-correlation signals and TDOA estimates or
by simply time shifting the TDOA estimates and assuming
the confidence scores will remain the same throughout the
process. In either case, the match-and-merge process re-
quires minimal computation and successively eliminates any
inconsistent TDOA estimates or issues of non-overlapping

files. In addition, no “master” reference recording is needed.
In Fig. 5(a), we see four example recordings with various
configurations of overlap. Over three iterative steps, each

[A | [0] [A |

(a) Initial cluster.

]
LI]

(c) Iteration 2.

El

(b) Iteration 1.

[ABCD]

LTI

(d) Iteration 3.

(ABC |

Fig. 5. Match-and-merge synchronization refinement.

recordings of Fig. 5 (a) is gradually merged together and time
aligned to a single reference clock as desired.

4. EVALUATION

Precision, recall, and the F;-score is used to evaluate the pair-
wise merges of the clustering task, while manual listening
tests were used to evaluate synchronization. The precision
is the fraction of estimated merges retrieved that are correct
compared to ground-truth, while recall is the fraction of cor-
rect merges retrieved. The F;-score is the harmonic mean of
the precision and recall. In addition, total compute time (sec-
onds) and throughput (seconds of audio processed per second
of computed time) are used to evaluate computational cost.

Datasets of both speech and music recordings were used
for testing with hand labeled ground-truth. The speech dataset
consists of 180 natural speech recordings taken from a film set
with two separate recording devices. The recordings average
20-40 seconds in length and have 114 clusters: 54 clusters
of one file, 54 clusters of two files, and 6 clusters of three
files. The music dataset consists of 23 cell-phone recordings
of three live music concerts of various styles, each averaging
3-6 minutes in length. In the music dataset, there is 1 cluster
of 7 files, and 2 clusters of 8 files. Prior to computation, all
recordings were time normalized to a sample rate of 8kHz.

The results are shown in Table 1'. Near perfect precision,
recall, and F;-score was achieved and all files were verified to
be correctly synchronized. In terms of computation time, all
datasets were clustered and synchronized in only a minute or
two with high throughput compared to performing traditional
FFT-based correlation on all pairwise file combinations. Also
note the approximate linearity of the computation time of the
proposed approach when processing both datasets indepen-
dently versus the combined speech and music dataset, which
is not present otherwise.

IComputed with Matlab and C++ code on 2.2 GHz Intel i7 MacBook Pro.

Speech Music Speech + Music
Precision 100.0 % 100.0 % 100.0 %
Recall 97.0 % 100.0 % 99.2 %
F-Score 98.5 % 100.0 % 99.6 %
(a) Precision, recall, and F;-scores.

Speech Music Speech + Music
Proposed 47.0/164.6 41.1/146.5 90.1/152.7
Traditional 1550/5.0 197/30.5 3600/3.9

(b) Computation time (s) and throughput (s/s).

Table 1. Evaluation results.

5. CONCLUSIONS

We have presented a method to both identify and synchro-
nize distinct audio events in time using landmark-based audio
fingerprinting. Several improvements to prior work are dis-
cussed including further work on event identification and a
synchronization refinement method that ameliorates incon-
sistent TDOA estimates that also allows non-overlapping
content to be synchronized within larger groups of files.
Furthermore, the audio fingerprinting-based technique used
was shown to be equivalent to a time-difference-of-arrival
(TDOA) method performed on a non-linearly transformed
audio signal within the framework of cross-correlation, open-
ing up the efficient and scalable synchronization method
to general TDOA estimation problems. Evaluation demon-
strated near perfect clustering and synchronization results in
an efficient manner.

6. REFERENCES

[1] P. Shrestha, M. Barbieri, and H. Weda, “Synchroniza-
tion of multi-camera video recordings based on audio,”
in Proc. 15th Intl. Conf. on Multimedia, 2007.

[2] Jaap Haitsma and Ton Kalker, “A Highly Robust Audio
Fingerprinting System With an Efficient Search Strategy,”
Journal of New Music Research, vol. 32, no. 2, 2003.

[3] L. Kennedy and M. Naaman, “Less talk, more rock: auto-
mated organization of community-contributed collections
of concert videos,” in Proc. 18th Int. Conf. on World Wide
Web, 2009.

[4] A.L. Wang, “An Industrial-Strength Audio Search Algo-
rithm,” in Proc. 4th Int. Symposium on Music Information
Retrieval (ISMIR), October 2003.

[5]1 C.V. Cotton and D.P.W. Ellis, “Audio fingerprinting to
identify multiple videos of an event,” in Proc. ICASSP,
2010, March 2010.

[6] Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma,
“A review of audio fingerprinting,” J. VLSI Signal Pro-
cess. Syst., vol. 41, pp. 271-284, November 2005.

