// @title multiTracker.ck // @author Chris Chafe (cc@ccrma), Hongchan Choi (hongchan@ccrma) // @desc A starter code for homework 5, Music220a-2012 // @note amplitude/frequency tracking using UAna ugens // @version chuck-1.3.1.3 / ma-0.2.2c // @revision 1 SndBuf recording => blackhole; "/Matt Academics/Fall Quarter 2/Music 220a/HW5/out_of_tune_guitar.wav" => recording.read; // pipe input into analysis audio graph: // track amplitude for gain of an FM patch // frequency will be max bin amplitude from the spectrum recording => FFT fft =^ RMS rms => blackhole; // setup FFT: choose high-quality transform parameters 4096 => fft.size; Windowing.hann(fft.size() / 2) => fft.window; 20 => int overlap; 0 => int ctr; second / samp => float srate; // actual audio graph and parameter setting // NOTE: gain 'g' prevents direct connection bug recording => Gain g => dac.left; // create two oscillators, mod modulates sock. TriOsc sock => dac.right; SinOsc mod1 => blackhole; TriOsc mod2 => blackhole; // set initial frequency 70 => Std.mtof => sock.freq; // instantiate a smoother to smooth tracker results (see below) Smooth sma, smf; // set time constant: shorter time constant gives faster // response but more jittery values sma.setTimeConstant((fft.size() / 2)::samp); smf.setTimeConstant((fft.size() / 5)::samp); // setGainAndFreq() spork ~ setGainAndFreq(); fun void setGainAndFreq() { while (true) { // apply smoothed values sock.gain(sma.getLast()); mod2.freq(mod1.freq(smf.getLast())); sock.freq(mod2.freq()); 1::samp => now; } } // main inf-loop while(true) { // hop in time by overlap amount (fft.size() / overlap)::samp => now; // then we've gotten our first bufferful if (ctr > overlap) { // compute the FFT and RMS analyses rms.upchuck(); rms.fval(0) => float a; Math.rmstodb(a) => float db; // boost the sensitity 20 + db * 15 => db; // but clip at maximum Math.min(100, db) => db; sma.setNext(Math.dbtorms(db)); 0 => float max; 0 => int where; // look for a frequency peak in the spectrum // half of spectrum to save work for(0 => int i; i < fft.size()/4; ++i) { if(fft.fval(i) > max) { fft.fval(i) => max; i => where; } } // get frequency of peak (where $ float) / fft.size() * srate => float f; // then convert it to MIDI pitch f => Math.ftom => float p; // down two octaves 24 -=> p; // plus a major third 4 +=> p; // set lower boundary: prevents note too low Math.max(20, p) => p; Math.min(80,p) => p; // new freq if not noise if(db > 10.0) { smf.setNext(Math.mtof(p)); } } ctr++; } // @class Smooth // @desc contral signal generator for smooth transition class Smooth { // audio graph Step in => Gain out => blackhole; Gain fb => out; out => fb; // init: smoothing coefficient, default no smoothing 0.0 => float coef; initGains(); // initGains() fun void initGains() { in.gain(1.0 - coef); fb.gain(coef); } // setNext(): set target value fun void setNext(float value) { in.next(value); } // getLast(): return current interpolated value fun float getLast() { 1::samp => now; return out.last(); } // setExpo(): set smoothing directly from exponent fun void setExpo(float value) { value => coef; initGains(); } // setTimeConstant(): set smoothing duration fun void setTimeConstant(dur duration) { Math.exp(-1.0 / (duration / samp)) => coef; initGains(); } } // END OF CLASS: Smooth