Methods for Extending Room Impulse Responses Beyond Their Noise Floor

Nicholas J. Bryan and Jonathan S. Abel

Stanford University | CCRMA

What is the problem?

- Frequency dependent noise floor limits the perceptual quality of reverberant impulse responses
- Unnaturally emphasized high-frequency content and low-frequency measurement noise

Impulse Response Spectrograms

EMT 140 Measured Impulse Response Spectrogram

EMT 140 Extended Impulse Response Spectrogram

Late-field Reverberation Overview

Late-field Measurement Model

• Gaussian noise with a frequency dependent decaying exponential energy profile

$$\beta_k(t;\theta) = \sigma_k^2 + \gamma_k^2 e^{-2t/\tau_k}$$

 σ^2 = Noise Floor

 τ = Equalization Level

 γ = Time Constant

Preprocessing + Estimation

- Two methods for estimating the frequency dependent parameters:
 - Synthetic Extension Analysis
 - Natural Extension Analysis
- Analysis methods correspond to extension methods
- Prior to estimation, preprocessing of the IR is needed

Preprocessing

- Decompose impulse response into separate bands via a filter bank
- Apply smoothing filter resulting in frequencydependent energy profiles

$$\tilde{\beta}_k(t) = h_k(t)^2 * w(t) \quad \sum_t w(t) = 1$$

Filter Bank

• Perfect amplitude reconstruction zero-phase filter bank via a cascade of squared Butterworth filters

Frequency dependent energy profiles

Synthetic Extension Analysis

- First estimate noise floor arrival time
- Estimate the decay rate and equalization level prior to the noise floor arrival

$$\underset{\theta}{\operatorname{argmin}} \parallel 20 \log_{10}(\beta(\mathbf{t}; \theta) - \sigma^2) - 20 \log_{10} \tilde{\beta}(\mathbf{t}; \theta) \parallel_2^2$$

Natural Extension Analysis

- Simultaneously estimate the noise floor level, decay time, and equalization level
- No assumption of above the noise floor

$$\underset{\theta}{\operatorname{argmin}} \| 20 \log_{10} \beta(\mathbf{t}_m; \theta) - 20 \log_{10} \tilde{\beta}(\mathbf{t}_m; \theta) \|_2^2$$

Extension Methods

- Synthetic Extension Synthesis
 - Crossfade synthesized measured impulse response bands with synthesized bands prior to the noise floor arrival
- Natural Extension Synthesis
 - Window the noise floor found within the measured IR and leverage the measured, natural signal statistics

Synthetic Extension

- Cross fade synthetically generated Gaussian noise bands
- Window bands according to the estimated parameters

$$\lambda_k(t) = \hat{\gamma}_k e^{-t/\hat{\tau}_k}$$

Crossfade Between Measured and Synthesized Noise Bands

Natural Extension Synthesis

 Window the measure noise bands to effectively "bend down" the undesirable noise floor

Numerator bends the energy profile back down

$$\lambda_k(t) = \frac{\hat{\gamma}_k e^{-t/\hat{\tau}_k}}{\left[\hat{\gamma}_k^2 e^{-2t/\hat{\tau}_k} + \hat{\sigma}_k^2\right]^{1/2}}$$

Denominator bends the energy profile up

Results

Measured Hagia Sophia Balloon Pop Spectrogram

Extended Hagia Sophia Balloon Pop Spectrogram

Results

Measured and Extended Hagia Sophia Balloon Pop Response

Measured and extended Hagia Sophia Energy Profiles

Results

EMT 140 Measured Impulse Response Spectrogram

EMT 140 Extended Impulse Response Spectrogram

Sound Examples

EMT140 long (cutoff ending)

EMT140 short (late-field hiss)

EMT140 long extended

EMT140 short extended

Hagia Sophia (late-field hiss + talking)

Hagia Sophia extended

Conclusions

- Two methods for extended room impulse responses beyond their measured noise floor
 - The first method crossfades synthetically generated noise with the measured IR
 - The second method windows the naturally found latefield noise
- Both methods maintain an identical impulse response prior to the noise floor arrival and impose a natural sounding decay afterward

Acknowledgements & Thank You!

- Stanford University Presidential Fund
- Stanford Institute for Creativity and the Arts (Sica) for the Icons of Sound Project (http://iconsofsound.stanford.edu)
- Additional support was provided by Universal Audio in a research collaboration with CCRMA

