
CATMASTER AND “A VERY FRACTAL CAT”, A
PIECE AND ITS SOFTWARE

Fernando Lopez-Lezcano
CCRMA, Stanford University

nando@ccrma.stanford.edu
http://ccrma.stanford.edu/~nando

ABSTRACT

In this paper I describe the genesis and evolution of a se-
ries of live pieces for a classically trained pianist, key-
board controller and computer that include sound genera-
tion and processing, event processing and algorithmic
control and generation of low and high level structures of
the performance. The pieces are based on live and sam-
pled piano sounds, further processed with granular and
spectral techniques and merged with simple additive syn-
thesis. Spatial processing is performed using third order
Ambisonics encoding and decoding.

1. INTRODUCTION

This series of piano pieces, starting with “Cat Walk” at
the end of 2008, and currently ending with “A Very Frac-
tal Cat, Somewhat T[h]rilled”1 (last performed in concert
in May 2010) was motivated by a desire to return to live
performance of electronic music. As a classically trained
pianist I was interested in exploring the capabilities of
“augmented pianos”, and the use of algorithms in the
context of an evolving, interactive performance piece that
also used virtuoso gestures from the performer (other ex-
amples include pieces by Jean Claude Risset[5] and
Andy Schloss and David Jaffe[6]).

Between 1994 and (roughly) 1999 I was also involved
with real-time performance of computer music but using
a custom version of the Radio Drum as a 3D controller
(the program was “PadMaster”, written in Objective-C
on the NeXT platform, see [11] and [12]). The amount of
processing and algorithmic control I could use was limit-
ed by the capabilities of the NeXT, as the program could
barely play two stereo sound files while controlling three
external synthesizers and interfacing with the RadioDrum
through MIDI. There was not much power left to create
notes algorithmically and while that was the eventual
goal of a next version of the program, it never happened.

This is a return to a very similar goal, with computers
that can do a lot more, and using the first controller I
learned to use effectively, a piano keyboard.

The piece uses an 88 note weighted piano controller as
the main interface element of the system (the two lowest
notes in the keyboard are used as interface elements, and

1 The reference to “cats” in the title of the pieces refers to
the proverbial cat walking and dancing on the keyboard
of a piano

the rest of the keyboard is available for the performance
of the piece). The piece requires a keyboard controller
with both a pitch bend and modulation wheels, four ped-
als (the usual sustain pedal plus three additional control
pedals), and an 8 channel digital fader box (BCF2000 or
similar) that is used by the performer to change the bal-
ance of the different sound streams during the perfor-
mance.

A computer (either laptop or desktop) running Linux pro-
vides all the sound generation and algorithmic control
routines through a custom software program written in
SuperCollider (“CatMaster”), and outputs either a 3rd or-
der Ambisonics encoded stream, or an Ambisonics de-
coded output for an arbitrary arrangement of speakers.
The piece should be played with a diffusion system that
can at a minimum support 5.1 channels of playback.

2. THE PIECE

The CatMaster program gives the performer a framework
in which to recreate and rediscover the piece on each per-
formance.

At the algorithm and gesture level the program provides a
flexible and controllable environment in which the per-
former's note events and gestures are augmented by in-
context generation of additional note events through sev-
eral generative algorithms. The performer maintains con-
trol of the algorithms through extra pedals that can stop
the note generation, allow the performer to “solo”, and
change the algorithms being used on the fly.

At the audio level the original sounds of up to five pianos
(recreated through Gigasampler libraries and/or through
MIDI control of a Disklavier piano) is modified, trans-
formed and augmented through synthesis of related audio
materials, and various sound transformation software in-
struments.

Finally the resulting audio streams are spatialized around
the audience and routed to audio outputs in a flexible
manner that allows for the piece to be performed in a va-
riety of diffusion environments.

Copyright: © 2010 Fernando Lopez-Lezcano. This is an open-access

article distributed under the terms of the Creative Commons Attribution

License 3.0 Unported, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source

are credited.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:nando@ccrma.stanford.edu

2.1 Score vs. program vs. piece

In this particular piece there is no separation between the
program itself and the piece. “CatMaster” was not de-
signed as a general purpose program and all its code
evolved from concrete performance and artistic needs of
the performer (which evolved through many sessions and
concert performances).

The overall form of the piece is defined in the program
through “Scenes” (see below for more details). Each
scene changes the overall behavior of the program and
suggests certain behaviors and gestures to the performer
through a text field in the GUI. The performer switches
scenes manually through the two lowest keys of the key-
board controller and thus controls the timing of the musi-
cal discourse, but the overall form and behavior of the
piece is pre-composed.

On the other hand the performer is not tied (yet, if ever)
to a common music notation score in which all the notes
are written down. While in theory this gives him/her
complete freedom to improvise, in practice each scene or
section of the piece has definite behaviors, gestures, and
rhythmic and intervalic materials associated with it.

In future versions the program should provide more guid-
ance to the performer than it currently does. The GUI
should include a graphical score view so that each scene
transition provides the performer with further instructions
on the notes, intervals and gestures to perform. This
would make it easier to open the piece to other perform-
ers, something which has not happened so far.

This balance between free and directed improvisation
with overall control of the form is similar to the approach
taken while writing the PadMaster program [11, 12].

3. CHOOSING AN ENVIRONMENT

A very important early decision was choosing an ade-
quate computer language and development environment
for writing the program. There were several require-
ments:

• a complete text based computer language (the author
has a strong programming background, and anticipat-
ed the software would grow into a very complex pro-
gram)

• preferably an integrated environment that can deal
with MIDI, OSC, a GUI and audio using the same
language

• support for multiples threads of execution and for
multiple tempos and internal clocks

• very efficient audio generation and processing
• support for multicore processors so that audio pro-

cessing and generation can use all cores when avail-
able

• has to run under the Linux operating system (the au-
thor's platform of choice)

There are no options to the author's knowledge that satis-
fy all requirements. The one that was finally selected was

SuperCollider[8] as is the one that best matches the re-
quirements.

Other systems were considered. Pd was discarded as it
was anticipated that visual programming would not be
the best fit for a very complex program (it would quickly
become hard to debug and extend). ChuCK is currently
not as feature-rich as SuperCollider and although its sam-
ple-by-sample audio processing is very useful for audio
algorithm design, it leads to inefficiency in processing
and synthesizing audio. The potentially more efficient
approach of writing the software directly in C or C++
(PadMaster was written in Objective-C) was also discard-
ed as it would involve gluing together several indepen-
dent libraries to achieve the same results as SuperCollid-
er.

Regretfully, as all other computer music languages at the
time of this writing (except perhaps for the Faust compil-
er[14]), SuperCollider can't use multiple cores which are
now standard in most computers. But a workaround is
available because the SuperCollider language (sclang) is
independent of the synthesis server (scsynth). They are
two separate processes which communicate through
OSC. It is possible to start more than one synthesis server
to better utilize the capabilities of the underlying hard-
ware and have all instances controlled through the same
sclang language executable.

Tim Blechmann's supernova[13] synthesis server for Su-
perCollider is currently starting to provide experimental
multiple core support with automatic load balancing be-
tween processors, and will hopefully be integrated into
SuperCollider in the near future and used by this piece.

3.1 Other software

While SuperCollider provides most of the software need-
ed through a custom program, several other open source
software packages are used in the piece.

At the core of all the audio processing is Jack [4], a very
low latency sound server that can connect applications to
each other and to the sound card. Additional software in-
cludes:

• Linuxsampler: is used to generate the main ingredi-
ent of the piece, piano sounds (from four different Gi-
gasample sound fonts) [1].

• Jconvolver: used as a reverberation engine with an
Ambisonics first order impulse response [2]

• Ambdec: the Ambisonics decoder [3].

Some external utilities such as amixer, jack_lsp and
jack_connect are also used. All external programs are au-
tomatically started and monitored by the CatMaster Su-
perCollider software.

4. CURRENT STRUCTURE OF THE PRO-
GRAM

The program is event driven. Each event received from
the keyboard controller, pedals or fader box activates a
Routine (an independent thread of execution in the Su-

perCollider language) that processes the event, potential-
ly spawns other Routines and eventually terminates.

4.1 High level control of the form

All the behaviors and parameters that are described in
this paper can be changed dynamically by the performer.
The change is done indirectly through Scenes that group
sets of parameters and behaviors. The performer can step
back and forth through the Scenes that make up the entire
piece using the two lowest keys in the keyboard con-
troller (which are not connected to sound generation),
and change the overall response of the program to events
arriving from the various controllers.

The collection of Scenes creates a predetermined (or pre-
composed) overall form for the piece. But the performer
is free to navigate them differently in each performance
and there is no fixed constraint in the duration of each
section. In practice each section, through an iterative
process of improvisation and discovery, has a definite
feel in terms of gestures, rhythms and intervalic material
that the performer uses in concert.

The gradual addition of features to the program has slow-
ly created new sections of the piece (which have been ex-
plored through many performances), and the program it-
self has been modified extensively as a result of the per-
formance experience, adding algorithms and features. It
is an iterative process of refining both the artistic perfor-
mance and the software being used.

4.2 NoteOn / NoteOff events

NoteOn and NoteOff events are the most important and
drive most of the performance of the piece.

Every NoteOn and NoteOff event received is immediate-
ly sent to the appropriate “main” piano in Linuxsampler.
Currently the two main pianos (a Steinway and a
Bosendorfer) are spatialized statically int the front of the
stage and each receives (statistically) 50% of the notes
directly played by the performer.

A Cage prepared piano is also used sparingly is some
sections of the piece, and the probability of notes being
sent to it can be defined statically in each Scene or can be
changed gradually when a trigger event happens.

After the performed notes are sent directly to the pianos,
chords are detected with a simple timeout based algo-
rithm, and if a given note is outside a chord an analysis
function is run that trains second order Markov chains on
the fly, looking for pitch intervals, duration of notes,
rhythmic values and note loudness. Durations and rhyth-
mic values are quantized to a pre-selected collection of
values before training the chains, enforcing a rhythmic
structure on the piece, regardless of the precision of the
playing of the performer.

At the beginning of each performance the Markov chains
start from an “empty” state and are filled as the per-
former plays notes. The program constantly learns transi-
tions from the performer as the piece unfolds.

The Markov chains are later used as sources for various
functions that generate algorithmic parameters for notes
and phrases.

After the analysis is done an algorithm routine is run that
determines the creation (or not) of additional note events.

4.3 Note generation algorithms

Note generation algorithms are Routines that get
spawned by the NoteOn event and run asynchronously
from the rest of the performance. The algorithms used for
each parameter of the generated notes, the overall tempo
(and tempo change) and the number of additional notes
generated can all be controlled through Scene parameters,
or in some cases directly by the performer (for example
the modulation wheel changes by default the number of
events generated in almost all algorithms).

4.3.1 Markov chains

This algorithm uses data derived from the Markov chains
being trained by the performer. The pitch intervals come
directly from the corresponding chain. Rhythm, duration
and loudness of notes come either from a set of multiple
predefined patterns or from the corresponding Markov
chains, and which one is the source is determined from
programmable random functions. Every note played by
the performer potentially adds layers to the sound texture
being generated, with a mix of in context and out of con-
text notes. The artistic goal is to provide a feel of unity to
a given segment of the piece, with additional surprises
for the performer in the form of unexpected algorithmic
materials being inserted into the piece.

The chains start with no content and thus the algorithms
can't generate notes. As the performance progresses there
is a point in which the software judges there is enough in-
formation accumulated, and starts to enable the algo-
rithm.

4.3.2 Fractal melodies

This algorithm uses a fractal melody generator based on
self similar melodies stacked in pitch and overlapping in
tempo (loosely based on the Sierpinski triangle fractal
curve examples in Notes from the Metalevel [7]).

The pitch material (a chord) for each triggered fractal
melody is derived from the intervals in the intervals
Markov chain, and a fractal is only triggered if the
melody contains enough non-zero jumps in pitch, so this
can only start happening after a fair number of notes have
been played and analyzed.

4.3.3 Scales

This algorithm generates scales going up or down in pitch
with parameters that determine note jump interval, direc-
tion of the scale, and total number of notes generated by
the algorithm.

4.3.4 Trills

This algorithm generates a short scale that goes up or
down in pitch with a programmable step from the per-
formed note, and then a trill with a programmable inter-
val and duration.

4.4 Controlling the algorithms

Which algorithm is active and its parameters can be se-
lected through variables that can be defined in each
Scene. One of the four performance pedals is also dedi-
cated to algorithm control and serves a dual function.

When it is up the “normal” algorithm defined in the cur-
rent scene is executed. When it is down the fractal
melody algorithm is selected regardless of other parame-
ters (and that is because the fractal melodies have an im-
portant role in the piece).

4.5 Stopping the algorithms

The up to down transition in the state of the algorithm
pedal immediately terminates all currently running algo-
rithms. During a typical performance this pedal is used
constantly to select how additional notes are created, to
control the thickness of the textures that are generated
and to create abrupt transitions in the form of the piece.

An additional pedal is dedicated to a solo function, when
pressed subsequent notes played do not spawn more note
generation threads enabling the performer to play solo
notes, melodies or chords without any algorithmic addi-
tions, or to play solo over a texture of algorithmically
generated notes (the “solo” pedal changes in state do not
stop currently running algorithms).

Between the two pedals a wide range of behaviors can be
instantly controlled by the performer.

4.6 Balancing the sound

A fourth expression pedal (a continuous controller pedal)
is used to control the volume balance between notes that
the performer plays and are sent directly to the pianos,
and all other notes generated by algorithms. In that way
the performer can get the spotlight, so to speak, or the al-
gorithms can jump to the forefront of the sound stage, all
controlled live by the performer.

4.7 Pitch bend

The pitch bend wheel is also processed by the program
and is used in a section of the piece to create micro tonal
textures. The pitch bend wheel in the controller bends
one of the main pianos up and the other down in mirror
amounts, while the Disklavier and the other software pi-
anos maintain the center pitch. Bends can create subtle
beatings, or be used to play arbitrary micro tonal notes.

5. SIGNAL PROCESSING

A second dimension of the piece is the live digital signal
processing of the piano sounds. This includes transforma-
tion of the sounds through granular and spectral tech-
niques and the addition of synthetic sounds in some sec-
tions of the piece.

5.1 Recording and granulation engine

The first addition to the signal processing subsystem was
a retriggerable sound recording engine that can store up
to 5 minutes of sound per piano channel, and a matching
granular synthesis instrument that can be triggered by in-
coming note events and reads its source material from the
recent past of the live sound recording of the pianos.

Several parameters of the live granulation process can be
controlled through Scene changes and one fader in the
fader box is dedicated to controlling the loudness of the
granulation instrument outputs.

5.2 Spectral processing

An instrument that implements fft based processing of
the piano sounds was also written. It uses conformal
mapping, bin shifting and bin scrambling unit generators
in the frequency domain followed by an ifft to go back to
the time domain. Several parameters of the frequency do-
main processing are currently controlled by the pitch
bend and modulation wheels so it is possible to change
the nature of the processing quite drastically in real time.

A second fader of the fader box is assigned to control the
volume of the spectral processors.

5.3 Fractals and sine waves

When a fractal melody is being generated, a certain de-
finable percentage of notes will also trigger a software in-

Figure 1: Audio routing overview

strument that includes dual beating sine waves with a
pitch envelope that will augment some of the partials of
the piano sound. The sine instrument has a simple trian-
gular envelope so that the sound does not mask the origi-
nal attack of the piano notes but rather creates a “wash”
of sound that prolongs the notes. A variable controls the
density of the sine wave textures (ie: how often they are
triggered for each new note) and can be changed through
Scene changes.

As before a dedicated fader controls the overall volume
of the sine generators.

6. SPATIALIZATION

Another dimension of the piece is the spatialization of all
the sonic materials. All audio streams are independently
rendered through 3rd order Ambisonics encoders. The
spatialization engine provides static and dynamic routing
of incoming audio with dedicated sends to a convolution
based Ambisonics impulse response reverberation (im-
plemented with the Jconvolver program).

The two main pianos are statically panned left and right
at the front of the stage image, without reverberation.

There are four sets of autopanners that move sound
streams around the audience in elliptical trajectories: 6 or
8 output channels from the sampled pianos (depending
on how many sampled pianos are used), 8 channels of
granular synthesis spatialization (coming from up to 48
granulators running simultaneously), 8 channels of sine
wave autopanners (sine wave instrument instances are
randomly assigned to one of the available panners) and
finally 6 or 8channels for the spectral piano processors.

An extension planned for future versions is to allow more
control (either automated or through the fader box) of the
directionality of the autopanned audio feeds.

Finally the outputs are routed to their proper final desti-
nations. This is programmable though global variables
and is designed to accommodate several flexible options
for the diffusion of the piece. With the current hardware
the audio can feed up to 16 discrete speakers through one
or two Ambisonics decoders, or can send a raw Ambison-
ics stream to an external decoder through either analog or
digital connections.

7. USING REAL PIANOS

The program can also control MIDI controlled pianos (so
far only used Disklavier Yamaha pianos have been used).

The behavior of Yamaha Disklavier pianos presents a
unique challenge not yet fully tackled in the program.
The Disklavier have two operating modes. A non-real-
time mode can have perfect rhythmic accuracy at the cost
of a 500 mSec delay between the arrival of MIDI mes-
sages and the sounding of a note. Or a realtime mode,
with almost no additional delay. A problem is that in this
mode the delay between reception of the incoming MIDI
messages and the sounding of a note depends on note ve-
locity (low MIDI velocity notes have more delay than

high MIDI velocity notes, see [9, 10]). On the other hand,
the sampled pianos react instantly (within the delay of the
controller itself and the latency of the audio interface
which is normally on the order of 5 millisec onds) while
the Disklavier has a delay between the reception of the
MIDI message and the sounding of any note.

For that reason in the current program the Disklavier is
never sent notes played by the performer but rather re-
ceives only notes generated by algorithms. The delay is
not that important for those (but would be very cumber-
some for the performer as there would be a noticeable
echo effect). Even then the result is less than optimal as
the delay is noticeable even when only algorithms are
playing through it.

In a future version of the program that delay should be
compensated by the software (for example using lockup
tables as in [10]) and taken into account in the scheduling
of the algorithmically generated notes themselves so that
the actual played notes are in better sync with the other
(sampled) pianos.

7.1 The Disklavier as a controller

The Disklavier has also not been used so far as a con-
troller but that is also contemplated for future versions of
the program. The performer should be able to switch be-
tween the two keyboards (when a Disklavier is available
- the piece can be played without one). Further process-
ing of incoming and outgoing note events will have to be
programmed so that algorithms and the real performer are
unlikely to “play” the same note at the same time. The
solution being contemplated will probably implement a
dynamic guard zone around the last performed notes in
the Disklavier that can't be activated by algorithms (so
the algorithms will work around the human player and try
to not interfere with him or her).

8. TEMPO AND TRANSITIONS

The overall tempo of all algorithmically generated tex-
tures can be controlled manually or automatically. In a
section of the piece the tempo is automatically changed
(rapidly or in a slower transition) by switching scenes.

Background routines can be triggered by scene changes
so that parameters that control algorithm generation or
any other parameter in the program can be changed con-
tinuously over a period of time.

9. GRAPHICAL USER INTERFACE

Using SwingOSC a graphical interface is presented to the
performer to give feedback during the performance. Two
prominent elements are a running clock that is started
when the first note event is received from the keyboard,
and three text areas that show the previous, current and
next scene in the performance (previous and next text
fields are smaller and grayed out). A notification text
panel can display arbitrary text strings and is used mostly
for updates to tempo and other gradual changes in inter-
nal values. Further down a GUI of the keyboard with sev-

eral subsections shows the state of all the keys and algo-
rithms.

The first row shows which keys have active algorithms
running and associated with them, and how many (the
hue changes according to the total count of threads on
each key). The second row shows which notes have been
triggered by algorithms and the third row shows the keys
that have fractal algorithms running on them and how
many.

A total grand count of running algorithms, granulators
and pending algorithms is shown below as well as the
state of the Markov chain learning routines.

Three buttons show the state of the three main control
pedals and several additional indicators show the state of
external programs and the connection state of external
hardware.

10. LIMITATIONS

After 1 ½ years of evolution the program is hitting the
limits of what is possible to do with the current genera-
tion of laptops owned by the author (those limitations of
course disappear when using a faster 4 core desktop ma-
chine but that is not practical when playing in concerts
that involve traveling abroad).

A short term solution has been the use of two simultane-
ous SuperCollider synthesis engine instances to use the
dual core processor of the laptop. The solution has suc-
cessfully made use of more available processing power.
The parallel nature of some of the processing enables it to
be parceled to a separate synthesis engine (and Jack splits
the processing in different parallel threads). In this piece
the granular synthesis engine (plus the associated spatial-
ization routines, see below) which turned out to be quite
cpu intensive is using the second instance of scsynth and
is shifted automatically by the operating system to a dif-
ferent core.

11. EVOLUTION OF THE PROGRAM

This section gives a very sparse chronology of the evolu-
tion of the program and the consequences of major
changes in the structure and form of the piece. Some in-
ternal heavy rewriting of the code is not listed as it only
had impact in the clarity of the program code and the
possibility of further expansion of the program.

The first version of the program (end of October, 2008)
was just a proof of concept short program with respon-
ders for note events and a first implementation of the
scale algorithm. Shortly after that the first implementa-
tion of the Markov algorithm was incorporated into the
piece and lead to a lot of experimentation and tuning that
grew into the first versions of what would become “Cat
Walk”.

In short: later added chord detection code to properly
train the interval Markov chains (Oct 29). Split into two
main pianos panned left and right in the stage (Nov 4).
First code for granulation instruments, this enabled the
first addition of synthetic sounds to the performance
(Nov 7). Major work in the GUI for feedback to the per-
former, including the elapsed time counter and a first try
at piano keyboard views that monitor activity of the algo-
rithms (Nov 9). Added Markov chain for note duration
and a pedal that stops all tasks (Nov 11) - the control ped-
al addition was vital for performance as a way to control
the density and timing of the algorithms, and after that
the piece was more dynamic and the possibility of con-
trast in the form was greatly enhanced.

Added quantization for training of duration and rhythm
Markov chains, and modulation wheel control of the
length of algorithms (Nov 12). First implementation of
Scenes (Nov 13). Scenes enabled the composer to pro-
gram the high level structure of the piece in the program.
A lot of debugging ensued because sometimes there
would be hanging notes, specially from the Disklavier (it
was later discovered that the Disklavier did not really
work well with lots of overlapping notes and those were
programmatically forbidden). Added reverberation using
the Freeverb algorithm. Finally added pitch bend code for
both main pianos (Nov 19). This evolved later into a
whole section of the piece in which the performer plays
with detuning and micro tonal textures.

And finally a major milestone, after many rehearsals the
first concert performance of “Cat Walk” on November
20th 2008. It culminated a month and a half of very inten-
sive coding and test performances.

At the beginning of February 2009 the first implementa-
tion of the fractal melodies code was written. The capa-
bility to stop the fractals with the algorithm pedal was
also added and the pedal was subsequently used to select
between Markov and fractal melody algorithms. Also the
spatialization code was changed by adding auto-panning
functions that moved the pianos and granulators around
the audience. Also added the code that supported the
BCF2000 fader box to control the volume of different au-
dio streams.

Added optional sine wave additive synthesis components
to the fractal melodies (Feb 8). This changed the piece
significantly as the sonic color of the fractals could be
further manipulated. Converted spatialization to use
VBAP and tried to use 3D VBAP code with 16 speakers,
but the CPU load was too high, so the spatialization was
switched to use 2nd order Ambisonics encoding. Added
convolution reverberation code using Jconvolver, replac-
ing the simpler Freeverb Schroeder reverberation that

Figure 2: Graphical user interface

was used before (Mar 3). Add spectral processing instru-
ments (Mar 20). This originated another section of the
piece that follows the pitch bend section. Changed the
Ambisonics encoder to use 3rd order (Mar 24). As the
CPU limits were approached a second SC synthesis serv-
er was added to spread DSP load between cores (Mar
28). Changed the reverberation to use Ambisonics im-
pulse responses (Mar 30). Split spatialization into two
Ambisonics rings (Apr 2).

Another important milestone concert performance on
April 16th 2010. Much expanded piece that included all of
the above changes in the code.

Added solo pedal (Sep 8). This allowed more freedom in
the performance as the performer can now play solo.
Changed the internal structure of the software to be more
modular (Sep 10). Implemented more tempo change
functions. Added trill algorithms. This led to the creation
of a whole new section at the end of the piece in which
tempo changes gradually and abruptly. Add next and pre-
vious scenes text views so the performer can anticipate
the next section of the piece before transitioning into it
(Sep 14).

Another major milestone On September 18th 2009, first
concert performance that includes the “trill” algorithm
and a whole new section of the piece at the very end.

More details about the performances, and a recording of a
current performance of the work can be found at:

http://ccrma.stanford.edu/~nando/music/a_very_fractal_cat/

12. FUTURE WORK

Much work remains to be done. In reality this is an open
ended project that merges programming and performance
art. Currently the duration of the piece is around 15 min-
utes but with the palette of sounds already available it
could be expanded significantly, possibly into a suite of
smaller pieces that further explore the musical spaces of
the different algorithms and processing techniques used.

The code needs a lot of refactoring work to be able to add
more algorithm types as modules. The original algo-
rithms and the training of the Markov chains is currently
hardwired into the code and not modular.

And so far the program only responds to events generated
by the performer. A major change will be creating a
process that can generate events by itself and not only in
response to the performer. That would open the door to a
dialog between the processing routines and the per-
former.

Chord analysis and use is another area of future expan-
sion, chords are being detected by nothing is done about
them at this point. More and better sound processing in-
struments is also a goal.

At this point it is also necessary to have a detailed look at
cpu usage with the goal of optimizing it, specially with
regards to all the sound processing and generation code.

It is becoming increasingly difficult to expand the func-
tionality of the program without hitting the hard limit of
maximum cpu usage.

13. ACKNOWLEDGMENTS

This piece would not have been possible without the
many professional open source software programs avail-
able for free. Many thanks to the hundreds of developers
that make it possible to use a very sophisticated environ-
ment for programming and music making.

14. REFERENCES

[1] “Linuxsampler,” (an open source audio sampler) .
http://www.linuxsampler.org

[2] AmbDec (open source Ambisonics decoder), by
Fons Adriansen (http://www.kokkinizita.org).

[3] Jconvolver (open source partitioned convolution
engine), by Fons Adriansen
(http://www.kokkinizita.org).

[4] Jack, an open source sound server
(www.jackaudio.org).

[5] David Jaffe, W. Andrew Schloss: Intelligent Musi-
cal Instruments: The Future of Musical Perfor-
mance or the Demise of the Performer?, INTER-
FACE Journal for New Music Research, The
Netherlands, December 1993

[6] Jean Claude Risset: Three Etudes, Duet for One Pi-
anist (1991)

[7] Rick Taube: Notes from the Metalevel, Editorial
Acme, Utrecht, 2004.

[8] SuperCollider, http://supercollider.sourceforge.net/

[9] Werner Goebl and Roberto Bresin, Measurement
and Reproduction Accuracy of Computer Controlled
Grand Pianos, Stockholm Musical Acoustics
Conference, 2003

[10] Jean-Claude Risset and Scott Van Duyne, Real-
Time Performance Interaction with a Computer
Controlled Acoustic Piano, Computer Music
Journal, Spring 1996

[11] Fernando Lopez-Lezcano, “PadMaster, an
improvisation environment for real-time
performance”, ICMC 1995, Banff, Canada.

[12] Fernando Lopez-Lezcano: “PadMaster: banging on
algorithms with alternative controllers”, ICMC
1996, Hong Kong

[13] Tim Blechmann, supernova, a multiprocessor-
aware synthesis server for SuperCollider, Linux
Audio Conference 2010

[14] FAUST, a compiled language for real-time audio
signal processing; http://faust.grame.fr/

	1. INTRODUCTION
	2. The piece
	2.1 Score vs. program vs. piece

	3. Choosing an environment
	3.1 Other software

	4. CURRENT Structure OF THE PROGRAM
	4.1 High level control of the form
	4.2 NoteOn / NoteOff events
	4.3 Note generation algorithms
	4.3.1 Markov chains
	4.3.2 Fractal melodies
	4.3.3 Scales
	4.3.4 Trills

	4.4 Controlling the algorithms
	4.5 Stopping the algorithms
	4.6 Balancing the sound
	4.7 Pitch bend

	5. SIGNAL PROCESSING
	5.1 Recording and granulation engine
	5.2 Spectral processing
	5.3 Fractals and sine waves

	6. SPATIAlization
	7. USING REAL PIANOS
	7.1 The Disklavier as a controller

	8. Tempo AND TRANSITIONS
	9. Graphical User Interface
	10. LIMITATIONS
	11. EVOLUTION OF THE PROGRAM
	12. Future work
	13. Acknowledgments
	14. REFERENCES

