PadMaster: an improvisation environment for real time performance

Fernando Lopez-Lezcano
CCRMA (Center for Computer Research in Music andustics), Stanford University
(nando@ccrma.stanford.edu)

ABSTRACT: This paper will describe the design amplémentation of PadMaster, a real-time im-
provisation environment running under the NextStegrating system. The system currently uses the
Mathews/Boie Radio Drum as a three dimensionalrotiat for interaction with the performer. Pad-
Master splits the surface of the drum into virtpabgrammable pads which can be grouped into
scenes so that the behavior of the surface canltéy<or drastically altered during the performance

1.0 The Radio Drum and the MIDI communication protocol

The current implementation of the Stanford Radiar®was developed at CCRMA by Max Mathews as a
simpler alternative to Boie’s previous design. Twe batons act as radio transmitting antennas sigrels
are received by five antennas located underneathutface of the drum. A multiplexed A/D convettans-

lates the received signal strength from each aatenn

% into numbers which are used by the on-boa_rd mi-
AN Ceminganena | Croprocessor to calculate the absolute position of
%, O each baton in space. The microprocessor uses this
K — information to track the movement of the batons and
\ : to detect hits on the surface. Information aboahea
O @ © hit includes both the x-y coordinates and the bit v
locity. In addition to the two batons, the Radiabr
O, hardware includes two switches and four potenti-
\ ometers. It has a MIDI interface that it can use to
communicate with computers or synthesizers.

The behavior of the Drum is defined by the progséoned in its EPROM. The drum software include®sav
functionally different programs that can be extéynactivated through MIDI System Exclusive message
Through them, the Radio Drum can act as a stamgaonductor of a score or MIDI file, can improwgi¢h
several different options that map baton moven@eMIDI commands or can act as a general purposel MID
controller. This last program and the underlyingtpcol built on top of MIDI were originally desigddy
David Jaffe and Andy Schloss. This existing genpuaibose controller program was completely redesign
by the author. A more efficient and faster protosak created that uses just one MIDI channel antbig

bandwidth efficient in the use of
MIDI resources. The protocol was

also expanded to allow the control o ,06@\
ling computer to upload / download @ ,06@
calibration data from / to the Drum. 00— < <

Once the program is activated =

through a sysex message, the Rad synth #1
Drum behaves as a three dimensio VD! e

al controller with six degrees of

freedom. synth #2

S
. . .. ]
Following is a short description of 3
most of the control protocol: <

)

synth #n

synth #m

System exclusive configuration
messages: can be used to turn



ON or OFF the communication program, set the MilRdrmnel used by the rest of the protocol, dump and
load the internal calibration tables, set the teiggnd release heights for both batons, requesf/Bw
measurements (useful for testing), etc.

Trigger / Release messages: sent by the drum when a baton hits / leaves ttfa Each hit or release is
represented by three MIDI controller messagesgusimtinuous controllers 26 through 31. The message
are used to send the x and y positions and velogitiie hit or release.

Switches: a switch message is sent by the drum when ortedfio hardware switches changes state. The
information is sent through controllers 5E to 5F.

Poll request: sent by the computer to request the position atsmpf the batons at a given moment. The
message uses a channel pressure MIDI messagatioales the required request as a pressure valae. Th
controlling program can thus request the positioone or both batons and can also ask for the cuves-

ue of the four potentiometers.

Poll answer: sent by the drum in response to a poll requessages The requested information is sent
through a string of channel pressure messagegpased to the Trigger / Release messages, thaRoll
swer message contain no state information, whichn®éhat a state machine in the receiver program ha
to track the incoming messages. While this opeagtssibility of garbled information due to lostDI
bytes it was deemed more important to reduce thev@th used by the protocol as this is a frequyentl
used message and the information gathered thraughéfreshed periodically.

Planned enhancement to the protocol and underlgedjo Drum library routines include:

Detection of hitsbased on direction reversal. The current implementation uses a height thresbated
detection scheme which cannot reliably detect vasy rolls close to the surface of the drum.
Automatic position update. To further decrease the MIDI bandwidth, the aorgolling scheme should

be replaced with a timer based automatic transonissi the current position (that is, the Drum saiitev
should take care of sending periodic position ngessa The new scheme will also include a sysex mes-
sage to change the period of the transmission tmesable the controlling software to throttle dailve
sampling rate of the position information when M| stream becomes close to being saturated. This
feature is currently implemented by changing theping rate of the position request polls.

Better internal linearization routines for the three axes of control.

2.0 The PadMaster program

The PadMaster control code is written in Objec@iveising the MusicKit as the foundation class higrafor
MIDI event scheduling and control. The graphicéiface was designed with NeXT'’s Interface Builded
the program runs on any workstation that suppbesNextStep operating system (and has a MIDI driver
available). PadMaster is connected through MIDh#Radio Drum controller and to external synthersiz
The program uses the coordinates of the incomiigg@&r and Release messages and an internal calibrat
map to split the surface of the drum into up tovBtual pads. Each pad is independently programentabte-
act in a specific way to the hit, and to the posiinformation stream of one or more simultanexas af con-
trol. Pads can be grouped into Scenes, so thaethavior of the surface of the drum can be sulsthadically
altered during the course of a performance. Thiglseved by dynamically jumping to a different Seeei-
ther through the use of a control pad programmethtt function or through another external comérolThe
screen of the computer continuously displays aasprtation of the virtual surface and gives visemdlback
to the performer on the state of all the pads endhrrently selected Scene.

The virtual pads can be split in two types dependin their functionPer formance andControl pads.
2.1 Performance Pads

Performance Pads can be individually programmezbtdrol the playback of MIDI sequences, note gen-
erating algorithms or soundfiles. The graphicatespntation of the pads on the screen gives ingisunl
feedback to the performer. Pads change color amakssinessages dynamically according to their stgper-
formance pad that is playing remains active evéneifperformer selects a different Scene, so tains of
events can be started from one Scene and willraatio run even though the performer latter swidbea



different Scene. The status is updated for alvagtads but only those in the currently selectesh8show up
on the graphical representation of the drum surface

2.2 Control Pads

Control Pads are used to trigger actions that dlipbéfect the performance of a Scene. A pad caproe
grammed to change the current Scene when hit, jugrtpithe next or previous Scene, thus redefiriedte-
havior of the whole surface of the drum. Contralgaan also be used to pause, resume or stofagihgl
pads in the currently selected Scene.

3. Inside a pad

Editable parameters inside each pad can be chamgeayh a standard NextStep inspector window véth s
eral editing panes. The first pane can be useel¢gtthe type of pad and, in the case of perfoompads, the
triggering baton and the action that is executedmtne pad is hit. The possible actions includista/
pausing / resuming a sequence, starting a newapgrg sequence, or playing the next note of afisbtes.

It also selects the MIDI port, channel and programmber that will be used for MIDI transmission atidws
editing of a graphical mapping of hit velocity tote velocity for the selected sequence. The sepand edits
the tempo options for the pad. Tempo can be glpealpad or per sequence inside a pad (as theleagaore
than one instance of a sequence playing at the sar@e There is a tempo envelope and it is alssinde to
control tempo with the hit velocity or with anytbie six available axes of continuous control. Thieltpane
lets you associate up to three continuous MIDI mgssstreams (pitch bend, channel pressure or any co

Control pad Performance pad

<7>» [1:3]
710 1121

the pad inspector
is showning one of the
four editing panes...

<24> [1:6]
[plri01[7]

pliks bk 6

PLAY 1:0<1>

[X][Y][Z] continuous control II Status II Title! MIDI port / channel !



troller) with the position of up to three of thex sixes of control. All these function mappings areated
through graphical function editors. The fourth padis the sequence of notes that are played vileguetd is
hit. The sequence is expressed as a normal Musiekiscorefile. The scorefile format has been anbd
with additional tags that represent all programragdalrameters in a pad. It is then possible to eatgrgen-
erate a textual representation of a pad and treshitdnto PadMaster (for example, a set of padsafper-
formance might be algorithmically generated anchtloeded into the program).

4. PadMaster in performance

PadMaster has been used to compose and performedsspMachine”, a piece for PadMaster and Radio
Drum, two TG77's and processed electronic celloriC@hafe playing his celletto). The piece is axi€en
ronment for improvisation in which the PadMasted aalletto performers exchange ideas and play pvigh
determined materials. The piece is composed irtRezlMaster Scenes, each with several groupsavédel
materials that are triggered during the performa@ce baton is reserved for triggering pads andtther for
continuous three dimensional control of the cuiyepérforming pads.

The performance of this piece on several occasiasgaised several issues. The simultaneous mafmging
several pads of baton movement to MIDI continuargmllers is one of the most interesting perforoeaca-
pabilities of the program, but also raises the ibilgg of serious MIDI bandwidth clogging. The aent ver-
sion of PadMaster dynamically adapts to the changimditions and adjusts the position samplingfesgy

to try to reduce the bandwidth used when severds pae playing simultaneously. More work needseto b
done in measuring MIDI usage in a more precisetwayoid sending too much information, but at thime
time to avoid control lag if the sampling frequerfialy to a very low value. There is also a measigrghp in
playback when scenes are changed, during which i¢ENity is not updated as the MIDI and graphicai-
tines share the same execution thread.

5. Future developments

PadMaster is currently undergoing a complete rewtatimplement new and improved functionality.

Pads will be resizable so that each scene candifigeent number and size of pads if necessaryhdve
found that sometimes it would be desirable to cotraée important or critical performance functiama few
big pads. Resizable pads would also allow for ighperformance behavior to the place where thegaitl
something that is not possible in the current wershnother enhancement to pads will be inheritasa¢hat
multiple pads with related behavior (something wegfound common and very useful) could be grodped
gether, with the common functionality being edieabk a group.

The action types of performance pads will be enbdrio allow for inclusion of algorithms and soutedfi
playback. The algorithms will be able to use a wlefined API to enable linking of baton movemenako
gorithm parameters.

The NextStep operating system includes a remarlasy to use system to communicate with remotetsbje
(objects that live in other computer[s] but aredily linked to the execution of a local prograiif)at opens
the possibility of using remote computers connetitedugh Ethernet as servers for MIDI or soundfiley-
back. There are also several scheduled refinenfmmperformance such as a completely separatedfioea
all MIDI interaction so that graphics may lag behthe performance but there will be no delays wdweitch-
ing between scenes.

Another important enhancement will be defining g ¥eause different MIDI controllers in addition imistead
of the Radio Drum (percussion controllers, norn&tdoards, MIDI pedals, etc).

References:

[1] Max Mathews,The Stanford Radio Drum, 1990

[2] David Jaffe, Julius Smith and othef$)e MusicKit
“http://ccrma-www/CCRMA/Software/MusicKit/MusicKitml”

[3] Carlos Cerana (composer) / Adrian Rodriguengpammer)MiniMax, a piece for Radio Drum



