A dynamic spatial locator ugen for CLM

Fernando Lopez-Lezcano*
nando @ccrma.stanford.edu
*CCRMA, Stanford University

Abstract— Dlocsig is a dynamic spatial locator unit gen-
erator written for the Common Lisp Music (CLM) sound
synthesis and processing language. Dlocsig was first created
in 1992 as a four channel 2d dynamic locator and since
then it has evolved to a full 3d system for an arbitrary
number of speakers that can render moving sound objects
through amplitude panning (VBAP) or Ambisonics. This
paper describes the motivations for the project, its evolution
over time and the details of its software implementation and
user interface.

I. INTRODUCTION

CLM is a very powerful synthesis and sound processing
language in the style of Music N languages written orig-
inally in 1989 in Common Lisp by Bill Schottstaedt[2]
(it was optimized at that time for running on the NeXT
computer and its built in Motorola DSP). I started using
it for music composition at the end of 1990, shortly after
its creation.

Regretfully the NeXT workstation only had CD qual-
ity stereo outputs, which was a “downgrade” from the
SamsonBox[12] four channel output, so the original ver-
sion of dlocsig was created for the QuadBox, an external
four channel D/A converter connected to the DSP port of
the NeXT. The original QuadBox hardware was designed
by Atau Tanaka at CCRMA and the firmware and play-
back software for the NeXT was programmed by myself
while working at Keio University in Japan in 1992 - an
“across the Pacific” joint project made possible by the
Internet.

CLM[1] included “locsig”, a simple panning based
ugen for stereo signal location. It fell short of my needs,
so I started writing another unit generator (“dlocsig”,
dynamic locsig) that would encapsulate all the behavior
needed to simulate most spatial cues of moving sound
objects, and most importantly would be a drop in replace-
ment for locsig so that it would be easy to modify existing
instruments to use it.

Work in dlocsig started in 1992 and continues to this
day, and the unit generator has been used by myself
and other composers in numerous pieces. The original
version was a four channel two dimensional system and
used pair-wise panning between adjacent speakers[3]. An
Ambisonics rendering back-end was added in 1999 (for
B-format output and pre-rendered Ambisonics for known
speaker configurations). In 2000 the ugen was extended to
cover 3d arbitrary arrangements of speakers and included
3d Ambisonics and VBAP for amplitude panning. It has
been part of the CLM distribution for a long time now
(I don’t remember when it was originally incorporated).
In 2006 Bill Schottstaedt changed the name of the basic

unit generator to move-sound while providing backwards
compatibility synonyms within CLM.

CLM currently supports Scheme, Ruby and Forth lan-
guages in addition to the original Common Lisp, and
dlocsig has been ported to the Scheme and Ruby worlds.
The software is GPL and all source is available as part
of the CLM distribution.

II. THE UNIT GENERATOR

The current unit generator can generate spatial posi-
tioning cues for any number of speakers which can be
arbitrarily arranged in 2d or 3d space. The appropriate
speaker configuration is selected based on the current
number of channels in the output stream. In pieces
which can be recompiled from scratch this feature allows
the composer to easily create several renditions of the
same piece, each one optimized for a particular listening
environment and rendering technique. Each user-defined
speaker arrangement can also include delay compensation
for the speakers and can map each speaker to an arbitrary
channel in the rendered output stream.

The unit generator has several back-ends for render-
ing the output sound file with different techniques. The
default is amplitude panning between adjacent speakers
(between adjacent speakers in 2d space or three speaker
triads in 3d space using VBAP[4]). It can also create an
Ambisonics[5] first order b-format four channel output
sound file suitable for feeding into an appropriate decoder
for multiple speaker reproduction. Or it can decode the
Ambisonics encoded information on-the-fly to an arbitrary
number of output channels if the speaker configuration is
known in advance.

An additional back end that can render 3d movements
over stereo speakers or headphones using HRTFs was
designed and coded in 2001 but was never finished or
released.

All existing rendering back-ends can be combined
while rendering a piece, and all of them take care of
corner conditions like diagonal paths that cross 0,0,0
by appropriately changing the rendering details. In all
cases standard cues like Doppler, multichannel output to
a reverberator, amplitude scaling due to distance for the
direct and reverberated components of the sound (with
user-defined exponents) and ratio of direct to reverberated
sound are also automatically generated.

A. Implementation

Like the rest of CLM, the original dlocsig core was
written in Common Lisp. It is actually a Common Lisp
macro that generates Lisp code on the fly to be inserted

into the run loop of the instrument (the “run loop” is the
section of a CLM instrument that generates the samples).

CLM unit generators are usually created and used
through two functions or macros. One creates the unit
generator data structures and is executed at the beginning
of the instrument run, the other is usually a macro that
executes the ugen code for each sample to be generated
and is connected to other ugens through arbitrary lisp
code.

For efficiency reasons the bulk of the complexity of
the ugen was shifted to make-dlocsig, the ugen creation
function. Its output is a list of parameters which the ugen
itself uses to render the localized samples. The ugen
itself does not know anything about rendering methods
or trajectories in space and currently only knows how to
apply individual amplitude envelopes to each of the output
channels.

This is the Lisp definition of make-dlocsig and all its
parameters (default values and some additional parame-
ters omitted for brevity):

(defun make-dlocsig (start-time duration
path

scaler

direct-power inside-direct-power
reverb-power inside-reverb-power
reverb—amount

initial-delay

unity-gain-dist

inside-radius
minimum-segment—-length
render-using)

start-time and duration define the start and duration
of the sound being rendered, path is a path object (see
below), *-power arguments can be used to control the
power exponent for attenuation due to distance for both
the direct signal and the reverberated signal, and render-
using defines the type of rendering to be done (VBAP am-
plitude panning, Ambisonics, etc). inside-radius defines
the diameter of the sphere where limiting of the output
signal amplitude is done and unity-gain-dist defines the
distance at which unity gain scaling is done for the input
signal.

A call to make-dlocsig returns a list that contains all
the information needed by the unit generator to render
the sound and the values for the start and end indexes of
the enclosing run loop, as its start and duration can be
affected by radial velocity and the Doppler effect (if the
initial and final distances of the moving object differ).

The list contains (amongst other components) gain
arrays for the direct and reverb signals with individual
envelopes defined for each output channel based on the
movement and the rendering method selected. Because
of this internal rendering to amplitude envelopes, the
same unit generator can render both amplitude panning
and Ambisonics without any changes. The structure also
contains an envelope for the radial velocity component of
the movement so that Doppler can be generated through

the use of an interpolated delay line in the unit generator.

B. Reverberation

Reverberation is not integrated into the dlocisg unit
generator. It uses the standard CLM conventions for
reverberation unit generators. The first versions of dlocsig
used a tweaked four channel version of nrev, one of the
most popular reverbs in the times of the Samson Box.
The current version of dlocsig comes bundled with an
n-channel version of freeverb which can reverberate n-
channel inputs to n-channel outputs with a choice of local
reverb percentage in the case of multichannel inputs.

C. Global Configuration

Several configuration variables can be set to globally
alter the behavior of dlocsig.

e dlocsig-one-turn: the number that represents one
turn, defines the angle units to be used

o dlocsig-speed-of-sound: defines the units of measure-
ment for distance through the speed of sound

e dlocsig-3d: defines whether 2d or 3d speaker config-
urations are used by default

e path-3d: defines how paths are parsed when submit-
ted as a plain list

In addition each of the parameters of make-dlocsig have
default values based on global variables.

D. Speaker Array Configuration

Dlocsig can render soundfile output to any number of
speakers when rendering to VBAP amplitude panning or
to “rendered Ambisonics” (the output format for Am-
bisonics rendering is obviously independent of the speaker
configuration).

The function arrange-speakers can be used to create
speaker configurations for 2d or 3d setups. The speaker
position is defined by their angles with respect to the
listener. An additional delay can be specified for each
of them in terms of time or distance, and speakers can
be mapped to arbitrary output channels. Here is the
definition:

(defun arrange-speakers (
(speakers " ())

groups ' ())

delays ' ())

distances '

map ' ()))

speakers is a list of speaker positions in space defined
using azimuth and elevation angles. Indexes from O in this
list are used to explicitly define groups of speakers in 2D
or 3D space (using the groups parameter - each group is a
panning group of related speakers). delays and distances
can be used to add delay compensation for individual
speakers, and finally map can map any speaker to any
output channel to generate custom output soundfiles that
are adapted to a particular mapping of speakers in the
final delivery system.

Dlocsig pre-defines a number of “reasonable” configu-
rations for standard setups. Predefined configurations are

(
(
(0)
(

indexed by number of output channels. A global variable
(dlocsig-3d) is used to differentiate between flat 2D and
3D speaker arrangements. The number of output channels
and the global variable are used to select a configuration
at runtime and all the rendering is adjusted accordingly.

III. THE PATH OBJECT

The movement of sound sources in space is described
through path objects. They hold the information needed
by the unit generator to move the source in space and are
independent of the unit generator itself and the rendering
technique used (ie: the composer uses a front end that is
independent of the rendering technique used and number
of output channels). Path objects can be reused and can
be translated, scaled and rotated in 3d space as needed.
There are several ways to describe a path. Bezier paths
are described by a set of discrete points in 2d or 3d space
that are joined by bezier segments through curve fitting.
This description is very compact and easy to specify as
a few points can describe a complex trajectory. Paths can
also be specified in term of geometric entities (spirals,
circles, etc). A user-defined function can also generate
the points and incorporate them into a path object. In all
path descriptions the velocity profile of the movement can
also be specified as a function of distance.

A. Bezier Paths

This is the generic path creation function for paths
defined through discrete points in space:

(defun make-path
(3d path-3d)
polar nil)
closed nil)
curvature nil)
error 0.01)
;; only for open paths
initial-direction
final-direction)

(path

(
(
(
(

The first argument, path is a list that specified the
coordinates of the path the sound object will follow
in space. Each component of the list is a list which
describes a point in space and an optional relative velocity.
The coordinates of each point can be specified in terms
of cartesian coordinates (X, y, z) or polar coordinates
(azimuth, elevation and distance - if the polar argument is
non-nil). Paths can be open or closed (in the later case the
initial and final points have to match). If a path is open
both initial-direction and final-direction can be specified
and will define direction vectors for the start and end of
the movement.

If a velocity profile is not specified, the moving virtual
object starts and ends at rest. The velocity profile is
translated into absolute velocities for each segment of the
movement by using a “constant acceleration” paradigm.
Velocity is continuous at the segment boundaries and
acceleration changes in a step function, being constant
within each segment.

trajectory

10

L = R R A |

-I

10

Fig. 1.

Trajectory of sound object.

0 01 02 03 04 05 0,6 0,7 08 0,3 1

Fig. 2. Trajectory of sound object.

Here is the code that creates a very simple path
expressed in cartesian coordinates:

(make-path
"((=10 10 0 1)(0 5 0 0) (10 10 5 1.5)))

And the corresponding 3d plot of trajectory (fig. 1) and
velocity, acceleration and Doppler frequency shift (fig. 2)

The path is internally rendered using a bezier curve
approximation to the supplied coordinates. Each supplied
point becomes a control point in the bezier curve and the
control vectors are automatically derived using a curve
fitting algorithm. For efficiency reasons (which may not
be valid today) the rendering of the bezier curve is not
done in the unit generator itself, the curves are pre-
rendered to individual piece-wise linear envelopes for
each output channel in the process of creating the ugen.
As such, the bezier curve is approximated by individual
straight line segments that are very cheap to render at
sample generation time and are close enough to the
original bezier curve that the Doppler shift artifacts due
to the sudden change of direction at each inflection point
are inaudible. The precision of the rendering process can
be controlled through the error parameter, which defines
the error bound of the linear segment approximation. The
curvature argument controls the length of the control
point vectors of the bezier curve segments so that the
curvature of the bends at each control point can be
controlled (see fig. 3 and fig. 4).

B. Geometric Paths

Some path subclasses exist that make the generation of
some very common paths easy, in particular paths related
to geometric shapes.

Lrajectory

Fig. 3. :curvature (0.4 1)
L -
Lrajectory
=] I R
al e
Ao
gl -

5 : : :
-10 -5 0 4 10

Fig. 4. :curvature 0.4

(defun make-spiral-path
total-angle
(step—angle
turns
(distance 7 (0 10 1 10))
(height " (0 0 1 0))
(velocity (0 1 1 1)))

((start—-angle 0)

Arguments should be obvious. It is possible to create
arbitrary spirals from envelope like descriptions of the
starting angle, total angle or number of turns and distance,
with height and velocity profiles.

C. Literal Paths

Another class can be used to pack specific points into
a path object without any further rendering or approxi-
mation done on the points in space. This makes it easy
to use functions to create paths of arbitrary complexity.

D. Path Transformations

Path objects can be modified with some predefined
transformations. They can be scaled, translated along all
three axis and rotated along an arbitrary rotation point
and direction vector. Paths can also be mirrored along a
mirror vector. All these transformations do not affect the
original coordinates of the path object, which can be reset
to its original state at any time. In this way it is possible to
define a set of paths and then transform them into families
of paths that are used to define the movement of related
sound objects in space.

E. Path Visualization

The path objects are created from text representations
and not through a graphical editor. But methods are
provided that can be used in conjunction with external
visualization programs (gnuplot) to visualize the final
rendition of the path as defined in the object.

It is possible to plot the trajectory, velocity profile,
acceleration profile and Doppler shift of the moving sound
object.

(/ dlocsig-one—turn 100))

FE. Examples
A very simple Lisp instrument that uses dlocsig:

(definstrument sinewave
&key
(amp-env (0 1 1 1)
(path (make-path
:path 7 (=10 10 0 5 10 10))))
(multiple-value-bind (dloc beg end)
(make-dlocsig :start-time start-time
:duration duration
:path path)
((osc (make-oscil :frequency freq))
(aenv (make-env :envelope amp-env
:scaler amp)))

(start-time duration freq amp

(let«

(run
(loop for i from beg below end do
(dlocsig dloc i (% (env aenv) (oscil osc))))))))

This snippet of code will render one note created with
the previously defined instrument in a four channel two
dimensional setup:

(with-sound (:channels 4)
(sinetest 0 1 440 0.5 :path
(make-path 7 ((-=10 10) (0 5) (10 10)))))

The same instrument could render a 3d path in a cube
of 8 speakers:

;7 tell the system I want to use 3d
(setf dlocsig-3d t)
;7 render the sound with a 3d path
(with-sound (:channels 8)
(sinetest 0 1 440 0.5 :path
(make-path ’ ((-10 10 0) (0 5 10) (10 10 5)))))

IV. LIMITATIONS

The use of an interpolated delay line to render the
Doppler frequency shift imposes a limitation to CLM in-
struments that use it. CLM is by nature a “sound painting”
environment. It does not require notes to be time ordered
in its score (which is just a Lisp program), not does it
require samples to be output in time order from within
an instrument (ie: any instrument can sprinkle sounds at
arbitrary times in the output sound file). That absolute
freedom in the time ordering domain does not mesh with
a delay line that has to be fed with a constant stream
of samples, so some instruments are not compatible with
dlocsig.

An example is grani, a general purpose granular synthe-
sis instrument I started writing in 1996. Generated grains
are not necessarily time ordered and thus cannot be fed
to dlocsig inside the instrument itself.

In these cases it is relatively easy to work around
the problem by using sound-let and a very simple in-
strument that can move an arbitrary sound file in space
(it is provided as an example in the CLM distribution).
Sound-let calls the troublesome instrument and creates
an intermediate sound file which is later spatialized by
dlocsig. The process is transparent to the composer and
the additional time overhead of the intermediate sound
file creation is not significant.

V. FUTURE DIRECTIONS

There are many things in my list of “things to do” for
Dlocsig, here are some details about the most important
of them:

o The Ambisonics encoding back end is being ex-

panded to include second (and higher) order Am-
bisonics encoding[6] [7].

The Ambisonics rendering back end (used when the
selected rendering type is decoded-ambisonics) is too
simple, it should be extended to do dual band decod-
ing that properly tries to match velocity and energy
vectors in the low and high frequency bands. Or
maybe the internal renderer should be scrapped al-
together, it was merely created as a convenience and
an external decoder[9] could be used in most if not
all cases (for example Ambdec includes hand tuned
configurations for 5.1 Ambisonics rendering[8]).
The unfinished HRTF based back end should be
finished and included in the distribution.

It would also be interesting to explore the possibility
of adding a Wave Field Synthesis back end. This
would be difficult as it would imply a separate
soundfile for each sound object, an approach that
is at odds with the current “piece as a soundfile”
Dlocsig / CLM system. Path objects, on the other
hand, could easily generate the information to later
do WES rendering of the soundfiles.

The Bezier curve fitting and rendering system for
the path objects should be reconsidered to see if
using a different type of curve fitting algorithm
might produce better results. Bezier segment fit-
ting can sometimes result in pathological behavior
with some paths, specially with loops being created
automatically. A more generic approach could use
NURBs (Non-uniform rational B-splines) but fitting
algorithms would have to be found.

The tessellation algorithm described in Pulkki’s
VBAP paper[4] should be implemented so that
grouping of speakers is automatically done.

ACKNOWLEDGMENT

Thanks to Bill Schottstaedt for creating, maintaining
and expanding the wonderful CLM environment.

[1]
[2]
[3]

[4]

[5]
[6]

[7]

[8]

REFERENCES

Common Lisp Music (CLM):
http://ccrma.stanford.edu/software/clm/

Bill Schottstaedt, “CLM: Music V Meets Common Lisp,” Com-
puter Music Journal 18(2):30-37, 1994.

John. Chowning, “The simulation of moving sound sources,”
Journal of the Audio Engineering Society, vol. 19, no. 1, pp. 26,
1971.

V. Pulkki, “Virtual sound source positioning using vector base
amplitude panning”, Journal of the Audio Engineering Society,
45(6) pp. 456-466, June 1997.

Michael A. Gerzon, “Periphony: With-Height Sound Reproduc-
tion”, Journal of the Audio Engineering Society, 1973, 21(1):210
Dave Malham,

“http://www.york.ac.uk/inst/mustech/3d_audio/higher_order_ambisonics.pdf™,

2003

Jerome Daniel, “Reprsentation de champs acoustiques, application
la transmission et la reproduction de scnes sonores complexes
dans un contexte multimdia”, Thse de doctorat de 1Universit Paris
6, 2001

Bruce Wiggins, “An Investigation into the Real-time Manipulation
and Control of Three-dimensional Sound Fields”, University of
Derby Doctoral Thesis, 2004

[91

[10]

[11]

[12]

Fons Adriansen, Ambdec, an open source Ambisonics de-
coder, “http://www.kokkinizita.net/linuxaudio/downloads/ambdec-
manual.pdf”

Fernando Lopez-Lezcano, “A Four Channel Dynamic Sound Lo-
cation System”, The Japan Music and Computer Science Society
(JMACS) 1992 Summer Symposium, 1992

Fernando Lopez-Lezcano, “A dynamic spatial sound movement
kit”, International Computer Music Conference (ICMC), 1994
Julius Smith,

“http://www-ccrma.stanford.edu/ jos/kna/Experiences_Samson_Box.html”

