A HYBRID FILTER-WAVETABLE OSCILLATOR TECHNIQUE FOR
FORMANT-WAVE-FUNCTION SYNTHESIS

Michael Jgrgen Olsen, Julius O. Smith III and Jonathan S. Abel
Center for Computer Research in Music and Acoustics (CCRMA), Stanford University
660 Lomita Drive, Stanford, CA 94305, USA
[mjolsen| jos|abel]@ccrma.stanford.edu

ABSTRACT

In this paper a hybrid filter—wavetable oscillator implemen-
tation of Formant-Wave-Function (FOF) synthesis is pre-
sented where each FOF is generated using a second-order
filter and wavetable oscillator pair. Similar to the origi-
nal time-domain FOF implementation, this method allows
for separate control of the bandwidth and skirtwidth of the
formant region generated in the frequency domain by the
FOF synthesis. Software considerations are also taken into
account which improve the performance and flexibility of
the synthesis technique.

1. INTRODUCTION

Formant-Wave-Function (FOF) synthesis is a vocal synthe-
sis technique inspired by the source—filter model of vocal
synthesis that models the excitation of resonant frequen-
cies in the vocal tract by the glottis [1,2]. FOF synthesis
has been used to create very realistic vocal sounds. This
is due to the flexibility of the method in allowing the com-
poser to shape the frequency spectrum of the sound and
to morph between different vowel sounds or from vocal
sounds to non-vocal sounds.

The majority of the previous implementations of FOF
synthesis have focused on implementing a time-domain
representation of the FOF bursts. This can be done quite
cheaply, in computational terms, since table lookup can
be used. However, an overlap-add scheme is needed to
combine the FOF bursts into a single audio stream as the
generation of a single FOF burst needs to be done inde-
pendently of real-time changes of the input parameters.
Also, since each burst decays exponentially, a suitable cut-
off point must be chosen for when to end each particular
FOF burst.

In this paper, a FOF synthesis algorithm is presented that
uses a second-order filter in combination with a sinusoidal
wavetable oscillator to generate the FOF bursts. The filters
are triggered using an impulse train. By using a sample-
and-hold mechanism in conjunction with a cycling bank
of identical filters, artifact-free real-time control of input
parameters can be facilitated.

Copyright: (© 2016 Michael Jprgen Olsen, Julius O.Smith III and Jonathan
S. Abel et al. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author

and source are credited.

The paper is organized as follows: in Section 2 prior work
on FOF synthesis is reviewed; in Section 3 the second-
order FOF envelope filter structure is derived; in Section 4
the details of the software implementation of the proposed
algorithm are presented; in Section 5, the results are sum-
marized and potential areas for future research are moti-
vated.

2. PREVIOUS WORK
2.1 Speech and Vocal Synthesis

The desire to recreate human speech and singing has long
fascinated humankind. After the advent of the telephone
in the late 19th century, the need to send and receive the
sound of human speech over transmission lines led to much
research in the analysis/synthesis of human speech. Much
of the original research along those lines was completed at
Bell Labs during the early 20th century, yielding in par-
ticular Homer Dudley’s vocoder (“voice coder”)—a voice
analysis and resynthesis device, and the Voder—a manu-
ally driven speech synthesizer demonstrated at the 1939
World’s Fair [3]. The first computer-generated vocal syn-
thesis was created with a software version of the vocoder in
the 1960s, also at Bell Labs, and led to the generation of the
first digital singing synthesis [4]. Later on, resonant band-
pass filters were used to generate vocal synthesis [5, 6] but
the technique was prone to audible artifacts being present
due to the sharp discontinuity at the start of the exponential
decay. A more complete history of singing-voice synthesis
can be found in [7].

2.2 Formant-Wave-Function Synthesis

Developed in the 1980s by Xavier Rodet at IRCAM in
Paris, the original FOF synthesis technique [1] involved
determining the time-domain response y(n) = (z * h) (n)
of a filter with impulse response h(n) to a particular exci-
tation signal z(n). Assuming that the excitation signal is
a periodic repetition of impulses or other such excitation
shape, the time-domain representation of the output of the
filter can be determined and the synthesis can be performed
in the time-domain by repeating the output signal at the pe-
riod of a desired fundamental frequency and performing an
overlap—add operation to obtain a single output stream.

http://creativecommons.org/licenses/by/3.0/

1 T T

FOF
— — —Amp.Env. | |

0.8 -

06 - , . B

04 ’ N -

Amplitude
o
Y N
=
7

-0.2 - -

04 4

-0.6 B

-0.8 - -

B I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Sample Number

Figure 1. FOF with o = 807 rad/s, 7/8 = 5 ms,
we = 2500 rad/s and SR = 44.1 kHz

The following time-domain function was preferred [1]:

(1 — cos[BnT]) e~ *"T sin (wenT + ¢)

N | =

y(n) =
for O S n S k, (1)
y(n) = e " sin (wenT + ¢)
forn > k,

where k = 7/(8T) controls the amplitude envelope at-
tack time as well as the skirtwidth of the formant region
in the frequency domain, « controls the bandwidth of the
formant region and w,. controls the center frequency of the
formant region. The term skirtwidth refers to the width of
the formant region measured further away from the peak
than the bandwidth is measured. In other words, this func-
tion generates an exponentially decaying sinusoid whose
initial discontinuity is smoothed over & samples (Figure 1).

The form of Eq. (1), while expressed in the time domain,
was chosen for its spectral properties. The bandwidth and
skirtwidth can be controlled independently of each other
and the spectral envelope of the formant region is symmet-
ric about the center frequency.

By running multiple FOF generators in parallel and sum-
ming the outputs it is possible to generate a wide vari-
ety of vocal and instrumental sounds using this method.
In particular, this method is used in the software program
CHANT developed at IRCAM in the 1980s [2]. The orig-
inal CHANT program was implemented at IRCAM using
an FPS-100 array processor and was later ported to C in
the early 1990s so that CHANT could run on any Unix or
Macintosh system [8].

In the late 1980s, a version of FOF was ported to Mu-
sic 11 as part of the VOCEL (VOiCe ELeven) project by
Michael Clarke [9]. This version of FOF included addi-
tional features such as allowing different fundamental fre-
quencies for individual FOF generators and an octaviation
effect. Additionally, this implementation used a lookup ta-
ble containing a user-specified attack shape which deter-
mined both the attack and decay envelope of a single FOF
burst. This version of FOF was later ported to Csound [10].

A different approach was taken by Philippe Depalle et al.
in 1992 [11]. Their approach was to separate the excitation
signal from the resonant filter by developing a time-domain
function for the excitation signal implied by Eq. (1). Then,
the excitation signal could be run through a simple second-
order resonant bandpass filter. This would allow utilization
of the filtering schemes on DSP chips.

A nice property of this scheme is that it was no longer
necessary to overlap-add time-domain functions nor worry
about audible noise created by truncating the time-domain
FOF before it has sufficiently decayed. Additionally, [11]
provides a compact function for controlling the skirtwidth
of the formant region created by the frequency response of
the filter output.

An approach suitable for VLSI implementation on a DSP
chip was developed in 1996 by J. Spanier et al. [12]. Their
method involved developing a filter that would generate
an amplitude envelope with favorable spectral properties.
The filter could then be excited by an impulse train and
the output of the filter used to envelope the output of a
sinusoidal oscillator.

More recently, Michael Clarke and Xavier Rodet ported
FOF synthesis to Max [13]. This version contained fea-
tures of both the FOF version contained in Csound and
early FOF objects already in Max.

SuperCollider has a uGen formlet [14] dating back to
2002 ! which forms a FOF-type wave burst using the differ-
ence between two second-order resonant bandpass filters
having different decay rates but the same center frequency.
Its amplitude envelope is given by the uGen decay?2 [15]
which uses the difference of two one-pole exponential de-
cays to create an attack-smoothed exponential envelope.

3. HYBRID FILTER-OSCILLATOR FOF
IMPLEMENTATION

In this paper a hybrid filter-wavetable oscillator model is
employed in which an impulse train is fed into a second-
order filter which generates a FOF amplitude envelope sim-
ilar to the amplitude envelope in Figure 1. That envelope
is then multiplied by a sinusoidal wavetable oscillator to
generate the FOF waveform.

3.1 Filter Derivation

As seen in Section 2, previous hybrid FOF implementa-
tions have either found an explicit formula for a smooth
excitation filter to feed into a resonant bandpass filter or
designed a modified filter with a smoother attack that can
be excited with a periodic impulse train. One such fil-
ter, which implements the amplitude envelope t?e =%, is
mentioned in [12] but was not used as the authors found
the frequency response to be unsuitable for FOF synthesis.
Additionally, that filter does not allow for control of the
skirtwidth of the generated formant region.

As shown in [16], in the context of artificial reverb gen-
eration, the convolution of two decaying exponential en-
velopes (Figure 2) yields an envelope with a smoothed at-

! James McCartney, personal and email communication, Apr. 22-23,
2016

tack that has a shape similar to other FOF envelopes (such
as the one generated by Eq. (1) in Figure 1).

While comb filters with controllable feedback delay-time
parameters are used in the setting of artificial reverbera-
tion, for the generation of a FOF amplitude envelope, one-
pole resonators with unit delays are sufficient:

A 1

H(z) 2

1 pz=1t’
where ;1 = e~°T is the coefficient of decay, T is the sam-
pling period and o = 1/7 is the inverse of the decay time-
constant 7. This filter has impulse response

h(n) = p"u(n), 3)
where w(n) is the unit step, u(n) = 1,n > 0, and u(n) =
0,n < 0. Thus, the convolution of two such one-pole fil-
ters

h(n) = hi(n)xha(n) = phspl = e~ w2 (4)
corresponds to the multiplication of their transfer func-
tions, giving the following second-order filter

1 1

1—e 2Tzl

H(z) =

1—e Tzl
1

RO ey ®

1
L= ()2 gz

This filter will produce an amplitude envelope in the time-
domain whose frequency response is a formant centered at
dc (0 Hz). Assuming that a; > ag so that u; < po,
ao = 7 - BW can be used to control the decay time of the
amplitude envelope which will in turn control the —3 dB
bandwidth of the formant (where BW is the bandwidth in
Hz).

The other filter parameter «v; can be used to tune the rise
time of the amplitude envelope which will also control the
skirtwidth of the formant region. For a constant value of
L2, as v — g it follows that g — pe. When pg = po,
the longest rise time is achieved which gives the narrowest
possible skirtwidth in the frequency response for the band-
width controlled by as. Conversely, as oy — 00, g — 0
so the attack time becomes shorter with the filter becoming
a one-pole exponential decay in the limit.

The impulse response of the amplitude envelope is given
by [16] to be

_ 1
M2 — M1

h(n) (ust — pi). (6)

The rise time—the time of the impulse response maximum—

may be found as the time in at which the impulse response
time derivative

_ T
M2 — H1

is zero. Expressing the time in seconds, we have

K (n) (arpf ™ = appy ™) ©)

_ In (al/ag)
a1 — (X9

nT ~T (8)

b — — — Exponential 1
BN e Exponential2 | |
i Amplitude Env.

o
©

Amplitude
)) o o
o > S ®
T T T T
-
| | | |

=)

IS
T
-
I

03 H N R
: N

02 S B

0.1 f ~. B

ol I I e . L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample Number

Figure 2. Amplitude envelope generated by the convolu-
tion of two decaying exponentials

Additionally, the maximum allowable rise time for a par-
ticular bandwidth a» can be determined by taking the limit
of Eq. (8) as &1 — aw. In detail, making use of L’Hopital’s
rule, it is found that

1 1
Ty = lim 201/92) lim — T
a1 —a o1 — o [e] az (v
i 2 1 2 1 2 G (9)
=—-T.
(6]

In order to calculate an oy that satisfies a particular choice
of ag and rise time nT' < nT}, 4., it is necessary to solve
Eq. (8) iteratively or using the Lambert W function [17].
If Eq. (8) is put in the form Y = XeX, then X = W(Y)
where W denotes the Lambert W function. Rearranging
Eq. (8) so that it is in the prerequisite form and then apply-
ing the Lambert W function gives

-1

R P N

W (—ag(n n 1)Te_a2("+1)T) . (10)

3.2 Filter Amplitude Normalization

The filter developed in Section 3.1 has the largest ampli-
tude response at dc. Therefore, normalization is achieved
by normalizing the dc amplitude response of the filter. The
frequency response of the filter is given by:

1

H(eMT) = _ _ 11
() 1= (p1 + p2)e 79T 4 pypge=2I0T (an

and so the magnitude response at dc is given by:

1

= (p1 + po) + prapao
12
] (12)

(1 - ,Ul)(l - ,UQ).

Thus, the gain coefficient v = 1/G(0) will normalize the
magnitude response of the filter to 0 dB. Then, any other
magnitude level is easily obtained by applying the correct
linear scale factor g = 10%/20 where 3 dB is the desired
offset in dB.

G(0) = |H(0)]

Attack Time

10ms

20 b

30 =

Magnitude (dB)

50 -7

L\

L
0 500 1000 1500

/N

I
4000 4500 5000

N

1 L) L
2000 2500 3000 3500
Frequency (Hz)

-60

Figure 3. Comparison of frequency characteristics be-
tween original and proposed FOF with: o = 807 rad/s,
w. = 2500 rad/s and varying rise times (Orig.: solid lines,
Proposed: dashed lines)

3.3 Complete FOF Architecture

The complete FOF structure is comprised of an impulse
train that triggers the amplitude envelope filter which is
subsequently multiplied by a sinusoidal oscillator. The fre-
quency fo of the impulse train determines the fundamental
frequency of the synthesized sound and the sinusoidal os-
cillator determines the center frequency f. of the formant
region created by the FOF.

The filter defined in Eq. (5) can be expanded using par-
tial fraction expansion into a difference of one pole filters
similar to decay?2 [15] in SuperCollider. The sinusoidal
oscillator can be combined with Eq. (5) transforming it
into a fourth-order resonant bandpass filter which can sim-
ilarly be expanded into a difference of second-order reso-
nant bandpass filters like formlet [14]. The performance
differences between the implementations will be touched
upon in Section 5.

A comparison of the spectral qualities of the method in
this paper with Rodet’s original FOF technique (Eq. (1))
is illustrated in Figure 3. A single decay rate with a va-
riety of rise times are plotted. Overall, the bandwidths
are quite comparable between both techniques with the
main difference being that the original FOF formula can
achieve considerably narrower bandwidths for a fixed de-
cay rate. For the 80 Hz bandwidth used in the example,
our technique was not able to match the 10 ms rise time
and reached an upper bound of approximately 4 ms. The
biggest difference, as seen in Figure 3, is the narrowness
of the skirtwidth achieved by the original FOF technique.
The authors did not investigate whether or not this dif-
ference is perceptible. While the shapes of the skirts are
slightly different, it is clear from the figure that indepen-
dent skirtwidth control is provided by the proposed tech-
nique.

Figure 4 shows the difference in the amplitude envelopes
between Rodet’s technique and the proposed technique.
The attack times match exactly but the rise and decay shapes

Orig.
07 h \ — — — Proposed

0.6

o o
> o
T T

-
I I

Amplitude

o
w

0.2

Time (ms)

Figure 4. Comparison of amplitude envelope characteris-
tics between original and proposed FOF with: o = 807
rad/s, w. = 2500 rad/s and 1 ms rise times

are slightly different which makes sense given the spectral
differences observed in Figure 3.

3.4 Comparison to SuperCollider

A particularly notable feature of this implementation comes
from the design of the FOF envelope filter. If the band-
width and rise parameters bw and a are set equal to each
other, which causes the poles p; and po to be equal, the
filter in Eq. (5) becomes a second order filter with repeated
poles. Additionally, for bw < a, the roles of the parame-
ters are just reversed so that a controls the decay time and
bandwidth whereas bow controls the rise time and skirtwidth.

This is in contrast to the behavior of the decay?2 and
formlet uGens in SuperCollider. With bw = a, both ob-
jects produce a constant signal of zero and when a < bw,
decay?2 produces an inverted envelope and formlet sim-
ilarly produces an inverted FOF wave burst.

4. FAUST IMPLEMENTATION

The FOF filter structure developed in Section 3.1 was im-
plemented using the FAUST (Functional Audio Stream)
programming language [18]. FAUST allows for the quick
prototyping and development of DSP algorithms with short,
succinct lines of code. The FAUST code compiles down to
C++ code that can then ported to standalone applications,
externals for a variety of other computer music languages
or embedded within a larger C++ project.

4.1 A Basic FOF Generator

A single FOF generator consists of an amplitude envelope,
which is generated using a second-order filter, multiplied
by a sinusoidal oscillator. In order for good quality synthe-
sis using this configuration, the sinusoidal oscillator must
be hard-synced to the same starting phase at the beginning
of each new amplitude envelope. At the time of this writ-
ing, the FAUST libraries did not contain a hard-syncing

oscillator, so the wavetable oscillator osc found in the li-
brary music.lib was modified to include that function-
ality (Listing 1).

Listing 1. Hard-Syncing Wavetable Oscillator

~
// import FAUST music library
ml = library("music.lib");

// resettable phasor, clock val > 0 resets phase to 0
ph(f0,c) = inc : (+ : d)7 (—=(_<:(_,*(_,clk)))) : =*(ts
with {

clk = c>0;

d = ml.decimal;

inc = f0/float (ml.samplingfreq);

ts = float (ml.tablesize);

Yi

// sin lookup table with resettable phase
oscpr (£f0,c) = rdtable(ml.tablesize, ml.sinwaveform,
int (ph(£0,¢)));

J

In particular, the phasor that controls table-lookup was mod-
ified to reset the phase to zero every time a non-zero clock
signal is received.

Next is the code for a FOF generator. The generator takes
four parameters:

e fc: the center frequency in Hz of the formant region

bw: the bandwidth in Hz which controls the decay
rate of the amplitude envelope

e a: the rise-time bandwidth in Hz which controls the
rise time of the amplitude envelope

e g: alinear gain factor where g = 1 corresponds to a
0 dB peak frequency response

Additionally, the FOF signal block must be connected to
a clock signal which should impulse the FOF generator
at the desired fundamental frequency. The corresponding
FAUST code for the FOF generator is given in Listing 2
and the block diagram in Figure 5.

Listing 2. FOF Generation System

-
// import FAUST filter and music libraries h
fl = library("filter.lib");

ml = library("music.lib");
// function to generate a single Formant-Wave-Function
fof (fc,bw,a,g) = _ <: (_',_) :(f * s) with {
T = 1/ml.SR; // sampling period
pi = ml.PI;
ul = exp(-a*pix*T);
u2 = exp (~bwxpixT);
al = -1%(ul+u2);
a2 = ulxu2;
GO = 1/(1+al+a2); // dc magnitude response
b0 = g/GO0; // normalized filter gain
s = oscpr(fc); // wavetable oscillator
f = f1.tf2(b0,0,0,al,a2); // biquad filter
i
-)

Taking the code from Listing 1 and Listing 2, it is pos-
sible to generate high quality vocal synthesis. However,
it is necessary that the formant regions, as controlled by
the bandwidth and rise-time parameters, are held constant
or varied slowly over time so that audible artifacts are not
introduced by time-varying the filter coefficients.

4.2 Filter Cycling and Coefficient Management

Since the FOF bursts typically overlap but the filter coef-
ficients need to remain fixed during the audible duration
of a single FOF burst, it is desirable to develop a more
robust control structure to allow for the realtime manipula-
tion of the FOF envelope parameters. This robustness can
be achieved by introducing filter cycling and a sample-and-
hold mechanism on the decay and rise filter coefficients.

Listing 3. Cyclic Impulse Train Streams

// import the oscillator library
ol = library("oscillator.lib");

// impulse train at frequency f0

clk (f0) = (1-1’)+ol.1f imptrain(£0)’;
// impulse train at frequency f0 split into n cycles
clkCycle(n, f0) = clk(f0) <: par(i,n,resetCtr(n, (i+l)));

// function that lets through the mth impulse out of
// each consecutive group of n impulses
resetCtr(n,m) = _ <: (_,ctr(n)) (_, (_==m)) : =*;

// function to count nonzero inputs and reset after

// receiving x of them

ctr(x) = (+(_) " (negSub(x)));

// function that subtracts value x from

// input stream value if input stream value >= x
negSub (x)= _<: (>=x,_,_) ((=1x_), _,) ((*x_),_):(_+_);

With filter cycling, n identical filters are implemented in
parallel and the impulse train is distributed so that the jth
impulse is routed to the [(j mod n) + 1]th filter. Thus,
if the filter coefficients are held constant using a sample-
and-hold mechanism until the next impulse is received and
enough filters are used so that each filter has sufficiently
decayed in amplitude prior to its next impulse arriving, the
filter coefficients can be swept as quickly as desired with
no audible artifacts.

To handle the distribution of the impulses to the n differ-
ent filters in FAUST a resetting series of counting mech-
anisms were developed (Listing 3, Figure 6). The main
function in the listing is c1kCycle which cyclically dis-
tributes unit gain impulses among n different output streams.
The function c1k outputs a single unit gain impulse stream
at the frequency provided in the input argument. It is a
slight modification of the function 1 f_imptrain included
in FAUST’s oscillator. 1ib library that compensates
for a one period delay in the arrival of the first impulse. The

Figure 5. Block diagram of the code from Listing 2

resetCtr(3)(1)

clk(x1) resetCtr(3)(2)

resetCtr(3)(3)

Figure 6. Block diagrams corresponding to Listing 3

functions ctr, resetCtr and negSub work in tandem
to accomplish the internal management that c1kCycle
needs to function correctly.

With the distribution of the impulse train accomplished, it
is then necessary to implement the sample and hold mech-
anism. The filter.1ib library provides a sample-and-
hold filter called 1atch which takes two signals: an in-
put signal and a clock signal. It samples the input signal
every time the clock signal goes nonnegative and always
outputs the currently held value. Thus, to implement sam-
ple and hold, it is just necessary to connect the relevant pa-
rameter signals to 1atch then feed c1kCycleto latch
and feed a one-sample delay of c1kCycle to fof so that
the sampling occurs just before the filter is excited. The
code and block diagram for the sample-and-hold mecha-
nism and the corresponding FOF implementation are pro-
vided in Listing 4 and Figure 7.

Listing 4. FOF with Sample-and-Hold

rameters can be mapped from GUI elements in a stan-
dalone or DAW plugin or can be manipulated via control
signals in another computer music language.

Listing 5. Example Program

[A A A A A A A AAAAA A parameters/GUI CcONtrols ##*+4tksrtht*x/
// fundamental freq (in Hz)

f0 = vslider(‘‘F0’’,220,0,2000,0.01);

// formant center freq (in Hz)

fc = vslider(‘‘Fc’’,800,100,6000,0.01);

// FOF filter gain (in dB)

g = ml.db2linear (vslider(‘'‘Gain’’,0,-40,40,0.01));
// FOF bandwidth (in Hz)

bw = vslider(‘‘BW’’,80,1,10000,1);

// FOF attack value (in Hz)

a = vslider(‘*‘*A’’,90,1,10000,1);

// number of S&H cycling filters
n =5;

// main process
process = clkCycle(n,f0) <: par(i,n,fofSH) :> _;

e p

// import the filter library
fl = library("filter.lib");

// sample and hold filter coefficients
curbw = (_,bw) : fl.latch;
cura = (_,a) : fl.latch;

// FOF sample and hold mechanism
fofSH = _ <: (curbw,cura,_) (fe,,_,g9,_") : fof;

With the sample-and-hold mechanism in place, all pa-

The code in Listings 1-4 is all that is necessary to per-
form FOF synthesis using FAUST. A simple complete ex-
ample FAUST program is provided in Listing 5. The pro-
gram generates a single FOF wave stream with the band-
width, rise time, center frequency, gain and fundamental
frequency values controlled externally or by GUI elements.
The program features five identical FOF streams running
cyclically in parallel. Keep in mind that the code from
Listings 1-4 are not being included in example program
listing for brevity’s sake but would need to be included in
the actual program in order for it to compile and run.

5. CONCLUSIONS

In this paper a system for FOF synthesis was presented
that uses a hybrid filter—wavetable oscillator architecture.
The convolution of two exponential decay one-pole filters
is used to generate an exponentially decaying amplitude
envelope with smoothed attack. The amplitude envelope is
then multiplied by a hard-synced wavetable sinusoid gen-
erator to generate FOF wave bursts which can then be used
for FOF synthesis. The proposed technique was imple-
mented in the FAUST audio programming language. Fi-
nally, filter cycling and sample-and-hold mechanisms were

Figure 7. Block diagram corresponding to Listing 4

added to improve the robustness and flexibility of the syn-
thesis technique.

A potential next stage in this research would be to de-
velop a gain correction computer based on the fundamen-
tal frequency of the synthesized tone. The gain computer
would be used to automatically normalize the increase in
energy and, hence, volume that occurs when the funda-
mental frequency is increased which causes an increase in
the overlapping between each successive FOF wave burst.

It would also be of potential interest to develop an al-
ternative FOF envelope filter that does not suffer from the
limitation of the maximum rise time being coupled to the
value of the bandwidth parameter. That would lead to a hy-
brid technique capable of producing the extremely narrow
skirtwidths possible with the original time-domain FOF
synthesis technique.

Finally, some of the features of the Csound FOF imple-
mentation [10] such as octaviation, controlling different
FOF streams with different fundamental frequency clock
signals and using the FOF envelope with signals other than
pure sinusoids could be added to the proposed implemen-
tation.

Acknowledgments

Michael Jgrgen Olsen would like to acknowledge fruitful
and insightful conversations with Romain Michon, Elliot
Kermit-Canfield, Paul Batchelor and Maximilian Rest.

6. REFERENCES

[1] X. Rodet, “Time-domain formant-wave-function syn-
thesis,” Computer Music Journal, vol. 8, no. 3, pp. 9-
14, 1984.

[2] X. Rodet, Y. Potard, and J. B. Barriere, “The CHANT
project: From the synthesis of the singing voice to
synthesis in general,” Computer Music Journal, vol. 8§,
no. 3, pp. 15-31, 1984.

[3] M. R. Schroeder, “Vocoders: Analysis and synthesis
of speech (a review of 30 years of applied speech re-
search),” Proc. IEEE, vol. 54, pp. 720-734, May 1966.

[4] J. L. Kelly and C. C. Lochbaum, “Speech synthesis,”
Proc. Fourth Int. Congress on Acoustics, Copenhagen,
pp. 1-4, September 1962.

[5] L. R. Rabiner, “Digital-formant synthesizer for speech-
synthesis studies,” The Journal of the Acoustical Soci-
ety of America, vol. 43, no. 4, pp. 822-828, 1968.

[6] D. H. Klatt, “Software for a cascade/parallel formant
synthesizer,” The Journal of the Acoustical Society of
America, vol. 67, no. 3, pp. 971-995, 1980.

[7] P. R. Cook, “Singing voice synthesis: History, current
work, and future directions,” Computer Music Journal,
vol. 20, no. 3, pp. 38-46, 1996.

[8] J. B. Barriére, F. Iovino, and M. Laurson, “A new
CHANT synthesizer in C and its control environment
in PATCHWORK,” in Proc. Intl. Computer Music
Conf., Montréal, Canada, Oct. 16-20 1991, pp. 11-14.

[9] J. M. Clarke, P. Manning, R. Berry, and A. Purvis,
“VOCEL new implementations of the FOF synthe-
sis method,” in Proc. Intl. Computer Music Conf.,,
Kologne, Germany, Sept. 20-25 1988, pp. 357-371.

[10] J. M. Clarke, “FOF and FOG synthesis in Csound,”
in The Csound book: Perspectives in software synthe-
sis, sound design, signal processing and programming,
R. Boulanger, Ed. MIT Press, 2000, pp. 293-306.

[11] P. Depalle, D. Matignon, and M. Stroppa, “Source-
filter formulation and analytic control of the skirtwidth
of CHANT formant-wave-functions,” in Proc. Intl.
Computer Music Conf., San Jose, USA, Oct. 14-18
1992, pp. 372-373.

[12] J. R. Spanier, S. Johnson, and A. Purvis, “Optimisa-
tions of the FOF algorithm for VLSI implementation,”
in Proc. Intl. Computer Music Conf., Hong Kong, Aug.
19-24 1996, pp. 493-495.

[13] J. M. Clarke and X. Rodet, “Real-time FOF and FOG
synthesis in MSP and its integration with PSOLA,”
in Proc. Intl. Computer Music Conf., Singapore, Sept.
29—-Oct. 4 2003.

[14] J. McCartney, “Formlet,” 1996. [Online]. Available:
http://doc.sccode.org/Classes/Formlet.html

[15] ——, “Decay2,” 1996. [Online]. Available:
//doc.sccode.org/Classes/Decay2.html

http:

[16] K. Lee and J. Abel, “A reverberator with two-stage de-
cay and onset time controls,” in Proc. Audio Eng. Soc.
(AES) Conv., vol. 129, San Francisco, CA, Nov. 4-7
2010.

[17] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jef-
frey, and D. E. Knuth, “On the Lambert W function,”
Adv. Comput. Math., vol. 5, no. 4, pp. 329-359, 1996.

[18] Y. Orlarey, “Faust,” 2002. [Online]. Available: http:
//faust.grame.fr/

http://doc.sccode.org/Classes/Formlet.html
http://doc.sccode.org/Classes/Decay2.html
http://doc.sccode.org/Classes/Decay2.html
http://faust.grame.fr/
http://faust.grame.fr/

	 1. Introduction
	 2. Previous Work
	2.1 Speech and Vocal Synthesis
	2.2 Formant-Wave-Function Synthesis

	 3. Hybrid Filter–Oscillator FOF Implementation
	3.1 Filter Derivation
	3.2 Filter Amplitude Normalization
	3.3 Complete FOF Architecture
	3.4 Comparison to SuperCollider

	 4. Faust Implementation
	4.1 A Basic FOF Generator
	4.2 Filter Cycling and Coefficient Management

	 5. Conclusions
	 6. References

