ISSE — An Interactive Source Separation Editor, Part

Nicholas J. Bryan
Stanford University

B CRA R




Overview

Introduction



Motivation

Real world sounds are mixtures of many individual sounds.

Drums Vocals Guitar Bass




Applications |

Denoising

Audio post-production and remastering

Spatial audio and upmixing

Music Information Retrieval



Applications

Music remixing and content creation.
Human-computer interaction perspective.

How does a end-user perform source separation?



Live Demonstration + Sound Examples
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Note

Machine learning algorithm that adapts to user annotations.
Not copying the pixel data underneath the annotations.

A local annotation can have a global effect.



Overview

Background



Overview of Techniques

_ Independent component analysis
Microphone arrays

Adaptive signal processing

Computational auditory scene analysis

Spectral processing
Sinusoidal modeling

Time-frequency selection

Classical denoising and speech enhancement



Non-Negative Matrix Factorization (NMF) and Related
Probabilistic Latent Variable Models (PLVM)

Machine learning, data-driven, basis decomposition, dictionary.
Model each sound source within a mixture.

Linear combination of prototypical frequency spectra.

Well suited to our motivation.

Monophonic and/or stereophonic recordings.

One of the most promising separation methods of the past decade.
NMF [Lee & Seung, 1999, 2001; Smaragdis & Brown 2003]
PLVM [Raj & Smaragdis 2005, Smaragdis et al., 2006]



Block Diagram

X —| STFT NMF /PLVM
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Transform signal via the short-time Fourier transform (STFT).
Compute a NMF/PLVM.

Filter mixture sound.
Inverse STFT.



The STFT and NMF

The basis vectors capture prototypical frequency content.

The weights capture the gains of the basis vectors.



Non-Negative Matrix Factorization

Data Basis Vectors Weights

v

R

\%\% 1 |

A matrix factorization where everything is non-negative.

V ¢ RiXT - original non-negative data

W € RI*H - matrix of basis vectors, dictionary elements
H € R¥*" - matrix activations, weights, or gains

K < F <T (typically)



Optimization Formulation

argmin D(V |W H)
W, H

subject toW >0, H > 0
Minimize the divergence between V and WH.

Dryo(VIWH) = ZZ Vi — [WH]|p;)?

Dgr(V|WH) = ZZ Virlog

] _Vft+[WH]ft)

DIS(V|WH):ZZ< Vit — log Vit —1)

7

At best, find a local optima (not convex).



lterative Numerical Optimization

How do we solve for W and H?

Use block coordinate descent.

Solve for W argmin D(V | W H)
W

Solve for H subject to W >0

Repeat

Use Majorization-Minimization.

' H
Lower bounding algorithm argémn D(V|W H)

Use rules of convexity subject to H > 0

Converges to local optima

Alternative optimization methods.
Projected gradient descent
Projected Newton’s methods

Interior point methods (overkill)



NMF Parameter Estimation via MM

Initialize to positive random.

Repeat until convergence.
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Non-Negative Matrix Factorization

V ~ WH

VW  Basis vectors, frequency components, dictionary

H  Time activations or gains



Probabilistic Latent Variable Model (PLVM)

 Probabilistic latent component analysis (PLCA).

V= pft) = 2p()p(fl2)p(tlz)

p(t]z)
p(f|z) Basis vectors, frequency components, dictionary

p(z) Latent component weights

p(t|z) Time activations or gains



Generative Model

SRS

l’\f’v

1. Forn=1,..., Ny times, where Ny = }:f > Vi,
(a) Generate a latent variable 2™ ~ pz(2) := Multinomial( Ny, w(z)).
(b) Generate a frequency f™|2'"™ ~ pp iz (f|z) ;== Multinomial(Ny, w712,
(c) Generate a time t™|2(™) ~ py4(t|2) := Multinomial( Ny, wt?)).

2. Set V}; equal to the count of the occurrence of each outcomes value pair (f, t). Dis-

card all samples of the latent variable z.



Maximum Likelihood Parameter Estimation

Formulate the log-likelihood of our model.

LO]V) =

Inp(V|O)

In

(2, Vi) 7 1%

Vll'V12

In

V! 2 H Hp(f, £

Nr Nt

2D Ve

f=1t=1

(2_522¢ Vit)! Ne N
Vi lVial . V! L H H Zp

(t]2)] "

+ const.

Maximize w.r.t. the parameters (take derivative, set to zero, etc.).



Expectation Maximization Parameter Estimation |

Formulate the log-likelihood of our model £(®|V).

Form an auxiliary function that lower bounds the log-likelihood.

L(O]X) Inp(X|©)
F(q,0) + KL(q|[p)

F(q,0)

'V

F(q,@)zzq(z)m{mxaz\@)} KL(gllp) = KL((Z)]p(Z|X,0))
- Y@ {rZXe)
9(Z)

Z




Expectation Maximization Parameter Estimation Il

lteratively maximize lower bound in two steps (coordinate ascent).

E Step:

M Step:

Compute the posterior p(Z | X, ©®)

"™ = argmaxF(q,®")
q

= argmin KL(q[|p)
q

O™ = argmaxF(¢"™!, @)
)

Converges to local optima.

Compute posterior

P(z|f,t)

Update model params
P(flz)
P(t|z)

P(z)



PLCA Parameter Estimation via EM

Initialize to random probabilities.

Repeat until convergence.

E step
P(z)P(f|z)P(t|z)
( ’f t) >, P(2)P(flz)P(t|z)
M step P(Z) . Zf > Vit P(z|f,t)

2l 2up 20 Vit P(2I 1)

_ ZtVtP(Z|f,t)
P(fl2) = <75,V peair

(t‘ ) Zf Vit P(z|f,¢)
25 224 Vit P (2] f5t)




Relationship between NMF and PLCA

Equivalent up until init., normalization, reordering of updates.

PLCA update equations in matrix notation vs. KL-NMF.

Z v \Y T
< —= |H
WH . W%WG(WH)T
ZH 1H
W «— W & T
1H W ()
T H H W H
H « HoOW Z) —HO w1

PLCA update equations KL-NMF update equations



Modeling and Separating Mixtures

Model each source within a mixture independently.
Given a mixture, fix frequency distributions and estimate weights.

Three general classes of techniques [Smaragdis 2007]:
Supervised separation
Semi-supervised separation
Unsupervised separation

Use NMF/PLVM output to filter mixture.



Supervised Separation




Supervised Separation




Filtering |
Convert source reconstruction into time-varying linear filter.

po_ WoH, > ..cz, P(2)p(fl2)p(t]2)
TWH Y, p(n(f1)p(t)

Filter mixture in time-frequency domain.

|XS| =F;© | X ‘
Inverse STFT with mixture phase / X.

Overlap-add (OLA) processing to filter mixture [Smith 2011].



Filtering Il

Sharp discontinuities in the filter frequency response.

Time-aliasing and other unwanted audible artifacts.

Convert filters to a alias-free form via optimal filter design [Smith 2011].

Incorporate STFT consistency constraints [Le Roux 2013].



Semi-Supervised Separation




Unsupervised Separation

Without training data....difficult!




General Problems

Overall a very difficult, ill-posed problem.

Requires isolated training data.

No auditory or perceptual models of hearing.

Cannot correct for poor results (even if obvious).



Overview

Motivation
Background
Approach
Algorithm
Evaluation

Conclusion



Approach

Improve upon NMF/PLVM separation.

Informed source separation.
Spatial information [Ozerov & Fevotte 2009]
Score information [Woodruff et al. ‘06, Ganesman et al. ‘10, Duan & Pardo '11]

Temporal dynamics [Mysore et al. 2010]

User-guidance



User-Guided Source Separation

Examples:
Singing/humming [Smaragdis 2009, Smaragdis and Mysore 2009]

Binary time region annotations [Ozerov et al. 2011, 2012]
Fundamental frequency annotations [Durrieu and Thiran 2012]

Binary time-frequency region annotations [Lefevre et al. 2012]

Typically no user-feedback, refinement, and/or iteration.



Interactive Source Separation

Extension of user-guided separation.

Subtle, but significant difference.

Two-way communication between user and algorithm.
Emphasize on user-feedback, refinement, and iteration.
Re-compute each interaction.

Requires speed.



Interaction Analogy

Photoshop “layers”

P I

User-feedback is key!



A Layers-Sculpting-Like Interaction for Audio

looping playback

Speech +
Cell Phone

Speech

Cell Phone




Interactive Machine Learning

Machine learning (ML) and human-computer interaction (HCI).
User-perspective of ML (train and test).
We can elicit more information than a class label!

Found great success across several domains including:
[Fails & Olsen 2003]
[Fogarty et al. 2008] [

[Cohn et al. 2008] l -

[Settles 2011] é__\ Learning )
Algorithm
[Fiebrink 2011] 0 ()

User Correction 4—[ Feedback to User ]

(8

Unlabeled
Data
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Probabilistic Model




Probabilistic Model w/Painting Constraints

V= P(f,t) = ;P(Z)P(W)P(W)

A

Color = source

Opacity - strength



Supervised, Semi-Supervised, & Unsupervised Learning

Supervised

Semi-Supervised

Unsupervised




Constraints

Constraints typical encoded as:  P(f|z) P(t|lz) P(z)
Prior probabilities on model parameters (e.g. Dirichlet priors)

Direct observations

Does not (reasonably) allow time-frequency constraints

Posterior regularization [Graca et al., 2007, Ganchev et al., 2010]
Complementary method that allows time-frequency constraints [P ( z| f : t)
lterative optimization procedure for each E step

Well suited for our problem



Expectation Maximization

L(O]X) = Ihp(X|O)
= Fl(q,0) + KL(q||p)
F(q,0)

'V

E Step:
P ¢"' = argmaxF(q,®")

q

= argmin KL(qg||p)
q

M Step:
P O"" = argmax F(¢"T, 0©)
S




Expectation Maximization w/Posterior Constraints |

L(O]X) = Ihp(X|O)
= Fl(q,0) + KL(q||p)
> F(q,0)

E Step:
P q = argmaxF(q,®")
q€Q

= argmin KL(q|p)
qeQ

M Step:
O"" = argmax F(¢"T, 0©)
S




Linear Grouping Expectation Constraints

argmin KL( q(z[f,?) || p(2|f,?) )
qeQ

For each time-frequency point, solve

arg min —qilnp+qllng
q

subject to ql1=1, q>0




Big Picture

E Step:

M Step:

Compute posterior p(2|f,1)

VF,t

arg min —ql'lnp+qllng+qt A
q

subject to qt1l=1,q>0

O™ = argmaxF(¢"T,0)

®




Fast, Closed-Form Updates

With simple penalty, both E and M steps are in closed form.
Reduces to simple, fast multiplicative updates vs. NMF.

Roughly the same computational cost as without constraints.

expectation step expectation step
for all z, f.t do for all 2, f,t do
2 P(2)P(f2)P(t|z)A(s.0.2)
Qulfy « IR el e pa
>, P(2")P(f|z")P(t]2") > P(2)P(flz')P(t|z") Ay .
end for end for

In general, constrained inference would require numerical opt.
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Evaluation

Initial results
Signal Separation Evaluation Campaign (SiISEC) 2013

User tests



Evaluation Metrics

BSS-EVAL metrics [Vincent et al., 2006]
(SDR) Signal-to-Distortion Ratio - Overall separation quality
(SIR) Signal-to-Interference Ratio - Amount of reduction from unwanted source

(SAR) Signal-to-Artifact Ratio = Amount of artifacts introduced by algorithm
Baselines
|deal, oracle algorithm (soft mask)

No user-annotation

Past high-performing algorithms



Initial Results

Supervised, semi-supervised, & unsupervised separation comparison

EXAMPLE IDEAL SUPERVISED SEMI-SUPERVISED UNSUPERVISED
CELL 30.7 29.2 / 27.6 28.4 / 06.5 28.8 / -0.6
DRUM 14.8  09.7 / 08.5 07.7 / 03.9 10.0 / 00.2
CoucH | 15.8 14.0 / 12.5 12.0 / 10.5 13.8 / -2.1
PiaNno | 26.1  26.0 / 21.6 14.9 / 08.4 23.1 / 01.1
SIREN 27.8 23.8 /18.9 21.0 / 19.9 24.2 / -4.2

Table 1: SDR (dB) with and without interaction vs. ideal results.

Outperformed prior SISEC 2011 vocals state-of-the-art [Durrieu 2012]

EXAMPLE | IDEAL BASELINE LEFEVRE DURRIEU PROPOSED
S1 13.2 -0.8 7.0 9.0 9.2
S2 13.4 0.2 5.0 7.8 11.1
S3 11.5 -0.2 3.8 6.4 7.8
S4 12.5 1.4 5.0 5.9 7.9

Table 2: SDR (dB) results for the four SiISEC rock/pop songs.



Model Selection

How many basis vectors?
Set it to a large number (50)

-5 i i

20 40 60

80 100 120 140

160

Basis Vectors Per Source (NZ/NS)

180

200



Signal Separation Evaluation Campaign 2013

Task 1: Professionally produced music recordings
15 submissions
Variety of stereo music recordings
Vocals, drums, bass, guitar, piano, other
State-of-the-art performance
Best overall SDR 16/24 times. Next closest 4/24 times.
Best vocal SDR 6/7 times. Outperformed algorithms specifically design for vocals.
Best drum SDR 2/5 times.
Best bass SDR 2/5 times.
Best piano SDR 1/2 times.
Best guitar SDR 1/1 times.
Best other SDR 4/4 times.

Recordings are stereo-channel. Our algorithm is monophonic applied to stereo.



Novice User Evaluation

How well a novice can perform separation?
10 inexperienced users
1 hour long study
Introduction and explanation
5 separation tasks, 10 minutes each, increasing difficulty
Exit survey
Measure separation quality per example per user
Compare against expert user
Tasks:
Cell phone + speech
Siren + speech
Drums + bass
Orchestra + cough
Vocals + guitar



Novice User Results |

In some cases, novices outperformed the expert!

Most cases, the expert was best.

SDR vs. Task
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Novice User Results Il

The more difficult the task, the more unsatisfying

Satisfaction

Satisfaction Rating vs. Task Difficulty Rating vs. Task
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Interactive Approach: Benefits

Reduces manual effort.
Improves automatic approaches (correct for poor resulits).
No training data needed!

Indirectly incorporate a perceptual model.



Interactive Approach: Problems

Requires a user + learning curve!
No guarantee of high-quality results.
Overall computation time can be slow.

ALL machine learning algorithms require a user.
Who: engineer, scientist, end-user, audio engineer
What: class labeled data, feature labels, other
Where: research laboratory, recording studio, other
When: train and testing occur separately or simultaneously

Why: applications can be different or the same



Overall Contributions

Interactive source separation approach.
NMF/PLVM + painting via posterior regularization.
With or without training data (unsup., semi-sup., or sup.).
Relatively insensitive to model selection.
Open-source, freely available, cross-platform software.

State-of-the-art separation and user studies.

General and high performing separation method.
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Software + Code

http://isse.sourceforge.net

Application + Code

OSX, Windows, Linux

C++ and Matlab code

User forum, wiki, user manual, audio and video demonstrations
Application Web Statistics

2000+ downloads (60+ countries, 36% Japan, 28% USA)

3600+ Soundcloud listens (13+ hours of audio listened)

4000+ Youtube views (10+ days of video watched)

8000+ webpage visits (14.5+ days of viewing)



Thank you!

Work advised by:
Gautham J. Mysore &
Prof. Ge Wang
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Extra



Alternative (Common) View of EM

View | — expected log-likelihood, then maximize

E step - calculate the expected value of the log-likelihood function

Q(0|0") =Ez|x .0t [£(0;X,Z)]

M step — find the parameters that maximize the expected log-likelihood
Ot = argmax Q(0|60Y
©®

Equivalent, but less general viewpoint



Geometric Interpretation

x  Source 1

+ Source 2
- - = Source 1 Convex Hull
Mid (0,1,0) | - -. Source 2 Convex Hull
-------- Mixture Convex Hull
v Source 1 Basis Vectors
A Source 2 Basis Vectors

....................................................

Low (1,0,0) High (0,0,1)



Simplex w/Supervised Separation

x  Source 1
+ Source 2
*  Mixture
Mid (0,1 ,0) Mid (0,1 ,O) 0 Mixture Estimate
¢ Source 1 Estimate

o Source 2 Estimate
- - =Source 1 Convex Hull
‘‘‘‘‘ Source 2 Convex Hull
------ Mixture Convex Hull
w v Source 1 Basis Vectors
A Source 2 Basis Vectors

Low (1,0,0) High (0,0,1) Low (1,0,0) High (0,0,1)



Simplex w/Semi-Supervised Separation

x  Source 1
+ Source 2
*  Mixture

- - = Source 1 Convex Hull

Mid (0,1,0) Mid (0,1,0)

‘‘‘‘‘ Source 2 Convex Hull
------- Mixture Convex Hull
v Source 1 Basis Vectors

A Source 2 Basis Vectors

Low (1,0,0) High (0,0,1) Low (1,0,0) High (0,0,1)



Simplex w/Unsupervised Separation

* Source 1
+ Source 2
Mid, (0,1,0) Mid (0,1,0) | * Muture

A —=—=Source 1 Convex Hull
=== Source 2 Convex Hull
----- Mixture Convex Hull
v Source 1 Basis Vectors
£ Source 2 Basis Vectors

--------
-
--------------------
---------

Low (1,0,0) High (0,0,1) Low (1,0,0) High (0,0,1)




