
PadMaster: an improvisation environment for real time performance
Fernando Lopez-Lezcano

CCRMA (Center for Computer Research in Music and Acoustics), Stanford University
(nando@ccrma.stanford.edu)

ABSTRACT: This paper will describe the design and implementation of PadMaster, a real-time im-
provisation environment running under the NextStep operating system. The system currently uses the
Mathews/Boie Radio Drum as a three dimensional controller for interaction with the performer. Pad-
Master splits the surface of the drum into virtual programmable pads which can be grouped into
scenes so that the behavior of the surface can be subtly or drastically altered during the performance.

The behavior of the Drum is defined by the program stored in its EPROM. The drum software includes several
functionally different programs that can be externally activated through MIDI System Exclusive messages.
Through them, the Radio Drum can act as a stand alone conductor of a score or MIDI file, can improvise with
several different options that map baton movement to MIDI commands or can act as a general purpose MIDI
controller. This last program and the underlying protocol built on top of MIDI were originally designed by
David Jaffe and Andy Schloss. This existing general purpose controller program was completely redesigned
by the author. A more efficient and faster protocol was created that uses just one MIDI channel and is more

1 2

3

4

5

Receiving antennas

Transmitting antenna

uP A/D

MIDI i/orom/ram

lates the received signal strength from each antenna
into numbers which are used by the on-board mi-
croprocessor to calculate the absolute position of
each baton in space. The microprocessor uses this
information to track the movement of the batons and
to detect hits on the surface. Information about each
hit includes both the x-y coordinates and the hit ve-
locity. In addition to the two batons, the Radio Drum
hardware includes two switches and four potenti-
ometers. It has a MIDI interface that it can use to
communicate with computers or synthesizers.

1.0 The Radio Drum and the MIDI communication protocol

The current implementation of the Stanford Radio Drum was developed at CCRMA by Max Mathews as a
simpler alternative to Boie’s previous design. The two batons act as radio transmitting antennas. The signals
are received by five antennas located underneath the surface of the drum. A multiplexed A/D converter trans-

bandwidth efficient in the use of
MIDI resources. The protocol was
also expanded to allow the control-
ling computer to upload / download
calibration data from / to the Drum.
Once the program is activated
through a sysex message, the Radio
Drum behaves as a three dimension-
al controller with six degrees of
freedom.

Following is a short description of
most of the control protocol:

• System exclusive configuration
messages: can be used to turn

synth #1

synth #2

synth #n

synth #m

Pad
M

as
te

r

Dru
m

 so
ftw

ar
e

M
ID

I
p
ro

to
co

l

MIDI

MIDI

MIDI

visual
feedback

ON or OFF the communication program, set the MIDI channel used by the rest of the protocol, dump and
load the internal calibration tables, set the trigger and release heights for both batons, request raw A/D
measurements (useful for testing), etc.

• Trigger / Release messages: sent by the drum when a baton hits / leaves the surface. Each hit or release is
represented by three MIDI controller messages, using continuous controllers 26 through 31. The messages
are used to send the x and y positions and velocity of the hit or release.

• Switches: a switch message is sent by the drum when one of the two hardware switches changes state. The
information is sent through controllers 5E to 5F.

• Poll request: sent by the computer to request the position in space of the batons at a given moment. The
message uses a channel pressure MIDI message that encodes the required request as a pressure value. The
controlling program can thus request the position of one or both batons and can also ask for the current val-
ue of the four potentiometers.

• Poll answer: sent by the drum in response to a poll request message. The requested information is sent
through a string of channel pressure messages. As opposed to the Trigger / Release messages, the Poll An-
swer message contain no state information, which means that a state machine in the receiver program has
to track the incoming messages. While this opens the possibility of garbled information due to lost MIDI
bytes it was deemed more important to reduce the bandwidth used by the protocol as this is a frequently
used message and the information gathered through it is refreshed periodically.

Planned enhancement to the protocol and underlying Radio Drum library routines include:

• Detection of hits based on direction reversal. The current implementation uses a height threshold based
detection scheme which cannot reliably detect very fast rolls close to the surface of the drum.

• Automatic position update. To further decrease the MIDI bandwidth, the current polling scheme should
be replaced with a timer based automatic transmission of the current position (that is, the Drum software
should take care of sending periodic position messages). The new scheme will also include a sysex mes-
sage to change the period of the transmission so as to enable the controlling software to throttle down the
sampling rate of the position information when the MIDI stream becomes close to being saturated. This
feature is currently implemented by changing the sampling rate of the position request polls.

• Better internal linearization routines for the three axes of control.

2.0 The PadMaster program

The PadMaster control code is written in Objective C, using the MusicKit as the foundation class hierarchy for
MIDI event scheduling and control. The graphical interface was designed with NeXT’s Interface Builder and
the program runs on any workstation that supports the NextStep operating system (and has a MIDI driver
available). PadMaster is connected through MIDI to the Radio Drum controller and to external synthesizers.
The program uses the coordinates of the incoming Trigger and Release messages and an internal calibration
map to split the surface of the drum into up to 30 virtual pads. Each pad is independently programmable to re-
act in a specific way to the hit, and to the position information stream of one or more simultaneous axes of con-
trol. Pads can be grouped into Scenes, so that the behavior of the surface of the drum can be subtly or radically
altered during the course of a performance. This is achieved by dynamically jumping to a different Scene, ei-
ther through the use of a control pad programmed for that function or through another external controller. The
screen of the computer continuously displays a representation of the virtual surface and gives visual feedback
to the performer on the state of all the pads in the currently selected Scene.

The virtual pads can be split in two types depending on their function: Performance and Control pads.

2.1 Performance Pads

Performance Pads can be individually programmed to control the playback of MIDI sequences, note gen-
erating algorithms or soundfiles. The graphical representation of the pads on the screen gives instant visual
feedback to the performer. Pads change color and status messages dynamically according to their state. A per-
formance pad that is playing remains active even if the performer selects a different Scene, so that chains of
events can be started from one Scene and will continue to run even though the performer latter switches to a

different Scene. The status is updated for all active pads but only those in the currently selected Scene show up
on the graphical representation of the drum surface.

2.2 Control Pads

Control Pads are used to trigger actions that globally affect the performance of a Scene. A pad can be pro-
grammed to change the current Scene when hit, jumping to the next or previous Scene, thus redefining the be-
havior of the whole surface of the drum. Control pads can also be used to pause, resume or stop all playing
pads in the currently selected Scene.

3. Inside a pad

Editable parameters inside each pad can be changed through a standard NextStep inspector window with sev-
eral editing panes. The first pane can be used to select the type of pad and, in the case of performance pads, the
triggering baton and the action that is executed when the pad is hit. The possible actions include starting /
pausing / resuming a sequence, starting a new overlapping sequence, or playing the next note of a list of notes.
It also selects the MIDI port, channel and program number that will be used for MIDI transmission and allows
editing of a graphical mapping of hit velocity to note velocity for the selected sequence. The second pane edits
the tempo options for the pad. Tempo can be global, per pad or per sequence inside a pad (as there can be more
than one instance of a sequence playing at the same time). There is a tempo envelope and it is also possible to
control tempo with the hit velocity or with any of the six available axes of continuous control. The third pane
lets you associate up to three continuous MIDI message streams (pitch bend, channel pressure or any con-

MIDI port / channel[X][Y][Z] continuous control TitleStatus

Transfer function:
blue baton X to pan

Hit D
isp

lay

Positi
on disp

lay

Sce
ne co

ntro
ls Performance padControl pad

the pad inspector
is showning one of the
four editing panes...

Pad in
sp

ecto
r

MIDI m
onito

r

Pad controls

troller) with the position of up to three of the six axes of control. All these function mappings are created
through graphical function editors. The fourth pane edits the sequence of notes that are played when the pad is
hit. The sequence is expressed as a normal MusicKit text scorefile. The scorefile format has been enhanced
with additional tags that represent all programmable parameters in a pad. It is then possible to externally gen-
erate a textual representation of a pad and then load it into PadMaster (for example, a set of pads for a per-
formance might be algorithmically generated and then loaded into the program).

4. PadMaster in performance

PadMaster has been used to compose and perform “Espresso Machine”, a piece for PadMaster and Radio
Drum, two TG77’s and processed electronic cello (Chris Chafe playing his celletto). The piece is an envi-
ronment for improvisation in which the PadMaster and celletto performers exchange ideas and play with pre-
determined materials. The piece is composed in three PadMaster Scenes, each with several groups of related
materials that are triggered during the performance. One baton is reserved for triggering pads and the other for
continuous three dimensional control of the currently performing pads.

The performance of this piece on several occasions has raised several issues. The simultaneous mapping for
several pads of baton movement to MIDI continuous controllers is one of the most interesting performance ca-
pabilities of the program, but also raises the possibility of serious MIDI bandwidth clogging. The current ver-
sion of PadMaster dynamically adapts to the changing conditions and adjusts the position sampling frequency
to try to reduce the bandwidth used when several pads are playing simultaneously. More work needs to be
done in measuring MIDI usage in a more precise way to avoid sending too much information, but at the same
time to avoid control lag if the sampling frequency fall to a very low value. There is also a measurable gap in
playback when scenes are changed, during which MIDI activity is not updated as the MIDI and graphical rou-
tines share the same execution thread.

5. Future developments

PadMaster is currently undergoing a complete rewrite to implement new and improved functionality.

Pads will be resizable so that each scene can have different number and size of pads if necessary. We have
found that sometimes it would be desirable to concentrate important or critical performance functions in a few
big pads. Resizable pads would also allow for linking performance behavior to the place where the pad is hit,
something that is not possible in the current version. Another enhancement to pads will be inheritance, so that
multiple pads with related behavior (something we have found common and very useful) could be grouped to-
gether, with the common functionality being editable as a group.

The action types of performance pads will be enhanced to allow for inclusion of algorithms and soundfile
playback. The algorithms will be able to use a well defined API to enable linking of baton movement to al-
gorithm parameters.

The NextStep operating system includes a remarkably easy to use system to communicate with remote objects
(objects that live in other computer[s] but are directly linked to the execution of a local program). That opens
the possibility of using remote computers connected through Ethernet as servers for MIDI or soundfile play-
back. There are also several scheduled refinements for performance such as a completely separate thread for
all MIDI interaction so that graphics may lag behind the performance but there will be no delays when switch-
ing between scenes.

Another important enhancement will be defining a way to use different MIDI controllers in addition or instead
of the Radio Drum (percussion controllers, normal keyboards, MIDI pedals, etc).

References:

[1] Max Mathews, The Stanford Radio Drum, 1990
[2] David Jaffe, Julius Smith and others, The MusicKit

“http://ccrma-www/CCRMA/Software/MusicKit/MusicKit.html”
[3] Carlos Cerana (composer) / Adrian Rodriguez (programmer), MiniMax, a piece for Radio Drum

