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Abstract 

A musical event’s Perceptual Attack Time (“PAT”) is its perceived moment of rhythmic placement; in 

general it is after physical or perceptual onset.  If two or more events sound like they occur 

rhythmically together it is because their PATs occur at the same time, and the perceived rhythm 

of a sequence of events is the timing pattern of the PATs of those events.  A quantitative model of 

PAT is useful for the synthesis of rhythmic sequences with a desired perceived timing as well as for 

computer-assisted rhythmic analysis of recorded music. Musicians do not learn to make their 

notes' physical onsets have a certain rhythm; rather, they learn to make their notes' perceptual attack 

times have a certain rhythm. 

PAT is notoriously difficult to measure, because all known methods can measure a test sound’s 

PAT only in relationship to a physical action or to a second sound, both of which add their own 

uncertainty to the measurements.  A novel aspect of this work is the use of the ideal impulse (the 

shortest possible digital audio signal) as a reference sound.  Although the ideal impulse is the best 

possible reference in the sense of being perfectly isolated in time and having a very clear and 

percussive attack, it is quite difficult to use as a reference for most sounds because it has a perfectly 

broad frequency spectrum, and it is more difficult to perceive the relative timing of sounds when 

their spectra differ greatly.  This motivates another novel contribution of this work, Spectrally 

Matched Click Synthesis, the creation of arbitrarily short duration clicks whose magnitude frequency 

spectra approximate those of arbitrary input sounds. 

All existing models represent the PAT of each event as a single instant.  However, there is often a 

range of values that sound equally correct when aligning sounds rhythmically, and this range 

depends on perceptual characteristics of the specific sounds such as the sharpness of their attacks.   

Therefore this work represents each event’s PAT as a continuous probability density function 

indicating how likely a typical listener would be to hear the sound’s PAT at each possible time.  

The methodological problem of deriving each sound’s own PAT from measurements comparing 

pairs of sounds therefore becomes the problem of estimating the distributions of the random 

variables for each sound’s intrinsic PAT given only observations of a random variable 

corresponding to difference between the intrinsic PAT distributions for the two sounds plus noise. 

Methods presented to address this draw from maximum likelihood estimation and the graph-

theoretical shortest path problem. 
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This work describes an online listening test, in which subjects download software that presents a 

series of PAT measurement trials and allows them to adjust their relative timing until they sound 

synchronous.  This establishes perceptual “ground truth” for the PAT of a collection of 20 sounds 

compared against each other in various combinations. As hoped, subjects were indeed able to 

align a sound more reliably to one of that sound’s spectrally matched clicks than to other sounds 

of the same duration. 

The representation of PAT with probability density functions provides a new perspective on the 

long-standing problem of predicting PAT directly from acoustical signals. Rather than choosing a 

single moment for PAT given a segment of sound known a priori to contain a single musical 

event, these regression methods estimate continuous shapes of PAT distributions from continuous 

(not necessarily presegmented) audio signals, formulated as a supervised machine learning 

regression problem whose inputs are DSP functions computed from the sound, the detection 

functions used in the automatic onset detection literature. This work concludes with some 

preliminary musical applications of the resulting models. 
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Chapter 1 Background and Motivation 

Rhythm in some form underlies almost all human activity, and it is certainly one of the most 

important elements of music worldwide. A comprehensive theory of rhythm should include a 

generalized view of sound existing on a continuum of time and explain how listeners make sense 

of sound by noticing various forms of quasi-repetition and by inferring discrete events at specific 

attack times. It must also explain how the mind actively groups these musical events temporally 

into both phrase structures and metric structures, that is, sets of quasi-even pulses organized 

hierarchically with additive and divisive operations, operating within certain temporal limits of 

human perception and movement.  

Finally, a theory of rhythm should address questions of metric phase relations in general (and 

especially the notion of “downbeat” and its epistemology), syncopation, microtiming, 

ornamentation, rhythmic relationships in polyphonic, polyrhythmic, polymetric, and polytempic 

contexts, the close relationship between perception and production (embodiment), prediction, and 

the role of learning and acculturation (for both performers and listeners) in all of the above. 

1.1 Some Questions 

The following questions inspired the studies into musical rhythm that eventually became the 

present dissertation. 

• Rhythm. What is rhythm? How do the human auditory and cognitive systems group and 

make sense of the timing of what we hear? What is special about the perception of time in 

music versus the perception of time in general? Why and how do certain sequences of sound 

generate expectation of the timing of future sound? Why and how are human listeners able 

to “find the beat,” for example, tap their feet to the pulse of music? Why, how, and when do 

we perceive discrete “notes” and other sonic events amidst the smooth continuum of time? 

• Meter. Why do almost all cultures have some form of metric structuring that places musical 

events at discrete time points within an essentially repeating cycle of pulses, accents, and 

durations? Why and how do some specific sequences of onset times and durations give rise to 

a sensation of meter while others do not?  Music can easily be notated in the “wrong” meter; 

what makes one plausible metric interpretation of a given figure “correct” and others 
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“incorrect”?  Given a repeating pattern, on what basis does one choose the metric beginning 

(downbeat) of the pattern? 

• Syncopation. What is syncopation? Why and how do certain syncopated rhythms retain a clear 

sense of pulse and meter, even if the beats themselves are not articulated? At what point does 

syncopation break the senses of pulse and/or meter? How can one syncopate against an 

irregular meter? 

• Influence of natural rhthyms. What is the connection between human biological rhythms (such as 

heartbeat, respiration, gait, sexual intercourse) and musical rhythm? What is the interaction 

between evolutionary universals of human rhythmic experience and culturally specific 

musical rhythm? 

• Microtiming. Computer-generated performances with exact, strictly metronomic timing have 

an unmistakably inhuman sound, even if all other nuances of expression (loudness, timbre) 

are taken from an expressive human performance. Adding randomness to the timing to 

“synthesize” human expression generally sounds both inhuman and imprecise. Therefore 

there is structure to microtiming1. What is that structure in general and in specific musical 

styles? 

Why ask these questions? I believe (and many agree) that rhythm is an essential part of what it 

means to be human, and that pursuing these questions will teach us more about what it means to 

be human. This might be labeled my “humanistic” motivation. Another reason is that concrete, 

quantitative answers or partial answers to some of these questions could take the form of models 

that can be implemented by computer. Working software models of rhythm will enable 

exploratory compositional play. This might be labeled the “creative” or “expressive” motivation. 

Finally, a large part of my goal in pursuing these questions could be labeled my “aesthetic” 

motivation: music produced by computers falls overwhelmingly into either “too much rhythmic 

regularity”: strictly metronomic, highly repetitive electronic dance music; or “not enough 

rhythmic regularity”: essentially all “Computer Music” coming out of the academic Western art 

music tradition, where either large amorphous masses of sound lack all sense of articulation, or 

event onsets are so irregular as to eschew any sense of pulse. I believe that both extremes give up 

one of the important avenues of musical expression, hence my desire to develop better computer 

tools. 

                                                     

1 “Microtiming” is jargon referring to the small time differences between a strictly metronomic performance and the 
times that notes are actually performed. 
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1.2 Structure of This Dissertation 

The research presented here focused on just one part of one of the above questions: “when do we 

perceive discrete sonic events amidst the smooth continuum of time?”  This is the issue known as 

Perceptual Attack Time (“PAT”) or, in the speech community, Perceptual Center (“P-Center”).  My 

novel theoretical contribution is to treat each sound’s PAT not as a single instant but instead as a 

continuous probability density function. 

Chapter 2, “Towards a Comprehensive and Culturally Universal Theory of Musical Rhythm,” 

considers the big picture, attempting to address some of the above questions with a literature 

review as well as introducing some important terminology. It also demonstrates the centrality of 

the PAT question to musical rhythm in general so as to motivate subsequent material. 

Chapter 3, “On Perceptual Attack Time,” takes up the question of PAT in detail, first defining 

the term and discussing the various methods for measuring PAT and their specific difficulties.  

The observation that there can be a range of perceptually “correct” judgments of a sound’s PAT 

motivates the treatment of PAT with probability density functions. The theoretical heart of this 

work suggests a probabilistic interpretation of results from PAT measurements and offers a variety 

of methods for estimating each individual sound’s PAT (as a probability density function) given 

the measurable data of the relative difference in PAT between pairs of sounds. Finally it takes up 

the question of what reference sounds should be most effective for measuring a given sound’s 

PAT, which motivates Spectrally Matched Click Synthesis, the creation of arbitrarily short-duration 

clicks with spectra matching that of any given input sound; I show that this problem is reducible 

to the well-studied problem of finite impulse response (FIR) filter design. 

Chapter 4, “Listening Experiment” describes an experiment I performed to test PAT. Volunteer 

subjects downloaded custom software (described in detail in Appendix A “Software for 

Administering the Listening Experiment”) that presented them with a series of trials aligning the 

PAT of pairs of sounds.  The chapter describes the experiment in detail, presents the results, and 

interprets them according to the theory developed in Chapter 3. 

Chapter 5, “Motivations, Implications, and Future Work ,” takes up the question of estimating 

any sound’s PAT directly from acoustic properties of the signal, again from a perspective 

representing PAT as probability density functions rather than discrete instants. I present two 

approaches, both framed as regression problems in the context of supervised machine learning, 

with the training data coming from the results of Chapter 4. The first approach estimates PAT for 

each individual sound, as do all existing predictive models of PAT and P-Center.  The second 

approach bypasses Chapter 3’s thorny theoretical issue of recovering each sound’s own PAT from 
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measurements of relative PAT for pairs of sounds, and instead directly estimates the relative PAT 

for two sounds.  The chapter concludes by suggesting some possible uses for these predictive 

models. 
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Chapter 2 Towards a Comprehensive and Culturally 
Universal Theory of Musical Rhythm 

The goals of this chapter are to introduce the terminology and concepts used in the rest of the 

dissertation and to build towards a theory of musical rhythm based on a solid scientific 

epistemology while attempting to keep all of the world’s musical cultures in mind.  

2.1 Scientific View of The Time Axis 

 

Musical rhythm almost2 always manifests as sound, which consists of patterns of variation of 

pressure as a continuous3 function of time. Time is one of the few fundamental quantities of 

physics and other sciences. To the extent than an audio recording captures a musical 

performance, that music is nothing more than a function of time.4 Indeed the time axis is 

fundamental to most of science and engineering as well as to performing arts such as dance, 

theater, and film. Thus, the time axis is the foundation of this theory of rhythm.5 In this view, time 

has an objective reality independent of any observer, and clocks can measure and divide time 

accurately. 

The Einstein-Minkowski model of space-time tells us that time itself actually passes differently at 

every location according to relative velocity, gravity, etc.6; luckily these effects are negligible for all 

human music making.7 An effect that we must take into account, however, is the slow speed of 

sound (approximately one foot per millisecond), which guarantees that if there are two or more 

                                                     

2 For a counterexample, consider Mark Applebaum’s 1995 composition Tlön for three conductors and no players 
(markapplebaum.com/tlon01.html). Also, musical rhythm can occur entirely in the imagination, as when a musician 
silently rehearses by mentally running through a piece. Certainly any non-sounding example of musical rhythm has 
meaning only in reference to the normal case of music that is heard; furthermore even these silent examples take place 
in time more or less in the same way as sounded music. 
3 For practical purposes we approximate continuous time with the successive discrete samples of digital audio. 
4 A stereo recording is two functions of time: left and right. 
5 Most theories of musical rhythm instead begin with Western musical notation and therefore wind up ignoring many 
important issues. My goal is to base this theory on a more general epistemology (Cook 2002) based on physics, results 
from psychology, and my personal understanding of musics of many cultures. 
6 (Hawking 1988) is a good reference on these ideas for the lay reader.  
7 (Shlain 1991) argues that great visual art depicts nonintuitive aspects of the physical world such as the relativity of 
time. 
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sound sources (be they loudspeakers, musical instruments, human voices, etc.), then the relative 

timing of each source will be different at every listening location.8 

2.2 Repetition / Periodicity 

The next idea is a function of time that repeats exactly at regular time intervals. We call this 

repetition when we perceive that something discrete keeps happening, for example, a dripping 

faucet, whereas we call it periodicity when we perceive that the overall shape keeps repeating 

without there necessarily being a clear beginning and ending point, like the up and down pitch of 

a siren. The only difference is in how we think of the unit that repeats. 

Much of the theory of mathematics and signal processing is based on the ideal of exact repetition. 

For example, the sine function has the property that sin(x)=sin(x+n2π) for any x and any integer n, 

so by modeling any function of time as a sine wave, we are assuming exact repetition. Fourier’s 

technique of decomposing any signal into a sum of sine waves applies only to the case of infinitely 

long signals that repeat exactly.9 Taking the Discrete Fourier Transform (DFT)10 to find the 

spectrum of a finite-length signal s implies the concept of periodic extension11, meaning that what we 

are really finding is the spectrum of an infinitely long, exactly repeating signal of which s is a 

single period (Smith 2007b). 

 

Figure 1: Example of an ideal sine wave oscillator 

                                                     

8 Except for unlikely special cases such as two sound sources and two listeners all positioned exactly along a single 
straight line. 
9 More formally, given any finite-duration input signal, we can perform Fourier analysis to derive a Fourier series; the 
expansion of that Fourier series will be a “periodic function,” meaning an infinitely long signal consisting of infinitely 
many exact repetitions of the original input signal. This is periodic extension in the continuous time case. 
10 In practice people use the more efficient FFT (Fast Fourier Transform) to compute the DFT. 
11 http://ccrma.stanford.edu/~jos/mdft/Modulo_Indexing_Periodic_Extension.html 



 7 

Because this theoretical ideal is so useful and widespread, it is worth introducing some of the 

terminology. Figure 1 shows almost three cycles of a sine wave and its phase12 as functions of time. 

An oscillator is an abstract mathematical tool that cycles through a repeating pattern; in this case 

the graph can be interpreted as the output of a sine wave oscillator. A period is the amount of time 

that an oscillator takes to go through its repeating pattern one time, in this case, one second. 

Frequency is the rate of repetition, that is, the reciprocal of period, in this case, one Hertz. The phase 

of a signal at any given time is its proportion of the way through the period at that time; the 

bottom graph in Figure 1 shows the phase as a function of time. Frequency is the rate of phase 

change.13 A phasor is an oscillator whose output is just its current phase (so it makes a “sawtooth” 

shape). The choice of which particular point in the cycle to label as “phase zero” is a matter of 

convention; the important thing about phase is that it increases steadily from zero to one, then 

“wraps around” back to zero and starts over. In this example, phase zero is the point where the 

oscillator’s output is zero and heading from positive to negative.14  

We can bring together musical and mathematical terminology by using an oscillator as a model of 

an ideal metronome. It “ticks” when the phase is zero, and the frequency is proportional to the 

tempo.15 The period is the duration of one beat. The current phase is the proportion of time that 

has elapsed between the previous tick and the next tick. 

As an example of phase relationships, imagine two ideal metronomes set to the exact same tempo. If 

they start at exactly the same time, they will always tick at exactly the same time infinitely into the 

future. In this case we say the oscillators are in phase with each other; that is, their phase difference 

is zero. If the metronome on the left starts first, and then the metronome on the right starts 

exactly halfway between the ticks of the metronome on the left so that they alternate evenly “left, 

right, left, right…,” then we say they are exactly out of phase with each other; that is, their phrase 

difference is 0.5.16 A phase difference of 0.1 would mean that the second metronome always ticks 

10% of the way between the first metronome’s ticks, etc. 

                                                     

12 Here I’m using the convention that phase goes between 0 and 1, as is typically seen when applying these concepts to 
musical rhythm; in most other situations phase is defined between 0 and 2π, or between –π and π. 
13 Frequency in Hertz is the rate of phase change when phase is defined to go from 0 to 1. If phase goes from 0 to 2π 
than radian frequency (which is 2π times frequency in Hertz) is the rate of phase change. 
14 In other words, this is the sine function. For a cosine, phase zero is the point at which output is the highest. 
15 Musical tempo is usually measured in beats per minute (“BPM”); divide this by 60 to get beats per second, which is 
the frequency of the metronome in Hertz. 
16 Again, I’m using the convention of phase from 0 to 1. “Exactly out of phase” would correspond to a phase difference 
of “180 degrees” or “pi radians.” 
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2.2.1 Quasi-Repetition 

There is no exact repetition in the real world, only quasi-repetition.17 Sound never repeats 

exactly, because there is always a noise floor18 in any acoustic environment.  Figure 2 illustrates 

the same sine wave as Figure 1, but with noise added.19 

 

Figure 2: Example of an ideal sine wave oscillator with added noise. 

Any quasi-repeating sound produced by human activity will have small “errors” in timing caused 

by what is known as “motor noise”; these are never much less than about 1 millisecond and often 

much more.20 Only mechanical means such as tape loops and their digital equivalents can 

produce repetition that is exact to within the limits of human perception, and indeed a lot of 

popular music and the vast majority of electronic dance music is constructed digitally with exact 

repetition of rhythmic sequences or of a segment of prerecorded audio. Exact repetition in 
                                                     

17 For example, the astronomical cycles that most affect life on earth, namely the day (rotation of the earth), the lunar 
month (phase of the moon), and the year (orbit of the earth around the sun), are essentially the same from cycle to cycle, 
but slightly different as the length of the day changes throughout the year, as the earth very gradually slows down in its 
orbit around the sun, etc. 
18 Even in an ideal recording studio with perfect sound isolation from the outside world (e.g., in outer space), the 
Brownian motion of the heat of the vibrating medium adds a nondeterministic and therefore non-repeating component 
to any sound. Also all microphones, mixers, recording devices, loudspeakers, etc., have a level of noise that they add to 
any signal. 
19 In this example the noise is Gaussian with mean zero and standard deviation 0.2. 
20 This motor noise turns out to be difficult to measure.  One method is to ask subjects to tap at a variety of steady 
frequencies and measure the variance, then decompose this variance into a “central clock variance,” i.e., the mind’s 
inability to maintain a perfectly steady tempo, plus the motor noise as an added source of variance (Wing and 
Kristofferson 1973a, 1973b). With these methods “typically the motor variance is in the range of about 25 ms-squared 
(i.e., standard deviation of about 5 ms) and changes little with tempo” (Bruno Repp, personal communication, January 
31, 2008). Rubine and McAvinney put this figure around 1.5 to 4ms (Rubine and McAvinney 1990), while Desain and 
Honing say 10-100 ms (Desain, Honing, and Rijk 1989), both citing (Vorberg and Hambuch 1978).  See also (Lago and 
Kon 2004). Another method is to ask a performer to play a piece “the same way” two or more times and then measure 
the correlation in note durations among the results (Repp 1995).  This approach also suffers from the methodological 
problem of separating the mind’s variance from the body’s.   
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rhythm is analogous to sustaining the tonic chord in harmony: it is the most basic arrangement, 

and in its pure form, artless and boring. 

2.2.2 Perceiving Quasi-Repetition at Different Time Scales 

Perception of quasi-repetition is qualitatively different depending on the period of repetition, as 

shown in Table 1 and Figure 3.  One very important length of time for human perception is the 

perceptual present, a short-term auditory memory storing approximately the last 2-6 seconds of 

sound input (Clarke 1999).  Another important length of time is around 50ms, the boundary 

between our perception of rhythm and pitch. Although many have noted the mathematical 

equivalence of periodicity in these two time scales, for example, (Scheirer 1997; Stockhausen 

1957), we perceive them quite differently. 

Period Regime of perception 

More than a  
human lifetime 

Repetition cannot be perceived. 

More than a  
few minutes 

Repetition can be noticed by comparing new input to long-term 
memory. 

More than  
about 2 seconds 

Repetition can be noticed by comparing new input to short-term 
memory. 

About 100 ms to 2 seconds Repetition takes place within the “psychological present” and is 
perceived more or less automatically as a rhythm or meter. 

About 50-100 ms Grey area between pitch and rhythm: generally sensory roughness. 

0.05 to 50 ms (i.e., 20-20000 
Hertz) 

Pitch 

Less than 0.05 ms Repetition cannot be perceived. 

Table 1: Regimes of perception of quasi-repetition 



 10 

 

Figure 3: Some example frequencies and time-scales of human experience, charted 

simultaneously on log-frequency and log-period scales.  

All points lie along a straight line because frequency and period are reciprocals.  

Many of these numbers are obviously example values drawn from a range of possi-

bilities. These are the frequencies and time-scales that we perceive as quasi-repeating 

cycles.  We can perceive even shorter durations in the inter-ear timing differences 

that give us cues about the direction of a sound source, but we cannot perceive cyclic 

repetition at these fast rates. On the other extreme, we can perceive, for example, 

that we are living in the 21st century, but we cannot perceive the centuries themselves 

as repeating cycles.  This figure is inspired by the brilliant figure “The Time Domain” 

from (Roads 2001, 5). 
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2.2.3 Signal Processing Techniques for Detecting Quasi-Repetition 

In signal processing, the term periodicity estimation is used to mean automatic techniques for 

detecting quasi-repetition. Two are well known in the computer music literature, originally 

applied in the regime of pitch perception to do fundamental frequency estimation and also 

applied more recently for analysis of rhythmic and metric structures: autocorrelation and 

harmonic spectral product. 

2.2.3.1 Autocorrelation 

 

Figure 4: Autocorrelation of three short signals 

Autocorrelation of three short signals: noise (top), sine wave (middle), and a primitive idealized “metric” signal (bot-

tom) 

Autocorrelation finds the correlation21 of a signal against different versions of itself time-shifted by 

various amounts. Each time-shift amount is called a lag time. The output of an autocorrelation is 

the correlation amount22 as a function of lag time. The maximum value will always be at a lag of 

zero, since a signal is always perfectly correlated with an exact copy of itself.23 Other peaks in the 

                                                     

21 In this sense correlation between two signals x and y simply means the scaled sum of the pointwise product: kΣxiyi, what 
a statistician would call the “sample cross correlation”; see 
http://ccrma.stanford.edu/~jos/mdft/Cross_Correlation.html 
22 I’ve scaled the values so that the maximum correlation, i.e., the correlation between two copies of the same signal, is 
one (by using the ‘coeff’ argument to Matlab’s xcorr function). A correlation of zero means that the two signals have 
nothing in common. 
23 For some signals the (unbiased) correlation amount at other lags might be equal to that at lag zero. For example, a 
completely constant signal will have equal correlation amounts at all lag times. A perfectly repeating signal’s 
autocorrelation at a lag equal to the period will be the same as that at lag zero. An unbiased correlation 
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autocorrelation indicate lag times at which the signal is relatively highly correlated with itself; 

these can be interpreted as periods at which the signal quasi-repeats. In other words, autocorrela-

tion is based on the idea that a quasi-periodic signal will resemble itself in the time domain when 

time-shifted by a duration (nearly) equal to the period. 

Figure 4 shows three short signals alongside their autocorrelation functions. For the noise signal, 

other than the peak at lag zero, there does not seem to be any structure to the autocorrelation. 

The sine signal changes gradually, so the autocorrelation also changes gradually; this helps 

explain why autocorrelation is good at finding not-quite-exact repetition when the signal is 

somewhat smooth. The third example is a “metric” signal of a loud impulse alternating with a 

quieter impulse, separated by three units of silence. In this case, the lag of 4 yields a peak, since it 

makes the impulses all line up with other, while any lag amount that is not a multiple of 4 yields a 

zero because it makes the impulses line up with silences. The lag of 8 has an even higher 

correlation than the lag of 4, because in addition to making all the impulses line up with each 

other it also makes the loud impulses line up with each other. 

Many researchers have used autocorrelation for rhythmic analysis: (Alonso, David, and Richard 

2004; Brossier 2006, 105-110; Brown 1993; Davies and Plumbley 2004; Davies and Plumbley. 

2005; Frieler 2004; Paulus and Klapuri 2002; Peeters 2005; Scheirer 1997; Toiviainen and Eerola 

2005; Tzanetakis, Essl, and Cook 2001).  

A recent development in the use of autocorrelation is the autocorrelation phase matrix (Eck 2007; Eck 

and Casagrande 2005), which outputs a two-dimensional (2D) matrix showing the correlation 

amount as a function of both lag time and phase. The distribution of autocorrelation energy in 

this space can reveal rhythmic structure even in cases where the autocorrelation alone provides no 

insight. 

Related to autocorrelation is a method based on comb filtering (Scheirer 1998), in which an input 

signal passes through a collection of recirculating feedback delay lines. For example, the output of 

the one-second delay line is equal to the input plus a quieter version of the input from exactly one 

second ago, plus an even quieter version of the input from exactly two seconds ago, etc. So if the 

input contains periodicity at or near the one Hertz frequency, the amount of energy in the one-

second delay line will tend to increase. 

                                                                                                                                                            

(http://ccrma.stanford.edu/~jos/mdft/Unbiased_Cross_Correlation.html) corrects for the fact that higher lag times 
correspond to shorter durations of the overlap between the original and time-shifted versions of the signal; the graphs in 
Figure 2 show regular biased autocorrelation. 
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2.2.3.2 (Harmonic) Spectral Product 

The magnitude spectrum of a quasi-repeating signal should have a peak corresponding to the 

frequency of repetition. The harmonic spectral product method (sometimes called just “spectral 

product”) is based on the assumption that the spectrum of a quasi-repeating signal will also have 

relatively strong peaks at frequencies corresponding to the first few harmonics of the frequency of 

repetition. This method works by first finding the magnitude spectrum (for example, with an 

FFT), then successively compressing that spectrum by factors of 2, 3, etc., up to M, then 

multiplying together all M spectra.24 

 

Figure 5: Harmonic spectral product of three short signals: noise (top), sawtooth 

wave (middle), and a primitive idealized “metric” signal (bottom) 

Figure 5 shows three short signals, their magnitude spectra, and their harmonic spectral products 

with M=3. For the noise signal the magnitude spectrum is basically flat and any structure to the 

spectral product is random.25 The sawtooth wave has a harmonic spectrum exactly like what this 

method expects to see, and indeed the spectral product has a huge peak at the sawtooth’s 

fundamental frequency. The “metric” signal is perfectly periodic with a harmonic spectrum and 

so again the spectral product technique easily finds the fundamental frequency. 

                                                     

24 Alonso (Alonso, David, and Richard 2004) writes this formula for spectral product, where f is normalized frequency 
and P(ej2πf) is one bin of the FFT of the input signal: 

 
25 The apparent structure in this example is due to the short duration (only 48 samples) of noise. As the number of noise 
samples increases the magnitude spectrum and therefore spectral product become flat. 
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Alonso has used harmonic spectral product to detect periodicity in the domain of rhythm (Alonso, 

David, and Richard 2004).  The use of this technique to detect pitch has a rich history going back 

at least to 1969 (Noll 1969). 

2.3 Discrete Events and Discrete Instants 

The idea that sound consists of independent, distinct events (for example, musical notes) is both 

useful and dangerous. It is useful because many sounds are indeed produced by distinct, all-or-

nothing physical actions, for example, striking, plucking, dropping, plosive consonants, etc. Many 

other sounds are produced by continuous physical actions, for example, singing or speaking 

vowels or voiced consonants, wind, crumpling, the sound of an engine, a vibrating reed, bowing, 

scraping, etc., and even in these cases the notion of a discrete event (for example, the beginning, a 

change of state, arrival at a quasi-steady value…) is often a good match to human perception and 

therefore very useful.  

The danger arises from adopting a worldview in which all music a priori consists of discrete 

events. Western music notation, the MIDI protocol (Moore 1988), and most music software 

support this worldview by providing notes and other events as primitives.  However, musical 

meaning and even rhythm can also be conveyed by continuous shapes of time with no clear 

division into distinct events.  Martin Clayton makes a distinction in the context of North Indian 

râg singing between syllabic style, in which each vocal utterance is a distinct rhythmic event at a 

specific time point in the rhythmic structure, versus melismatic style, in which the singing is mainly 

about melodic connections between pitches and much less about marking time points (Clayton 

2000, 48-52).  Eric Scheirer’s influential paper critiques models of music perception that proceed 

bottom-up via a stage that represents music entirely in terms of notes, which he terms the 

“transcriptive metaphor” (Scheirer 1996).26  

I will follow common usage by using terms like “a sound” or “the sound” to refer to these discrete 

sound events.  The fascinating question of how our minds organize perceived sound into these 

discrete events is part of the question of auditory scene analysis (Bregman 1990). 

The subjectivity in the perception of discrete events manifests as difficulties in trying to establish 

perceptual “ground truth” from human listeners. For example, Leveau, Daudet, and Richard 

each hand-labeled the beginning times of all of the discrete musical events in 17 short musical 
                                                     

26 Scheirer’s view was supported by Gouyon’s comparison of the performance of 12 beat-tracking algorithms on a 
common database of music (Gouyon 2005): he found that in general the algorithms that began by looking for discrete 
notes performed worse than those that worked directly from frame-by-frame features. 
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excerpts (6 to 30 seconds) in a variety of musical styles.  Even though they all used the same 

software tool to perform the labeling, which they had themselves written, they often disagreed not 

only on the exact timing of the events, but also on the number of events in the excerpt. (Leveau, 

Daudet, and Richard 2004).  Tanghe et al. came across the same problem trying to get expert 

percussionists to mark all discrete drum events in various recordings: “Brushes for example have a 

typical “dragged” sound which is hard to annotate as a single percussive event.  In this case most 

annotators chose to register the accents of the brush sounds.  Snare rolls do consist of a series of 

discernable percussive onsets, but it’s very hard to annotate the many fast strokes accurately.  The 

same is true for “flammed” drums (typically the sbare drum) where to hits of the same drum type 

are deliberately played almost (but not quite) at the same time, leading to the sensation of a ghost 

note occurring slightly before a main note” (Tanghe et al. 2005, 54). 

2.3.1 Example: The Piano 

The vast majority of quantitative studies of musical timing focus specifically on music played on 

the piano (Palmer 2005)  (Repp, Windsor, and Desain 2002), usually on the European art music 

from the 1800’s (Clarke 1995; Dixon and Goebl 2002; Dixon, Goebl, and Cambouropoulos 2006; 

Honing 2006; Scheirer 1995) (Repp 1998; Sundberg, Askenfelt, and Frydén 1983) (Zanon and 

Poli 2003) (Dixon and Goebl 2002) (Dixon, Goebl, and Cambouropoulos 2006) (Repp 1995) (and 

countless more). The piano’s 88 keys each map to a distinct pitch; all that can be done to a note is 

start it (by choosing a key and depressing it at a certain speed) or stop it (by releasing27 the key). In 

other words, a piano performance consists entirely of discrete notes. The piano’s ubiquity in 

western music education (combined with the emphasis on written scores) has helped spread the 

dangerous misconception that music consists only of a sum of notes. 

2.3.2 (Counter?)Example: Indo-Pakistani Vocal Alap 

Sound example shafqat-alap-derbari is a single phrase excerpted from the alap section of a 

performance of Rag Derbari Kanra by the singer Shafqat Ali Khan.28 Figure 6 displays the 

fundamental frequency and amplitude of this phrase as functions of time. Where are the 

perceptually salient discrete events in this example? Perhaps the most obvious events are the 

                                                     

27 When releasing a piano key, the key is coupled directly and continuously to the damper, whereas when pressing a 
piano key there’s a certain point at which the hammer is “thrown” at a certain velocity, after which the pianist 
relinquishes control. Therefore a pianist has more control over the exact shape of the end of a piano note than over the 
beginning. 
28 I had the pleasure on a few occasions of working and performing with this extraordinary musician; see (Wessel, 
Wright, and Khan 1998). 
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beginning and end of the entire phrase, at the transition points between zero and nonzero 

amplitude. 

 

Figure 6: Pitch and amplitude of a phrase from an alap in Rag Derbari Kanra sung by 

Shafqat Ali Khan. The blue upper line is fundamental frequency (in Hertz) and the 

lower black line is amplitude (unitless). The dashed lines show the frequencies of the 

notes of the scale as approximated by equal temperament. Where are the discrete 

notes? 

Other salient events begin around times 1.5, 2.6, 4.2, and 5.8 seconds, the relatively long and flat 

segments of the frequency envelope where the singer holds a steady note. However, upon close 

inspection (as shown in Figure 7) there is no obvious exact instant when these notes begin. In each 

case Shafqat reaches the new pitch via a microtonal glissando from the previous pitch. Around 

time 2.5 (left plot in Figure 7) we see that Shafqat slightly overshoots29 the target pitch, so that the 

local minimum around time 2.58 is perhaps the first half-cycle of vibrato. Around time 4.1 (right 

plot in Figure 7), we see instead the opposite situation, where the slope of the upward glissando 

changes at around time 4.06, after which the average pitch continues to climb until about time 
                                                     

29 By my use of the term “overshoot” I don’t at all mean to imply an error or that Shafqat failed to meet some ideal of 
precision. (Furthermore, his ideal of intonation is certainly not equal temperament.) He is, in fact, one of the most 
accurate singers I’ve ever heard. My point is only about the difficulty of choosing a single instant as “the” point of 
arrival at each note. 
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4.5, but now modulated by a vibrato process. My point is that these long-held steady notes are 

clearly salient musical events, but that it is very difficult, and ultimately a matter of interpretation, 

to pinpoint a single instant at which one of these events begins. 

 
 

Figure 7: Detail of two “moments” of arrival at steady pitches from Figure 6 

What about the virtuosic flourish at the beginning of this phrase? Within the first second we see 

five relatively large local maxima of amplitude that are approximately equally spaced in time, and 

it is possible to hear these as five fast notes. On the other hand, it is also possible to hear this entire 

first second as a single opening gesture, continuous functions of pitch, amplitude, and timbre that 

have musical meaning only in their entirety.  

The next section, from about time 1 to time 1.5, is an ornament leading to the first steady note of 

the excerpt. Again, this can be heard as discrete notes, but to my ear the beauty of this example 

lies in the exact shape of pitch as a function of time, especially its connectedness. 

2.3.3 Onset Detection 

The beginning of a musical event is called its onset, and onset detection is the task of automati-

cally finding onsets in an audio signal.  Applications of onset detection include tempo and meter 

tracking (Beek, Peper, and Daffertshofer 2000; Cemgil and Kappen 2002; Collins 2004a; Desain 

1989, 1992; Desain and Honing 1992b, 1999; Desain, Honing, and Rijk 1989; Dixon 2001; 

Jensen and Andersen 2003; Large and Jones 1999; Large and Kolen 1994; Large and Palmer 

2002; Nagai 1996; Nava 2004; Seifert, Rasch, and Rentzsch 2006; Seppänen 2001a, 2001b), 

analysis of expressive timing in recordings (Clayton 2000; Clayton, Sager, and Will 2004; Scheirer 

1995), compositional techniques for real-time sampling and rhythmic playback (Collins 2004a, 

2004b), temporal rearrangement of recorded music (Jehan 2004), transformation of rhythmic 

features of recorded music (Gouyon, Fabig, and Bonada 2003), adaptive sound effects processing, 
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computer accompaniment systems (Grubb and Dannenberg 1997, 1998), changing the relative 

volume of various drum sounds in a commercial stereo recording (Yoshii, Goto, and Okuno 

2005), sound segmentation (Collins 2005c; Smith 1994), time scaling30 (Duxbury, Davies, and 

Sandler 2003), spatial feature extraction (Supper, Brookes, and Rumsey 2006), “intelligent” user 

interfaces for working with audio (Chafe, Mont-Reynaud, and Rush 1982), audio compression 

(Samsudin et al. 2006), Music Information Retrieval (generally in the service of beat tracking), 

and automatic transcription (FitzGerald 2004; Hainsworth 2004; Klapuri 1997, 2004; Marolt, 

Kavcic, and Privosnik 2002; Moorer 1975; Schloss 1985).  

This subfield of signal processing has taken off greatly in recent years (Abdallah and Plumbley 

2003; Bello et al. 2005; Collins 2005b; Dixon 2006; Duxbury et al. 2004; Hainsworth and 

Macleod 2003). Most onset detection systems have the same basic architecture: optional 

preprocessing (often tuned to match human perception, for example, frequency-dependent 

amplitude scaling according to equal loudness contours), followed by a series of DSP operations 

that compute one or more detection functions such as energy or spectral centroid (see Section 5.1.1 

“Detection functions” on page 125) whose amplitudes are supposed to increase sharply near the 

time of event onsets, and finally a peak picking step that selects (and perhaps combines) instants 

from one or more detection functions, usually based on some kind of fixed or adaptive threshold 

(Bello et al. 2005, 1036). Most methods look for an increase of energy in one or more frequency 

bands or a redistribution of energy (for example, towards higher frequencies) (Alonso, David, and 

Richard 2004; Collins 2005a; Grubb and Dannenberg 1998; Jehan 2005; Klapuri 1999; Smith 

and Fraser 2004), though there are also methods based making sense of fundamental frequency 

envelopes (Collins 2005d) and on phase continuity (Bello et al. 2005; Bello et al. 2004; Bello and 

Sandler 2003; Dixon 2006; Duxbury et al. 2003a, 2003b; Duxbury, Sandler, and Davies 2002). 

Collins distinguishes two possible aims of automatic onset detection: either to match human 

perception of event onsets or to “reverse engineer” the input audio to determine “all distinct 

sound producing events” (Collins 2005b). Either way, the correct answers (i.e., the “true” onset 

times, usually called the ground truth31) inherently come with some uncertainty. Researchers 

                                                     

30 A commercially important special case of this segments looped drum patterns into individual drum notes, as 
performed by the programs Recycle! (from Propellerhead software in Stockholm: 
http://www.propellerheads.se/products/recycle) and Acid Pro (developed by Sonic Foundry and later sold to Sony: 
http://www.sonycreativesoftware.com/Products/product.asp?pid=383).  This enables transformations such as tempo 
change simply by changing the times at which each individual note is played, avoiding the difficulty and possible 
artifacts of other methods of time-scale modification. 
31 The phrase “ground truth” comes originally from analysis of aerial photographs and satellite imagery, in which 
conclusions drawn from such images are double-checked by information collected on site, in other words, on the 
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generally evaluate their onset detection algorithms with respect to ground truth created by 

painstaking manual annotation by expert listeners: a detected onset is usually considered correct 

when it is within 50 ms of an onset found by the human expert. (Leveau, Daudet, and Richard 

2004) discusses some issues of subjectivity and inter-subject variability. Even if we ignore the 

inherent subjectivity of human perception and consider only the timing of sound production, 

there is some arbitrariness in the selection of a single instant as the time that a note begins. Of 

course with a purely synthetic tone we can define the onset as the instant of the first nonzero 

sample generated by the synthesizer, but with natural sound the situation is less clear.  One factor 

is the presence of the noise floor: distinguishing random variations in background noise from true 

onsets requires some kind of method with inherent uncertainty.  Even if we could observe the 

exact mechanics of sound production there would still be uncertainty; consider the case of 

plucking a stringed instrument. Does each note begin when the plectrum first touches the string, 

or when the plectrum releases the string, or when the body of the instrument begins to radiate the 

energy caused by the pluck, or some other time?   

The way the onset detection problem is generally posed, the input is a continuous audio signal 

and the output is a sequence of discrete instants at which onsets were detected; this formulation 

fails to acknowledge the uncertainties inherent in the task of labeling event onsets. Many systems 

avoid the peak-picking step and instead directly use a continuous signal whose magnitude 

indicates the degree of “onsetness” at each moment of the signal, such as some combination of the 

detection functions mentioned above.  For example, many researchers have modeled metric 

structure directly from the raw audio, without first segmenting the input signal by onsets (Atlas 

2003; Atlas and Shamma 2003; Davies and Plumbley 2004; Eck 2001, 2002a, 2002b; Eck and 

Casagrande 2005; Large 2000; Scheirer 1998; Todd 1994). These are able to take advantage of a 

larger amount of data in forming a model of the sound’s temporal structure, but are not useful for 

segmentation or many of the other applications of onset detection. 

2.3.4 Perceptual Attack Time (PAT) 

A musical event’s Perceptual Attack Time (“PAT”) is its perceived moment of rhythmic placement. 

Note that this is a subjective, perceptual parameter. For highly percussive sounds, the perceptual 

attack time might be the same as, or just a few milliseconds after, the onset time, but for sounds 

                                                                                                                                                            

ground.  The term has made its way into the jargon of machine learning to refer more broadly to any data for which 
the correct “answers” are known. 
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with a slow attack, for example, bowed violin, the PAT might be dozens of milliseconds after the 

onset. Chapter 3 discusses PAT in much greater detail. 

 

 

Figure 8: Amplitude envelope of a hypothetical sound, displaying hypothetical physi-

cal and perceptual onsets and perceptual attack time.   

In contrast to perceptual attack time, an event’s physical onset is the actual acoustic beginning of the 

event, that is, the moment that the event’s amplitude first becomes greater than zero.32 The 

perceptual onset is the moment at which a listener can first hear that an event has begun (Vos and 

Rasch 1981). PAT will in general be after both of these forms of onset.  Figure 8 illustrates these 

three moments for a hypothetical sound event: time zero is defined as the time of the physical 

onset, the perceptual onset comes shortly later, the PAT is yet later, and the amplitude/energy 

maximum is even later. The transient at the beginning a sound event is the segment of time starting 

at the physical onset and lasting until the sound achieves some kind of steady state.33 

                                                     

32 For synthesized sound, it is easy to say when the amplitude first becomes nonzero. For recorded acoustic sound there 
is always a noise floor, and so there is always some ambiguity and/or subjectivity in choosing the instant that the event’s 
amplitude first rises above the noise floor. 
33 There may be other transients later in a sound event and especially at the end.  Here is another definition:  “As a 

preliminary informal definition, transients are short intervals during which the signal evolves quickly in some nontrivial 

or relatively unpredictable way” (Bello et al. 2005, 1036). 
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Note that all three of the terms “physical onset,” “perceptual onset,” and “perceptual attack time” 

have meaning only with respect to a discrete sound event. 34 Onset and attack times are not 

meaningful for musical sound that is not perceived in terms of discrete events. Furthermore, there 

are some discrete sound events with clear physical and perceptual onsets that nevertheless do not 

have perceptual attack times, for example, a sound that fades in very slowly and gradually (say, 

over two seconds) might be perceived as an event with a relatively clear perceptual onset, but 

there would likely not be any sense of rhythmic emphasis and hence no PAT. 

Perceptual Center or P-center35 is the corresponding concept to PAT in the relatively vast literature on 

speech, where the discrete event is a syllable (Harsin 1997; Howell 1988a, 1988b; Janker 1995, 

1996a; Marcus 1981; Morton, Marcus, and Frankish 1976; Patel, Lofqvist, and Naito 1999; 

Rapp-Holmgren 1971; Scott 1998; Soraghan et al. 2005; Villing, Ward, and Timoney 2007; 

Villing, Ward, and Timoney 2003; Vos, Mates, and Kruysbergen 1995). 

The issue of PAT or P-center first came up in the context of trying to synthesize a musical or 

spoken phrase by splicing together individually recorded notes or words.  Without taking PAT 

into account, one would naïvely assume that to produce a rhythmically even sequence one should 

evenly space the beginnings of each individual sound segment. Doing this will not produce a 

perceptually even sequence unless every segment’s PAT is at the same relative delay from its 

physical onset. As Chapter 5 will suggest, PAT has practical importance well beyond this 

particular issue. 

2.4 Pulsation and Microtiming 

Pulsation is a quasi-isochronous36 series of instants that are possible event attack times. Each pulse 

can be thought of as a container that holds either the PAT of an event or not, that is, only some of 

the pulses have notes. In the ideal (a.k.a. “metronomic”) case, the pulses are exactly isochronous, 

and each sound’s attack time coincides precisely with one of the pulses. In the real-world case of 

music performed expressively by human beings there are two complicating factors (Honing 2001; 

Iyer et al. 1997; Palmer 1997), known collectively as microtiming: 

                                                     

34 For ease of exposition I will use the term “sound” in this chapter to mean “discrete sound event,” as in Schloss’ and 
Collins’ definitions above.  
35 The spelling “centre” is also often used. 
36 “Isochronous,” literally, “equal timed,” means “exactly repeating at a fixed frequency.” Beware that in computer 
networking and hardware architecture “isochronous” means “a signal that encodes its own clock.” 
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1. The series of pulses is not exactly isochronous, but instead the frequency changes slowly as a 

function of time. These “tempo curves” (Desain and Honing 1992a; Honing 2001) have 

been studied and modeled extensively for modern day performance practice of European 

music of the Classical and Romantic periods (Todd 1995; Widmer and Goebl 2004); they’re 

generally correlated to the phrase structure that the performer wants to bring out.  Many 

researchers have also charted the variation of tempo in recordings of non-Western music 

(Bilmes 1993; Clayton 2000; Clayton, Sager, and Will 2004, 29; Schloss 1985; Tzanetakis et 

al. 2007, 14). 

2. Each event’s attack time does not exactly coincide with the time of one of the pulses, but 

instead may be early or late by tens of milliseconds. This “asynchrony” or “deviation” might 

form a regular repeating pattern as in Jazz “swing” (Collier and  2002; Dixon, Gouyon, and 

Widmer 2004; Friberg and Sundström 1997; Friberg and Sundström 1999, 2002; Gouyon, 

Fabig, and Bonada 2003; Lindsay and Nordquist 2006, 2007; Lindsay 2006; Waadeland 

2001, 2003) or Brazilian “swingee” (Lindsay and Nordquist 2006, 2007; Lindsay 2006; 

Wright and Berdahl 2006), “systematic variation” of note durations in, e.g., Viennese Waltz 

or Swedish folk tunes (Gabrielsson 1982), or Clynes’ controversial “composer’s pulse” 

(Clynes 1983) for historical Western composers.  In addition, each individual note might 

have its own deviation from the time of the pulse for reasons including accentuation, differ-

entiation from other instruments, etc. (Iyer 1998). Finally, human motor control is not 

completely precise, so in addition to all the above intentional factors there is also “motor 

noise” adding at least about 1 ms of random jitter to each note’s attack time even for the 

most skilled performers. 

Note that these two factors are not independent. For any given sequence of event attack times, 

one could construct a (possibly wildly varying) tempo curve that predicted all of the event times 

without any per-note asynchrony, or one could assume a perfectly flat tempo curve and explain 

all of the actual event times with per-note asynchrony, or any of infinitely many compromises 

between these two extremes.37 Bilmes (Bilmes 1993) handled this problem in the case of Afro-

Cuban Rumba music by looking at the spectra of the note timings and seeing an obvious low-

                                                     

37 Another factor that could explain an irregular sequence of event attack times is different ratio-of-integer-related ideal 
“note values” for each inter-attack-interval, e.g., the first note was supposed to be two beats, the second note 1.5 beats, 
the third note 1/3 of a beat, etc. In this case the problem of converting the observed non-ideal times to supposed ideal 
times is quantization (Desain and Honing 1992b; Desain, Honing, and Rijk 1989; Takeda, Nishimoto, and Sagayama 
2004). 
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frequency cluster (which he modeled as a tempo curve) and an obviously high-frequency cluster 

(which he modeled as per-note asynchrony). 

Nonlinear oscillators (Eck 2001, 2002a; Large 1996, 2000; Large and Jones 1999; Large and 

Palmer 2002; McAuley 1995) are an excellent model of production and perception of pulsation. A 

nonlinear oscillator has a time-varying phase and frequency (because it is an oscillator), as well as 

an internal source of energy that causes it to keep oscillating (thereby making it nonlinear). 

Nonlinear oscillators can synchronize their phases and/or frequencies to match an incoming signal, 

thereby entraining to an external pulsation (Pikovsky, Rosenblum, and Kurths 2001; Strogatz 

2003); this allows them to “hear the tempo” in a robust way, even in the face of microtiming. 

The competing explanation for humans’ production and perception of pulsation is the 

“Timekeeper” model (Beek, Peper, and Daffertshofer 2000; Palmer 1997; Wing and Kristofferson 

1973a, 1973b), which posits that some part of the brain functions like a ticking clock, outputting 

events separated by a fixed interval (plus timing noise) that then drive motor behavior. 

2.5 Learning 

Figure 9 depicts the main feedback loop in the process of learning to play music. This is what 

might be called the “forward model,” in which we assume that the musician starts with an idea of 

what sound to make (“Intention”).38 The brain translates these into nervous system messages that 

propagate to various muscles (“motor control”), causing them to contract in varying degrees as 

functions of time (“body”) so as to control a musical instrument (“instrument”).39 This then 

produces a sound (or not), to which the musician listens40 (“perception”). Some part of the brain 

then compares what the musician perceives to what was intended. The gap between intent and 

perception then drives the learning process, as the musician consciously and unconsciously 

adapts41 the mapping from intention to motor control. 

                                                     

38 A more complete model would take into account the very important exploratory aspects of discovering sounds that 
can be produced. There can be a sense of discovering the possibilities of an instrument in an acoustic space, rather than 
a predefined sonic goal to reproduce. Wherever the sources and dynamics of the musician’s intention, the rest of the 
feedback loop works as described here. 
39 Here the term “instrument” includes the human voice, clapping, etc. 
40 Depending on the instrument, the musician might also feel the effects of touching the instrument, see the instrument, 
or, in principle, smell or taste it. Visual and haptic feedback are optional, yet sometimes very important, aspects of 
musical instruments, and when present they are part of this feedback loop. I believe that predominantly a musician’s 
intention is an idea of what sound he or she wants to produce, though in many interesting cases music is organized (at 
least in performers’ minds) according to the body’s movement patterns on a particular instrument; see (Baily 1991). 
41 The musician’s body itself also adapts as a result of practice, e.g., guitarist’s calluses, wind players’ strong 
embouchures, etc. 
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Figure 9: The primary feedback loop in learning to play music.42 

I want to emphasize the role of Perceptual Attack Time in this process. It is an integral part of the 

“perception” link, and therefore part of the entire feedback loop. There are already tens or 

hundreds of milliseconds of lag time between when the brain issues motor control commands and 

when the body actually produces sound, due to the slowness of chemical message propagation in 

the nervous system, the body’s and instrument’s inertia, and other physical considerations. Our 

brains are very good at generating motor commands the appropriate amount of time before we 

want an action to take effect, and at fine-tuning these kinds of time relationships when learning 

various physical activities. 

Therefore a violinist, for example, has learned to time her motor behavior so that notes’ 

perceptual attack times follow the desired rhythm, not the notes’ physical onsets. The delay 

between a note’s onset and its PAT is just another lag that the brain learns to compensate for; that 

is why, for example, pipe organists can learn to play accurate rhythms even when there are 

hundreds or thousands of milliseconds of delay between pressing a key and hearing the 

corresponding note. 

Therefore any fine-grained empirical study of musicians’ timing must take PAT into account. 

Onset detection has great promise for computer-assisted analysis of musical recordings, but we 

also need computational models of PAT. 
                                                     

42 Thanks to Michelle Logan for drawing this figure. 
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2.6 Musical Meter 

Justin London’s masterful book (London 2004) is the best explanation of musical43 meter, and I 

can only crudely summarize it here. Meter involves pulsation no faster than about 100 ms (the 

psychological limit on perceiving very fast distinct events) and no slower than about 6 seconds (the 

duration of the “perceptual present” (Clarke 1999), a form of short-term “echoic” memory during 

which our minds are able to recall fairly exactly what we have just heard). Meter requires at least 

two levels of pulsation (also called metric levels) at different rates, with well-defined phase and 

frequency relationships among all levels; in other words a single stream of pulses is not in itself 

meter. The “main” or most salient metric level is the beat or tactus, and is usually defined as the 

metric level to which most listeners will tap their feet. 

London’s “many meters hypothesis” is that every possible hierarchical arrangement of metric 

levels is a distinct meter, so instead of the relatively small number of time signatures used in 

western notation (2/4, 3/4, 4/4, 6/8, etc), he considers there to be dozens of distinct meters: for 

example 4/4 with only eighth notes is one meter, but if one eighth note were replaced by a pair of 

sixteenth notes it would become a different meter.44 

Curt Sachs introduced the terms “divisive” and “additive” to describe meter (Sachs 1953). 45 

Divisive meter is what we usually see in Western music, in which longer metric units consist of an 

integer number of quasiequal shorter metric units.46 For example, in 4/4 meter a bar contains 4 

beats, each beat takes the time of two 8th notes, each 8th note takes the time of two 16th notes, etc. 

In additive47 meter, longer metric units consist of sequences of nonidentical shorter metric units, for 

                                                     

43 The concept of meter also applies to poetry and speech; the parallels between spoken meter and musical meter are 
numerous, interesting, and beyond the scope of this work. 
44 For readers not familiar with the logic of time signatures in Western notation, “4/4” simply means two metric levels, 
with the slower one at four times the period of the main one.  (In other words, every fourth beat is the beginning of a 
metric cycle.)  Terminology such as “quarter note” and “eighth note” come from a bias towards treating 4/4 as the 
standard meter, so that a “whole” note has a duration of four beats.  
45 London instead uses “isochronous” and “nonisochronous” respectively for these ideas; I prefer Sachs’ terms because 
of their familiarity to many musicians and because “isochronous” already has enough other meanings. Also, even in 
additive meters, there is usually a fast quasi-isochronous underlying pulse grouped into sequential units of twos and 
threes. The distinction is that in divisive meters all metric levels are quasi-isochronous, while in additive meters only 
some metric levels are quasi-isochronous. 
46 The “metrical well-formedness rules” of Lehrdahl’s and Jackendoff’s influential “Generative Theory of Tonal Music” 
(Lerdahl and Jackendoff 1983, 69-74) consider only divisive meters to be “well-formed.” 
47 People also refer to additive meter as “Balkan rhythms,” because these meters are used extensively in the dance music 
of Albania, Bulgaria, Greece, etc. Since this kind of meter is also used extensively outside of the Balkans (e.g., in North 
Africa, the Middle East, Iran, Afghanistan, India, etc.), I prefer to avoid that term. Another synonym I prefer to avoid is 
“odd time”: although many additive meters would be written in Western notation with a time signature with an odd 
numerator (e.g., 5/8, 7/8, 13/8…), other additive rhythms would be written as 10/8 (3+2+2+3 or 2+3+2+3 or…) or 
12/8 (2+2+3+2+3, etc.). Likewise, 9/8 (subdivided as 3+3+3) and 3/4 are time signatures with a odd numerators but 
are in fact divisive meters. 
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example, a seven-beat metric cycle might consist of a group of three beats followed by two groups 

of two beats each. 

A subdivision is a quasi-integer frequency relationship between metric levels.  In the divisive case 

this is known as binary or duple when the integer is 2 or 4, and ternary or triple when the integer is 3. 

In additive meter the units being added together are usually groups of either two or three of the 

next faster level of pulses. Part of the reason for this may be that a group of four naturally divides 

into 2+2, a group of five naturally divides into 2+3 or 3+2, etc. 

2.6.1 Downbeat 

The beginning of a metric cycle is the downbeat.48 Many theories of rhythm say that the downbeat 

is a “strong” beat and that it (that is, any event placed on it) should always be emphasized. 

Although this is true for some (particularly Western European) styles of music, it is certainly not 

true in general. Although the misconception that a downbeat must necessarily be stressed was 

debunked over 30 years ago (Kolinski 1973) it still manages to persist; in particular, almost every 

computational model of meter estimation is based on this assumption (or at least on the 

assumption that they will tend to be stressed), for example, (Alonso, David, and Richard 2004, 

Dixon, 2001 #134, Eck, 2002 #2; Eck 2001, Goto, 1999 #143, Jensen, 2003 #130; Jensen and 

Andersen 2003, Scheirer, 1998 #96; Lee 1985). Chernoff points out that for many if not most 

African musical cultures, musicians will tend not to articulate the downbeat (Chernoff 1979, 47-9). 

He also notes that musical phrases in Africa will tend not to start on the downbeat, but to resolve to 

the downbeat on the final note; this relates to the Indian (Clayton 2000) and Afghan (Baily 1988) 

tihai/seh practice of resolving rhythmic complexity by completing a pattern with the last note on a 

downbeat.) 

Arom reports that “Central African music… uses neither the notion of ‘measure’ nor the strong 

beat involved in this notion” (Arom 1989, 92). Although this music is certainly based on repeating 

rhythmic figures and at least one level of pulsation, the claim is that there is no “zero phase” point 

means that this music is actually not metric according to London’s definition. 

                                                     

48 The etymology of the “down” part of “downbeat” comes from the motion of the conductor’s baton in the Western 
orchestral setting (Rushton); likewise an upbeat is the beat just before the downbeat.  This correspondence between 
direction of hand motion and metric position comes from the 15th and 16th century notion of a tactus (what I call a 
“beat”) which “comprised two hand motions, a downbeat and an upbeat (positio and elevatio, or thesis and arsis)” (Brown 
and Bockmaier).  Beware that some people use “downbeat” to mean what I call “beat,” in other words, any primary 
pulse, not necessarily the beginning of a metric cycle, for example, (Eck 2002a). 
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2.6.2 Syncopation 

Syncopation (also known as “offbeat”) is a phenomenal accent or the existence of a sound event at 

all in a metrically weak position as compared to the nearby metrically strong position (in other 

words, lying between the pulses of a higher metric level). Syncopation operates by defying the 

expectation that every beat will be articulated by a sound event.  Without a sense of beat there 

can be no syncopation.  Syncopation against additive meters brings its own challenge, because the 

pattern of metrically accented time points is itself irregular.  Syncopation is considered a special 

challenge for beat tracking (Desain and Honing 1994), and many beat trackers and quantizers 

work by searching for the least syncopated metric interpretation of the input.  

This raises a question: if a given rhythm can be interpreted as being less syncopated by shifting 

the sense of the downbeat to a different phase point in the main metric cycle, why not shift phase 

in this way?  What determines the downbeat in these cases?  Sometimes the music starts with less 

syncopation, establishes the metric framework, and then listeners retain that sense of meter as the 

syncopation increases. Sometimes there might be conflicting metric clues such as harmonic 

changes or simpler parts played by other instruments that continue to establish the “correct” 

metric interpretation. In other examples the answer is determined purely by standards specific to 

each musical culture.  A famous example is “the” African 12/8 bell pattern, known by many 

other names including “the standard pattern” (Agawu 2006; Anku 2000; Chernoff 1979; Iyer 

1998; Pressing 1983; Temperley 2000; Toussaint 2003).49  This pattern is very syncopated and 

open to multiple plausible rhythmic interpretations.50  To those not familiar with these musics it 

may still be easy to hear that the pattern repeats every 12 pulses, but there is no way to choose 

one of those pulses as the downbeat or to decide whether the beat comes every 2, 3, 4, or 6 pulses. 

Yet not only does this bell part fit unambiguously within a metric framework, it actually defines the 

metric framework, providing a reference point against which other instruments might syncopate 

even further. Cuban music uses syncopated clave parts in the same way (Toussaint 2002; 

Tzanetakis et al. 2007).  In Western culture the closest equivalent is the backbeat of rock and funk 

music, played (usually by a snare drum) on beats 2 and 4 of a 4-beat metric cycle. Sometimes 

there may be a great deal of syncopation, yet the sense of meter is retained not by events on the 

downbeat but by these backbeats. 

                                                     

49 This pattern could be notated as x-x-xx-x-x-x, which reveals the downbeat, or as x-x  -xx  -x-  x-x, which reveals both 
the downbeat and the “correct” way of grouping into four groups of three.  This pattern is also used extensively in Afro-
Cuban and Afro-Brazilian musics. 
50 In fact, some have suggested that this ambiguity is a source of musical opportunity, and might explain the popularity 
of this particular bell pattern (Toussaint 2005). 
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2.7 Accents 

An accent is “A stimulus (in a series of stimuli) which is marked for[/by] consciousness in some 

way” (Cooper and Meyer 1960; London 2004).51 Lehrdahl & Jackendoff’s (Lerdahl and 

Jackendoff 1983, 17) taxonomy consists of phenomenal accents (“points of local intensification 

caused by physical properties of the stimulus such as changes in intensity, simultaneous note 

density, register, timbre, or duration”),  structural accents (“points of arrival or departure in the 

music that are the consequence of structural properties such as tonality-the cadence being the 

most obvious example”), and metrical accents (“time points in music that are perceived as accented 

by virtue of their position within a metrical scheme” (Clarke 1999, 482)). 

As mentioned in the previous section, an event on a downbeat (which by definition is metrically 

accented) is not necessarily phenomenally accented.52 What then is the epistemology of the 

downbeat? I’d say that although there are plenty of cases where the downbeat is in fact marked by 

some kind of phenomenal accent53, or the downbeat is established by phenomenal accents and 

then continues to be felt as a downbeat even when it is not phenomenally accented, the 

perception of downbeat and of metric accent in general can be completely subjective and is 

culturally learned. For example, in the highly syncopated Maracatu de Baque Virado (“Maracatu of 

the Turned-around Beat”) drumming from the Northeast of Brazil the downbeat is often 

indicated very clearly to properly enculturated listeners by a bell part that plays not on the 

downbeat but one sixteenth note after the downbeat (Crook 2005, 164).54  

This circularity in explanation of the downbeat (“it’s (metrically) accented because I hear it as the 

downbeat / I hear it as the downbeat even though it’s not otherwise accented”) has a parallel in 

the phenomenon of “subjective rhythmicization,”55 in which listeners presented with a perfectly 

isochronous sequence of perfectly identical sounds (for example, the ticking of a clock or the 

dripping of a faucet…) imagine an alternating sequence of accented and unaccented sounds. I 

believe this shows an innate human propensity to organize perceived sound metrically, even when 

there is no objective basis to do so. 

                                                     

51 Composers and performers mark events “for” consciousness, as Cooper and Meyer say, but for listeners the events 
are marked “by” consciousness, as London amends their definition. 
52 In fact there may be no note at all on the downbeat, the extreme case of lack of phenomenal accent. 
53 Indeed, the success of computational downbeat-finding models built on this assumption indicates that case is 
common in the musical examples used to test these systems. 
54 This bell part also has notes on the second beat and on the 8th note after the second beat; it might be notated as “.x.. 
x.x.” using “x” for a note and “.” for a rest. 
55 Better terms for this include “subjective metricization” and “subjective accentuation.” 
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2.8 Phrasing 

Phrasing is the perceived connection among discrete events that occur nearby in time, usually 

together within the perceptual present.56   One question is how our minds group perceived events 

into phrases.  Lerdahl’s and Jackendoff’s Generative Theory of Tonal Music includes many rules for 

grouping musical notes together into phrases (Lerdahl and Jackendoff 1983). Bregman has 

another set of rules for grouping events into auditory streams (Bregman 1990). Todd’s 

“rhythmogram” (Todd 1994) is a graphical representation of musical material that brings out 

grouping structure. Rothstein’s “tonal phrases” require harmonic motion by definition (Rothstein 

1989).  

Saying which groups of events “group” together is only part of the story about phrasing; there are 

also musical parameters that vary over certain shapes across entire phrases.  For example, most 

attempts at computer-generated stylistically correct renditions of piano music vary the tempo 

systematically over the course of each musical phrase (Friberg 1995; Sundberg, Askenfelt, and 

Frydén 1983; Sundberg, Friberg, and Bresin 2003; Widmer 2002; Widmer and Goebl 2004). 

Bilmes’ system for machine learning of microtiming in the Afro-Cuban rumba genre used a 

sophisticated form of lookup based on the assumption that similar phrases will have similar 

microtiming (Bilmes 1993). 

2.9 Prediction 

Finally, I want to emphasize the role of prediction by listeners (and performers) in musical 

rhythm. Our brains do not just wait passively for information to trickle up through the auditory 

nerve and form events, phrases, meter, and other structure; they actively predict what we will 

hear through top-down models as well as these bottom-up processes (Slaney 1997).  Hawkins goes 

so far as to define intelligence completely in terms of prediction (Hawkins and Blakeslee 2004). 

There are just as many nerves running from our brains back to our ears as in the other direction, 

and our cochleas are not just passive encoders of incoming sound, but nonlinear active systems 

with feedback, giving us increased frequency and amplitude resolution perhaps by fine-tuning the 

mechanics to focus on what we expect to hear (Zwicker and Fastl 1999). 

David Huron has proposed a wide-reaching model of expectation that illuminates many aspects 

of music (Huron 2006).  Mari Reiss Jones suggested that the ability to pay attention to incoming 

                                                     

56 A “phrase” is also a grammatical unit, and musical phrases are related to spoken phrases, for example, the prosody 
that organizes the words of a spoken sentence to clarify the meaning uses the musical parameters of pitch and timing. 



 30 

sound is a limited quantity, and proposed a nonlinear oscillator model that uses meter to predict 

when new events will occur so as to best utilize these attentional resources (Large and Jones 1999). 

Even the simple delay lines in Scheirer’s beat tracker can be interpreted as a form of prediction of 

what sound will come in the future (Scheirer 1998, 593).  

Finally, Snyder and Large were able to measure metric prediction in the brain’s gamma-band 

activity via an EEG.  Subjects heard an isochronous sequence of synthetic stimuli with some of 

the events randomly omitted.  While evoked gamma band activity depended on whether or not the 

subject had heard an event, induced gamma band activity began before the expected time of the 

event and increased up to that time, even in cases where no event actually sounded. 



 31 

Chapter 3 On Perceptual Attack Time  

3.1 Definition of Perceptual Attack Time 

A musical event’s Perceptual Attack Time (“PAT”) is its perceived moment of rhythmic placement. 

Here are some other definitions: 

• “The time [a] sound is perceived as a rhythmic event” (Schloss 1985, 23) 

• “The perceptual attack time (PAT) is the compensation for differing attack components of 

sounds, in the case of seeking a perceptually isochronous presentation of sounds” (Collins 

2006, 923). 

• “The time a tone's moment of attack or most salient metrical feature… or rhythmic emphasis 

is perceived” (Gordon 1987, 88). 

Figure 8 (page 20) illustrates a hypothetical sound event’s physical onset, perceptual onset, PAT, 

and overall amplitude envelope; in general perceptual onset will be at or after the physical onset, 

and PAT will be at or after the perceptual onset. 

The corresponding term in the speech literature is “Perceptual Center” or “P-Center.”  Even 

when Morton first introduced this term (Morton, Marcus, and Frankish 1976) he suggested that it 

also applied specifically to music and to dance, but in the musical literature we have instead been 

using the synonym “perceptual attack time” (Collins 2006; Gordon 1987). 

3.1.1 Example: Short bowed violin 

Figure 10 shows the waveform of a short musical note played by bowed violin.57  We can see that 

the amplitude increases gradually over about the first 100 ms of the sound.  Time zero is the 

physical onset.   

                                                     

57 Specifically, this is the “Violin” sound described on page 73. 
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Figure 10: Time-domain waveform of a short synthesized bowed violin note. 

According to my personal subjective experience, the PAT of this note is about 34 milliseconds 

after its physical onset. I chose the number 34 by aligning this sound in time with a percussive 

sound with a very sharp attack.58  The following sound examples illustrate this alignment process:  

• Sound Example Violin: This violin note alone. 

• Sound Example Violin+stick_together: This violin note mixed with the percussive sound, with 

the two starting at exactly the same time.  In this example, it sounds to me like the percussive 

sound comes first and the violin comes after. If the percussive sound were a metronome tick 

that the violinist was trying to play along with, I’d say that the violinist was late. 

• Sound Example Violin_first_then_stick: The same mix of the violin with the percussive sound, 

but with the violin starting first and the percussive sound starting 34 milliseconds later. This 

example sounds rhythmically together to me. 

The point is that making two sounds be physically synchronous does not necessarily make them 

sound perceptually synchronous. 

                                                     

58 For purposes of illustration I’m assuming that the short percussive sound’s PAT is equal to its physical onset. In fact 
all I have determined by aligning the two sounds is that the PAT of the violin sound occurs 34+x milliseconds after its 
onset, where x is the time that the PAT of the percussive sound occurs after its onset. I will take up this issue in detail 
below. 
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3.2 Relativity: What is the “zero” point of PAT? 

As the X axis in Figure 8 is “time since physical onset,” we see that the PAT occurs 32 ms after 

the note’s physical onset.  “In practice, a sound’s PAT is useful only in how it relates to that 

sound’s time of physical onset or some other sound’s PAT.  We can thus define relative perceptual 

attack time (RPAT) as the temporal interval between physical onset and PAT” (Gordon 1987, 

88). 

PAT is defined only for sound events. Each sound event has a physical onset time tonset such that its 

amplitude a(t) = 0 for all t < tonset. Note that for any tearlier < tonset it will also be the case that a(t) = 0 

for all t < tearlier. In practice, it is often convenient to define “time zero” as some tearlier that precedes 

the true physical onset of the event in question, e.g., when we extract an event from a sound 

recording, there will be some splice point at which we choose to begin the excerpt.59  

It also makes sense to talk about the PAT of individual events in the context of a longer recording, 

in which case “time zero” might be the beginning of the entire recording, or to talk about the 

PAT of events happening live in real-time, in which case actual time-of-day  (e.g., “8:33:07.234 

pm PST, Sunday August 12, 2007”) makes sense. 

3.3 Methods of Measuring Perceptual Attack Time 

Perceptual attack time is in many ways inherently relative. In terms of PAT’s meaning to meter 

and rhythm, what matters is the spacing among the PATs of the multiple events that make up the 

rhythm; an isolated single event could reasonably be said to have “no rhythm.” 

Soraghan et al. measured PAT directly from subject’s brains via auditory evoked potentials 

(Soraghan et al. 2005). After averaging measurements from 1500 trials per sound60 they fit a 15th 

degree polynomial to the result and then took the global minimum.  The time difference between 

these minima had a strong and significant correlation (r=0.9, p<0.001) to relative PAT as 

measured with the isochrony method (described below), with an average difference of about 35 

ms for spoken digits and of only about 7.2 ms for 1 kHZ sinusoids under various amplitude 

envelopes. 

All other known methods for measuring PAT work by measuring the subjective temporal 

relationship between the sound and something else, either a second sound or a physical action 

                                                     

59 Even if this is the moment the recorder was turned on. 
60 Subjects had no task but to listen to each sound over and over again. With about 400 ms per sound plus a wait/rest 
period, each trial took 1.5 seconds, so it took about 38 minutes of listening to find the PAT of each sound. 
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(usually tapping) performed by the subject. There is always some kind of repeating loop so that 

the subject can predict when the sound will next occur. When there are two sounds, they are the 

test sound, whose PAT is being measured, and the reference sound; in these kinds of experiments the 

subject adjusts the relative timing of the two sounds until the desired perceived temporal 

relationship is achieved.  

Isochrony:
  

 

Synchrony:

  

Figure 11: Schematic illustration of the “isochrony” and "synchrony" methods for 

measuring PAT.  

In both cases the subject hears a fixed repeating reference sound (shown as a circle) 

and a moveable repeating test sound (shown as a square), and adjusts the physical 

onset time of the test sound relative to the reference sound. In the isochrony method 

(above) the subject’s goal is a perceptually even alternation of the two sounds; the 

subject adjusts the timing until the two sound like they are rhythmically alternating. 

In the synchrony method (below) the subject’s goal is for the two sounds to be percep-

tually synchronous; the subject adjusts the timing until the two sound like they are 

playing “together.”  

There are two such temporal relationships known in the PAT and P-Centre literature, illustrated 

in Figure 11. Isochrony is a perceptually evenly spaced alternation between the two sounds or 

between the sound and the action. Synchrony is a perceptual rhythmic togetherness between the 

two sounds or between the sound and the action. (This distinction is also known as alternating 

versus simultaneous presentation of the two sounds (Collins 2006).)  

 Synchrony Isochrony 
Tapping Subject taps at the time of the test sound’s 

PAT. 
Subject taps exactly between PATs of 
consecutive test sounds. 

Reference 
sound 

Subject adjusts the relative onset time of 
the test sound so that the two sounds give 
the impression of attacking together. 

Subject adjusts the relative onset time of the 
test sound so that the two sounds give the 
impression of alternating in an even rhythm. 

Table 2: The four known methods of measuring PAT 
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3.3.1 Choosing a Method for Measuring PAT 

Every method for measuring PAT is problematic in some way. 

The physical act of tapping seems to come with a large amount of temporal variance (Janker 

1996b) including the motor noise discussed on page 8. Subjects also tend to tap early 

(Aschersleben 2002; Dunlap 1910; Vos, Mates, and Kruysbergen 1995) by varying amounts in 

the range of about 20-80 ms, which must be measured and accounted for.61 Also, for technical 

reasons it requires a controlled hardware setup to control latency and jitter in the measurement of 

subjects’ taps; for example, using a computer’s QWERTY keyboard to register subjects’ taps can 

mean tens of milliseconds of both latency and jitter depending on operating system and a large 

number of software configuration options (Wright, Cassidy, and Zbyszynski 2004).  

With tapping there is also the question of what exactly it is that the subject times to line up with 

the sound (Vos, Mates, and Kruysbergen 1995).  Some subjects may tap so that the kinesthetic 

feedback from their finger back to their brain arrives at the moment of the sound’s PAT; this is 

one explantion for why subjects consistently tap early in these kinds of tasks.  On the other hand, 

if tapping generates a sound, either acoustically from the physical act of tapping, or from a 

reference sound triggered in response to each tap, then the subject is likely to align the tapping 

sound with the test sound (in isochrony or synchrony depending on the task). Once the subject 

gets used to the PAT of the sound, he or she will learn to compensate for it as shown in Figure 9 

(page 24), at which point this method has the same problems as other methods of specifying the 

relative timing of test and reference sounds, plus issues of motor noise. 

Let’s consider methods based on reference sounds. “There is no one signal for which the absolute 

P-centre is known.  Thus, any direct measure of the P-centre location… is impossible, since no 

signals could be used as the baseline against which the other signals would be compared” (Scott 

1998, 6).  This requires making various assumptions and approximations to estimate the sounds’ 

PATs, as described in Section 3.5 (page 49). 

In choosing between the two methods based on reference sounds, “there are problems unique to 

each measurement method, and choosing one method over the other is somewhat arbitrary, but 

PAT is presumably the same regardless of the method used” (Gordon 1987, 90). Collins, however, 

found differences on the order of 20 ms in two small experiments comparing the two methods to 

measure the PAT of the same set of sounds: “a subject achieved a correlation score of 0.534 

                                                     

61 By assuming that each subject’s mean tap anticipation time remains constant throughout an experiment it’s possible 
to calibrate for it and subtract it out, but there’s no guarantee that it will actually be constant. 
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between alternating and simultaneous presentation modes for the [first] 25 [sounds], with 

absolute difference statistics showing an average discrepancy per sound on the order of 20msec, 

certainly noticeable as a timing change (mean 0.01908, standard deviation 0.01197, max 0.05625, 

min 0). In a between subjects test, two further subjects showed a correlation of 0.379 and stats of 

(mean 0.02742, standard deviation 0.0270, max 0.10425, min 0) between their responses on the 

second group of 25 recorded sounds” (Collins 2006, 925). 

One difficulty with the isochrony method is the tradeoff in choosing the period of repetition of the 

reference sound: “There are interactions between the need to avoid fusion and masking 

phenomena through sound overlap, and the need to keep the separation between reference and 

test sound onset small to improve temporal acuity of subjects in judging isochrony (following 

Weber's law)” (Collins 2006, 924). In the case of measuring PAT for spoken syllables (i.e., P-

center) with the isochrony method, Marcus notes the existence of “an order effect bias, resulting 

from a tendency to rotate the knob further clockwise or anticlockwise than the desired position” 

(Marcus 1981, 248).  Friberg and Sundberg found a just-noticeable-difference of “about 10 ms for 

tones shorter than about 240 ms duration and about 5% of the duration for longer tones” in an 

experiment using the isochrony method (Friberg and Sundberg 1993). 

The experiment described in Chapter 4 uses the synchrony method with a variety of reference 

sounds.  One problem with this method is masking: when the two sounds are played together the 

louder one might cover the quieter one, making it impossible to hear whether the PAT of the 

quieter one is in fact at the same time as the PAT of the louder one. I addressed this by giving 

subjects complete control over the relative volume of the two sounds (as described on page 78), 

which in turn brings up the potential problem of inconsistency in the stimuli subjects heard: if 

PAT depends on volume then this is an uncontrolled variable. 

A second issue with the synchrony method with pairs of sounds is the tendency for two sounds to 

fuse perceptually into a single event.  At first glance this might not seem to be a problem: if the 

two sounds are perceptually synchronized so closely that they sound like a single event, then it 

would seem that the subject has aligned the PATs successfully. In general this is true, but Section 

4.4.2 (page 118) discusses the fact that many subjects ended up placing a very percussive click 

before the physical onset of a sound with a slower attack, possibly because the resulting composite 

sound has a percussive attack followed by a sustaining portion, like many natural musical sounds. 
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Finally, using the synchrony method to align a sound against an exact copy of itself produces comb 

filtering62 that often leads to audible spectral differences among the delay times close to zero, even 

when there is no perceivable rhythmic difference.  If subjects attend to this spectral difference 

rather than to the rhythmic togetherness of the two copies of the sound, then this could bias the 

results. 

The main reason I chose the synchrony method is that it can measure the PAT of sounds in a 

musical context (for example, a continuous loop of metric music), not just isolated individual notes 

cut out of sound recordings or synthesized. The isochrony method requires the sounds being 

measured to be discrete individual sonic events.  

3.4 Representing Perceptual Attack Time with Probability 

Density Functions 

A musical event’s Perceptual Attack Time probability density function (“PAT-pdf”) is a statistical 

probability distribution that gives the likelihood of a listener hearing the event’s PAT as a function 

of time. 

3.4.1 Prior Work in Probability Density Function Representations for 

Music 

Desain proposed a causal model of rhythm perception in which the rhythmic structure of events 

that have already occurred generate an expectancy function giving the model’s prediction of the 

probability of an event as a continuous function of time (Desain 1992).  

Grubb and Dannenberg developed a computer accompaniment system that represented the 

position in the score of a vocalist with a probability density function they termed “score position 

density.” The input to the score follower is current pitch estimate, spectral envelope, and estimate 

of whether a note onset just occurred, all of which are noisy and might have errors.  They did not 

represent these factors with probabilities, but instead trained their system to produce prior 

distributions for, e.g., the histogram of likely pitch tracker outputs conditioned on each pitch class 

in the score.  On each iteration the system updates its probabilistic estimate of the score position 

given the new observations plus its estimate of the current score position and tempo (Grubb and 

Dannenberg 1997, 1998). 

                                                     

62 http://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filter_Amplitude.html 
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Researchers usually evaluate the output of onset detectors by comparing it to ground truth onset 

times labeled by hand by an expert listener (Leveau, Daudet, and Richard 2004). Of course these 

results are almost never exactly the same to the level of a digital audio sample, or even one 

millisecond; it’s typical to consider a detected onset correct if it is within 50 ms of a “true” onset. 

This method is equivalent to treating the output of the onset detector as the mean of a uniform 

probability distribution (in other words, a rectangular pdf).   

As described in Section 2.3.3 (page 17), many systems estimate metric structure from continuous 

detection functions rather than the discrete peak-picked instants of an onset detector; this could 

also be interpreted as a stochastic model, with the detection function representing the probability 

of an onset at each time. 

Frieler (Frieler 2004) proposed a beat and meter estimator that starts with a list of discrete instants 

representing (unquantized) onset times for a musical excerpt. He then gets from this discrete 

representation to a continuous function with “Gaussification,” placing a Gaussian centered on 

each input point and then adding the results together.  He did not, however, give a probabilistic 

interpretation of the resulting functions. 

3.4.2 Motivation for Representing PAT with PDFs  

The “perceptual” in “perceptual attack time” means that we can only measure it by recording the 

subjective impressions of human listeners.63 Regardless of the measurement method (described in 

Section 3.3), multiple listeners will not agree on the exact instant of a sound’s PAT. In fact, even 

the same listener will choose a slightly different instant for the same sound’s PAT on each of 

multiple trials.64  

John Gordon’s early investigations of perceptual attack time for musical tones (Gordon 1987) 

found that different subjects would disagree on the exact PAT of synthetic musical notes, and that 

each individual subject would respond somewhat inconsistently from trial to trial. He addressed 

this issue by smoothing (with “a low-pass, zero-phase filter”) the cumulative response distributions 

across all subjects and trials, differentiating (“approximated by a simple first-order difference 

equation”), plotting, and then interpreting these plots as probability density distributions (Gordon 

1987, 94). He found that the shapes of these distributions varied according to certain musical 

                                                     

63 In other words, PAT is a subjective measure, so we need subjects to measure it. 
64 Since time is continuous, if subjects have arbitrary control over timing then the probability of getting to the exact 
same relative alignment between sounds is zero. So we have to consider time intervals. In practice, we know there are 
perceptual limits on temporal acuity; see (Eggermont 2001; Gordon 1984; Ivry 2004; Krumbholz et al. 2003).  So if we 
look at the histogram of results on the same task; obviously they won’t all be sample-accurately the same.) 
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characteristics of the tones he tested: some are bimodal, some have a “plateau”, many appear 

approximately Gaussian, some are tall and skinny, etc.  For example, “the curve for the flute 

exhibits a ‘plateau,’ which suggests that the flute's [PAT] may be better represented by a range of 

values instead of just a single [moment]. There is good reason for this plateau, which is related to 

the spectrum of the particular flute tone used in the experiment. The fundamental appears several 

milliseconds after all the other harmonics, resulting in a strong chiff effect. Evidently, some 

subjects placed more emphasis on the rise of the fundamental in determining the perceptual 

attack of this tone, while others placed more emphasis on the onset of the second and higher 

harmonics (or with the rise of the overall amplitude envelope). In other words, we can infer that 

there is a lack of agreement as to when the perceptual moment of attack occurs for the flute tone” 

(Gordon 1987, 94). I have reproduced one of Gordon’s figures (with permission) as Figure 12. 
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Figure 12: Probability distributions for the results of six measurements of PAT using the synchrony 

method, reproduced from Figure 7 of (Gordon 1987, 96) with the author’s permission.  

On the left, from top to bottom, are Clarinet, Trumpet, and Violin, against the Clarinet as a 

reference. On the right, from top to bottom, are Saxophone, Bass Clarinet, and English Horn, 

against the Bassoon as a reference. All of these sounds are Grey’s synthetic orchestral tones as 

described on page 73. The zero point of the X axis represents the situation in which the two tones’ 
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physical onsets are synchronous. “Vertical lines marking the mean response are shown for each 

instrument. In addition, other vertical lines mark certain modes.”  

However, after much discussion of the shapes of these distributions Gordon then turns to the task 

of modeling PAT from acoustic features of the signal, for which purpose he chooses a single 

instant as the most representative PAT for each tone.65 Each of his PAT models therefore outputs 

a single time instant as the predicted PAT for any given input sound. 

Collins also conducted experiments to measure PAT on a collection of sounds. In his first 

experiment, 14 subjects each indicated the PAT of 25 synthetic tones twice each. “Ground truth 

was created for the 25 sine sounds by averaging relative PATs from those experimental subjects 

judged most consistent in their responses. There were six subjects where correlation scores 

between the first and second repetition were greater than 0.5 and mean absolute difference was 

less than 20 milliseconds with standard deviation also under 20 milliseconds” (Collins 2006, 926). 

Again, for modeling purposes the details of the shapes of the distributions of measured PATs were 

thrown away so as to represent each sound’s ground truth PAT as a single instant.   In Collins’ 

second experiment, there were 100 sounds including a variety of recorded and synthetic 

examples. “Given the variability of subject data in the general experiment, and some subjectivity 

perhaps inherent in the task, it was found most consistent for modeling purposes to use ground 

truth provided by the author” (Collins 2006). 

In the P-center literature researchers generally take the mean result from multiple trials (usually 

pooled across subjects) as the single instant of P-center (Harsin 1997; Janker 1995, 1996a; Patel, 

Lofqvist, and Naito 1999; Pompino-Marschall 1988; Scott 1998). Although they sometimes report 

the standard deviation of their observations, I know of no attempt to model the shapes of the 

resulting distributions. Marcus proposed a method for combining all results from a full-factorial 

experiment comparing all possible pairs of sounds to estimate the relative P-center of each 

individual sound as a single instant (Marcus 1981) (see Section 3.5.4.2 on page 53). 

In short, all prior work on measurement and/or modeling considers PAT or p-centre to be a 

single moment. Gordon’s research demonstrates that this model is inadequate, that even for very 

simple synthesized tones with definite attacks, with no polyphonic context, the histogram of 

subjects’ PAT judgments will take on characteristic shapes for each tone. I believe that the 

                                                     

65 Gordon made this selection somewhat by hand, taking into account each tone’s mean PAT across trials and subjects 
and reference tones and normalizing to remove the per-reference-tone bias. “Since there were modal values in some of 
the response distributions that differed from the respective mean... values, a [PAT] value... for each instrument was 
chosen based on all of the mean and modal... values obtained empirically” (Gordon 1987, 100). 
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widespread urge to summarize these shapes with single time value is harmful, discarding 

information that could be useful in later processing steps.  Therefore I consider a sound’s PAT to 

be a probability density function rather than an exact single instant. Not only do I observe 

probability distributions in subjects’ measurements of PAT, but I also consider the ground truth to 

be in the form of these distributions and hence pose the modeling problem (Chapter 5) in terms of 

estimating these kinds of distributions. 

3.4.3 An Event’s Intrinsic PAT-pdf 

 

Figure 13: Probability density function of PAT for the same hypothetical sound as 

Figure 8. 

The vertical line in the lower plot marks the moment at 32ms that Figure 8 called 

“the” PAT.  The upper plot shows a hypothetical probability distribution function for 

the PAT for this example; it is a Gaussian with mean 32 ms and standard deviation 5 

ms. 

What we have been discussing so far might be called the intrinsic PAT of each event, in the sense 

that it’s a property purely of the sound itself, divorced from all context with any other sounds. To 

my knowledge every existing model of PAT or P-center is based on the assumption that each 

sound actually has an intrinsic PAT.  “The p-centre is context independent (e.g., doesn’t depend 
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on neighbouring sounds in a sequence)… All the models being reviewed make [this assumption]” 

(Villing, Ward, and Timoney 2007).  Collins puts it like this: “A practical assumption of this work 

is that if any algorithm is established for PAT determination of isolated events, this PAT will 

remain valid even in playback situations with multiple streams” (Collins 2006, 924). 

The notation IA will mean “the intrinsic PAT-pdf of sound event A.” I will also sometimes use 

mean(A) or 
 
µ

A
as a shorthand for mean(IA) and var(A) or 

  
!

A

2 as a shorthand for var(IA).  

3.4.4 Statistical Interpretation of PAT Measurement Results 

If we66 believe that each sound event has an intrinsic PAT-pdf, then whenever we measure a 

sound’s PAT in terms of a reference sound, we must consider that the reference sound has its own 

intrinsic PAT-pdf.  The simplest method for dealing with this is to assume that the reference 

sound has a definite and unambiguous PAT (i.e., an infinitely narrow pdf with zero variance).  By 

arbitrarily defining the reference sound’s PAT to be equal to the time of its physical onset, the 

zero point of all measurements then shifts by a constant equal to the true PAT of the reference 

sound. Although this is not absolutely correct, it is “relatively correct” in the sense that it measures 

each sound’s PAT relative to a common reference; this suffices for practical scheduling 

applications67 or for a comparative study of different sounds’ PAT.  However, in some situations it 

is necessary to know the absolute PAT of various sounds, for example, when trying to make use of 

PAT data measured against different reference sounds.  Also, any method for predictive modeling 

of PAT (see Chapter 5) must take as its input properties of the event’s time-domain audio signal, 

which are anchored to the absolute time axis. 

If we treat the reference sound’s PAT as a PAT-pdf, the situation becomes more complicated.  

Let R be a random variable representing the time a listener will perceive the PAT of the reference 

sound on any given trial, and let T be the corresponding random variable for the test sound.  

These are each relative to the physical onset of the respective sound.  We assume that each 

sample of R and T comes from the intrinsic PAT-pdfs for the reference and test sounds 

(respectively), which are what we want to estimate.  The perceived amount of time that the attack 

of the reference sound comes before that of the test sound when their physical onsets are 

                                                     

66 I will switch to the first person plural throughout “our” statistical treatment of the theory both because it’s more 
formal and as a sort of acknowledgement of my gratitude to the many people who have collectively helped me begin to 
understand statistics. 
67 As long as every sound is scheduled according to PATs measured against the same reference then the result will have 
the proper rhythm; the actual PAT of the reference sound corresponds to a uniform time-shift of the entire sequence.  
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synchronous is another random variable 
  
D

T ,R
=T ! R .68 (If DT,R is negative it means that when 

physical onsets are synchronous it sounds like the reference sound comes after the test sound.) 69 

The only way to measure DT,R directly is to ask subjects to estimate the amount of time between 

when they hear the two PATs, which would certainly not be very accurate. 

 

Figure 14: Illustration of what we can actually measure experimentally: the difference 

between the PATs of the test and reference sounds. 

(This hypothetical example represents each sound with a made-up amplitude enve-

lope.) The two sounds’ physical onsets are synchronous.  For this trial, the PAT of the 

test sound is t and the PAT of the reference sound is r.  We can measure d, the differ-

ence between these two PATs.  

We assume that on each trial a sample r is drawn from R and that a sample t is drawn from T, as 

shown in Figure 14.70 The subject controls the time relationship between the physical beginnings 

of the test and reference sounds: specifically, the subject controls a (possibly negative) delay time d 

                                                     

68 D’s subscripts indicate which pair of sounds were compared, e.g., DA,B is a random variable representing trials 
aligning test sound “A” with reference sound “B.” 
69 Gordon use the notation ΔPAT to mean “the amount of time needed to shift a tone away from physical 
synchrony/isochronism (with some standard tone) in order to attain perceptual synchrony/isochronism (with that 
standard)” (Gordon 1987, 88). 
70 Note that we assume this sampling happens only once per trial, even though the subject might hear each sound 
repeated dozens or hundreds of times in the course of a single trial.  The deeper assumption is that if the subject hears 
multiple exact repetitions of the same sound within a reasonably short period of time (perhaps within the “perceptual 
present” discussed on page 9) then he or she will “choose” the same moment of PAT from that sound's PAT-pdf on 
each repetition.  



 45 

between the physical onset of the test sound and that of the reference sound.71  For any value of d, 

the subject will hear the PAT of the test sound at time t-d after the physical onset of the reference 

sound.72  In the synchrony method, the subject’s task is to adjust the relative physical onsets of the 

sounds until the perceived time difference between PATs is zero,73 in other words, the subject 

finds d such that r =t-d, as shown in Figure 15.  Since the value of d produced in each trial is equal 

to t-r for that trial, d can be thought of as a sample of the random variable DT,R.  

 

Figure 15: The situation after a subject has aligned the PATs of the test and reference 

sounds (using the same hypothetical amplitude envelopes as Figure 14).  Now the 

time difference between the physical onsets is our measurand d. 

Suppose we perform multiple trials with the same test and reference sounds.  This gives us many 

samples of the random variable DT,R, which we can use to infer the underlying distribution for 

DT,R, as shown in Figure 16. Unlike the previous made-up illustrations, Figure 16 displays real 

measured data from the listening experiment described in Chapter 4, namely the results of all 33 

trials performed with “Clarinet” as the test sound and “Clarinet SMC12” as the reference sound. 

Each data point is the value of d that a subject found in one trial.  The X axis is the delay (in ms) 

                                                     

71 In fact the timing of the reference sound is fixed, so perhaps it would be more accurate to call d the amount of time 
by which the physical onset of the test sound precedes that of the reference sound.  I chose this sign convention for d so 
that a plot of D will be exactly a plot of the test sound’s PAT-pdf if we assume the reference sound’s PAT has mean and 
variance of zero. 
72 This step relies on the common sense assumption that delaying the physical onset of a sound will delay its PAT by the 
same amount.  This is just another way to state the assumption inherent in the “each event has an intrinsic PAT” model 
that an event’s PAT has a fixed temporal relationship to its physical onset. 
73 In the isochrony method the situation is the same except for the addition of a time constant equal to half the period of 
repetition of the reference sound. 
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between the physical onset of the reference sound and the physical onset of the test sound; these 

are the units of each value of d. Negative values of X represent situations in which the reference 

sound’s onset is before the test sound’s onset; positive X means the reference sound’s onset is after 

the test sound’s onset.  (In this case every trial resulted in a negative value, in other words, every 

listener felt the Clarinet’s physical onset had to precede Clarinet SMC12’s physical onset to 

achieve perceptual synchrony.) The estimated probability distribution gives the relative 

probability of perceiving the two sounds as synchronous as a function of the delay time between 

their physical onsets. So to interpret the estimated shape of the probability density function in 

Figure 16, we’d say that when the reference sound precedes the test sound by about 30-50 ms, 

most listeners will hear them as synchronous.   Note that there are two data points on the right 

edge of the graph, near the zero point of physical synchrony; I believe these are due to a 

particular fusion effect discussed in Section 4.4.2 (page 118). 

 

 

Figure 16: Example results for multiple trials using the same test and reference 

sounds (Violin and Violin SMC23 respectively). 

The middle plot is a one-dimensional scatter plot of all responses (with slight jitter 

added to the Y axis for visual clarity).  On the bottom is a standard box plot of the 

same data. The top plot is one estimate of the underlying probability distribution 

using nonparametric kernel density estimation: a Gaussian distribution of fixed 

variance is placed around each data point and these are all summed together.  The 

vertical line in the top plot shows the mean. 

If we could assume that the reference sound’s PAT is exactly zero (i.e., that the mean and 

variance of its PAT-pdf are both zero), then we would interpret the top plot of Figure 16 as the 
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intrinsic PAT-pdf of the test sound.74  But if we assume that the reference sound itself has an 

unknown intrinsic PAT-pdf, then Figure 16 is the shape of the pdf for DT,R and we cannot directly 

measure the PAT-pdf of the test or reference sounds. Informally, if the test and reference sounds’ 

PATs are both ambiguous, then what we measure will be doubly ambiguous. 

3.4.4.1 Statistical Independence of T and R 

If T and R are independent random variables, then the pdf of their difference 
  
D

T ,R
=T ! R  is the 

cross-correlation75 of the pdfs for T and R and the variances add: 
  
var(D

T ,R
) = var(T ) + var(R) . 

There might be cases where these two random variables are not independent:  

I think an interesting case to consider is a sound whose attack, on close inspection, looks like a 

‘click-whoosh.’  That is, there is an impulsive attack, followed closely by a more spread out 

portion.  The level of the impulse can be reduced until it and the following “whoosh” are 

equally likely to be heard as the attack.  If the listener attends to the impulse, the distribution 

is tight; if the impulse is disregarded and the “whoosh” is considered the “main event” of the 

attack, then the distribution is broader.  The result is a bimodal, nonsymmetric distribution. 

Now consider two such sounds played in alternation to form a regular beat - we can now 

consider how the uncertainties should be combined for this case.  In thinking about this, it 

occurs to me that an important effect is ‘conditional listening.’  That is, however you decide to 

listen to sound A generally affects how you listen to sound B.  For example, if you attend to 

the impulse at the beginning of sound A, you are more likely to attend to a leading impulse in 

sound B, and so on. 

 (Julius Smith, personal communication, 10 August 2007). 

If T and R are not independent then 

 var (T-R) = var(T) + var(R) - 2 covariance(T,R) 

For simplicity we will assume that these are independent random variables. 

                                                     

74 Again, this is why I chose the sign convention that D=T-R rather than the equally reasonable D=R-T. 
75 Cross-correlation is equivalent to convolution with a left/right flip of one input.  I will follow the notational 
convention that a★b means “the cross-correlation of a with b.” 
(http://ccrma.stanford.edu/~jos/mdft/Cross_Correlation.html) 
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3.4.4.2 Penalty Term for Each Pair of Sounds 

Some sound pairs are inherently more difficult to align with each other due to auditory streaming 

effects that Section 3.6 (page 62) will discuss at length. Rather than modeling this effect with 

covariance, we will assume that the random variables are independent and instead add an extra 

“penalty” for each pair of sounds that adds additional uncertainty (i.e., variance).  We’ll represent 

this with an extra noise term:  

DT,R = (T-R)+PenaltyT,R.76  

We’ll use an abbreviation to notate the variance of these penalties: 

  
   
!

T ,R

2
! var(Penalty

T ,R
)  

We make the following assumptions about this penalty term: 

• The penalty is a random variable drawn from a zero-mean distribution.  (There should be no 

reason that difficulty in hearing two sound’s relative time alignment would lead to results that 

are biased in either direction.) 

• PenaltyA,A ! 0 for any A.  This is because two copies of the same sound should always be in the 

same auditory stream and hence there should be no added difficulty in perceiving their 

relative time alignment.  (See Section 3.6.) 

• PenaltyA,B =PenaltyB,A. In other words, the extra difficulty in aligning any given pair of sounds 

should not depend on which is the test and which is the reference. 

Even with these assumptions the penalty term gives our model too many degrees of freedom, 

because we can explain the observed variance of any DT,R with any combination of variance in T 

and R and variance in PenaltyT,R.  For example, one extreme would be to assume that every 

intrinsic PAT has zero variance (i.e., that any sound’s PAT is a single moment in time, not a 

probability distribution) and to attribute all of the observed variances to the penalty terms.  Our 

model doesn’t quite allow this since PenaltyA,A ! 0, but as long as each IA has enough variance to 

account for the variance in DA,A then we can account for the variance in any DA,B with PenaltyA,B.   

In other words, if trials involving sound A always result in a wide range of results, is it because 

sound A has a broad range of acceptable PAT times, or because sound A happens to be difficult to 

align against every other sound? 

                                                     

76 We will sometimes use 
  
!

T ,R
as a synonym for PenaltyT,R. 
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3.5 Getting from PAT Measurements to Intrinsic PATs 

We are able to sample a random variable DT,R equal to the difference between the random 

variables for the intrinsic PAT-pdfs of the test and reference sounds (T and R respectively), plus a 

zero-mean noise term PenaltyT,R representing the additional difficulty in aligning the given pair of 

sounds: 

 

   

D
T ,R
!T ! R + Penalty

T ,R

mean(Penalty
T ,R

) = 0
 

We want to know T and R, the intrinsic PAT-pdfs of each sound, and would like a way to infer 

them from the data we are able to measure.  There are many statistical techniques for estimating 

the distribution of the pdf of DT,R from the observed data. Unfortunately the characteristics of the 

pdf of DT,R tell us very little about T or R.  For example, knowing that DT,R has a mean of about -

41 ms (as in Figure 16) could mean that T has a mean of 20 ms and R has a mean of 61 ms, or 

that T has a mean of 120 ms and R has a mean of 161 ms. Even knowing that DT,R fits a Gaussian 

distribution is no guarantee that T and R are Gaussian.77 

By assuming that T and R are independent, we can use these elementary properties of differences 

of independent random variables: 

If DT,R = T-R, then 

 mean(DT,R) = mean(T)-mean(R) 

 var(DT,R) = var(T)+var(R) 

If DT,R = (T-R)+PenaltyT,R and mean(PenaltyT,R) = 0, then 

 mean(DT,R) = mean(T)-mean(R) 

 var(DT,R) = var(T) + var(R) + var(PenaltyT,R) 

3.5.1 Comparing Multiple Pairs Drawn from the Same Set of Sounds 

The only way to get more information about the shapes of each sound’s intrinsic PAT-pdf 

distributions is to perform experimental trials with multiple pairs of sounds drawn from the same 

set. 

                                                     

77 In fact, the central limit theorem tells us that as we add together more probability distributions the result will 
eventually become Gaussian even if the addends are not, so in general D will be “more” Gaussian than T or R. 
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One prediction of this model so far, without making any assumption about shapes of distributions 

or statistical independence, is that 

 mean(DA,C) = µA-µC = µA-µC+(µB-µB) = (µA-µB)+(µB-µC) = mean(DA,B)+mean(DB,C) 

In other words, if we have any trio of sounds that were all compared against each other, the 

means should “add up” as we’d intuitively expect. (This is the result of assuming that PenaltyT,R has 

a mean of zero.)  Section 4.3.10 (page 103) checks this prediction for the results of the listening 

experiment described in Chapter 4. 

Unfortunately it is often not practical to carry out full-factorial experimental design comparing 

every possible pair of sounds drawn from a given set, especially if we need dozens of trials with 

each pair A and B to produce a robust estimate of the distribution of DA,B.  Suppose there are n 

sounds in total, and let us define 
  
N

A,B
! 0 as the number of trials that used sound A as the test and 

sound B as the reference. For full generality we must consider that NA,B may be zero or too small 

to allow us to estimate the shape of DA,B for any given A and B, so DA,B will be unknown for some 

pairs of sounds. 

3.5.2 A Weak Upper Bound On Intrinsic Variance 

Since variance is always non-negative, we can put a weak upper bound on each sound’s intrinsic 

variance: 

 

  

var(D
A,B

) = var(I
A
) + var(I

B
) + var(Penalty

T ,R
)

var(D
A,B

) ! var(I
A
)

min
B

var(D
A,B

)( ) ! var(I
A
)

 

3.5.3 What We Can Learn from Trials Using the Same Sound as Test and 

Reference 

Because S and S are the same sound, the mean of DS,S should be zero, and tells us nothing about 

the mean of IS. 

The distribution of D should be symmetric when the test and reference sounds are the same 

sound. This fits common sense: for any given delay time between the two copies of the sound that 

makes the result sound synchronous or isochronous (depending on the task), the opposite of that 

delay time will produce an acoustically identical stimulus. 
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We can estimate of the variance of each sound’s intrinsic PAT-pdf by looking at the sample 

variance of all trials aligning that sound against a second copy of itself:  

 var(DS,S) = 2var(IS) + var(PenaltyS,S) 

 var(IS) = (var(DS,S)- var(PenaltyS,S))/2 

The penalty term when aligning two copies of the same sound should be very small, so 

 var(IS) ≈ var(DS,S) / 2 

One way to test this assumption is to check whether 

  
var(D

A,B
) ! var(D

A,A
) + var(D

B ,B
)( ) 2  

holds for all A and B.  (See Table 13 on page 101.)  

We can also use this assumption to estimate78 the variance of PenaltyA,B for any distinct pair of 

sounds A and B: 

 
  
!̂

A,B

2
= var(D

A,B
) "

var(D
A,A

) + var(D
B ,B

)

2
 

3.5.4 Normal model 

If we assume that all intrinsic PAT-pdf distributions are normal (i.e., Gaussian) then the situation 

becomes more tractable. For one thing, a Gaussian distribution is completely characterized by its 

mean and variance, so we can ignore all other details of our measurements. Also, the difference of 

two Gaussian random variables is another Gaussian random variable, and we have an analytic 

solution relating the means and variances: 

If 

 R ~ N(µR, σR2)  R is normal with mean µR and variance σR2 

 T ~ N(µT, σT2)  T is normal with mean µT and variance σT2 

 PenaltyT,R ~ N(0, σT,R2) PenaltyT,R is normal with zero mean and variance σP2 

 DT,R = T-R+PenaltyT,R 

                                                     

78 We’ll follow the convention of notating our estimates of statistical parameters with “hats”, so that 
  
!̂

X

2 represents our 

estimate of 
  
!

X

2 . 
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 T, R, and PenaltyT,R are independent  

then 

 DT,R ~ N(µD=µT-µR, σD2=σT2+σR2+σP2) 

So for a set of n sounds, our model has 
  
n(n + 3) /2 parameters: the   2n  intrinsic means and 

variances 
  
!

1

2
,!

2

2
,...,!

n

2
,µ

1
,µ

2
,...,µ

n
 and the 

  
n(n !1) /2 alignment penalty variances 

  
!

2,1

2
,!

3,1

2
,!

3,2,

2
,...,!

n,1,

2
...,!

n,n"1

2 .  (Remember that 
  
!

i ,i

2
= 0 and 

  
!

i , j

2
= !

j ,i

2 .) 

There are infinitely many choices for these parameters that yield the same results, because we can 

shift all of the intrinsic means by any constant and still end up with the same results for all DA,B. 

We somewhat arbitrarily choose this constant so that min(mean(IA))=0. 

3.5.4.1 Finding PAT-pdf by Comparison to a Sound with Known PAT-pdf 

If we already have estimates 
  
µ̂

R
 and 

  
!̂

R

2  of the mean and variance of the intrinsic PAT-pdf of a 

reference sound R, and we have the sample mean and variance 
 
µ

D
 and 

  
!

D

2  from a series of trials 

comparing test sound T to reference sound R, then we can estimate the parameters of T with 

  

µ̂
T
= µ̂

R
+ µ

D

!̂
T

2
= !

D

2
" !̂

R

2
" !̂

P
T ,R

2
 

Note that this formula allows 
  
!̂

T

2  to be negative if 
  
!

D

2
< !̂

R

2 , which is impossible because variance 

must always be nonnegative. If this occurs than our estimate 
  
!̂

R

2  is clearly wrong and must be 

revised so that 
  
!̂

R

2
" !

D

2 . 

It also might be the case that we already have estimates 
  
µ̂

A
, 

  
!̂

A

2 , 
  
µ̂

B
, and 

  
!̂

B

2  of the intrinsic 

means and variances for two reference sounds A and B, both of which were compared to a third 

sound C.  In general we can expect that  

  
µ̂

A
+ µ

D
A ,C

! µ̂
B
+ µ

D
B ,C

 

In other words, the two reference sounds A and B might provide us with conflicting estimates of 

the intrinsic mean of C. 
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3.5.4.2 An Optimal Least-Squares Solution For All Relative PAT Times 

Marcus formulated the problem of converting a matrix of pairwise PAT alignment results into a 

single (relative) intrinsic PAT value for each individual sound in terms of a least squared error 

optimization (Marcus 1981, 248).79 His desired answer was a single scalar value ps for each sound 

s, with the understanding that the true intrinsic PAT for each sound s was ps+c, with c forever 

unknown but constant for all sounds. (For now we will put aside the idea of PAT-pdf and 

concentrate on the problem of finding intrinsic PAT, thinking of PAT temporarily as a single 

instant.) 

His assumption was that the result of each trial was a time offset amount equal to the difference 

between the intrinsic PATs of the two sounds, plus a noise term that he assumed to be Gaussian 

with zero mean and a measurable variance attributed to subject’s inconsistency “in reproducing 

his own chosen set of offsets” (Marcus 1981, 248). In my model the variance is the sum of the 

intrinsic variances of the two sounds plus the penalty term.  Since the sum of Gaussian random 

variables is itself a Gaussian random variable, we can apply his method without committing to an 

interpretation of the source of the variance. Likewise, we can interpret the output of his method as 

the mean of each sound’s intrinsic PAT-pdf, without necessarily subscribing to the notion that a 

sound’s PAT is a single discrete instant.  

In his experiment, each subject aligned each possible pair of (nine) sounds exactly once (not 

including each sound against itself) with the isochrony method, so his expression for the total error 

has one term for each of n(n-1) pairs of different sounds.  I will extend this method to the case 

where there might be a different number of trials for each pair of sounds, possibly zero, with each 

trial weighted equally in the result.80 Let n be the number of sounds. Let Ni,j be the number of 

trials aligning sounds i and j, regardless of which was test and which was reference, so that Ni,j=Nj,i. 

This algorithm does not use any results from trials comparing a sound with itself, so for 

convenience let 
   
N

i ,i
! 0 . Let each di,j(k) be the result of one trial aligning test sound i against 

reference sound j, or the opposite of the result of one trial aligning test sound j against reference 

                                                     

79 I have taken the liberty of translating Marcus’ ideas into my own terminology, using “intrinsic PAT” where he used 
“p-center,” and renaming his variables for consistency. 
80 This could be considered a bias towards sounds and pairs of sounds for which more trials were performed.  We could 
instead weight each trial by the reciprocal of the number of trials of that type; this would weight each pair of sounds 
equally by introducing a different kind of bias, making each trial count more for pairs with few trials and making each 
trial count less for pairs with large numbers of trials.  One could also trade off these two kinds of bias by weighting each 

trial comparing sounds i and j by 
  
( N

i , j
)x where   !1" x " 0 . 
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sound i, with 
  
1! k ! N

i , j
. The order of the trials is unimportant.81 For convenience let di,j(k)=-

dj,i(k). 

We will find p, a (column) vector containing the relative intrinsic PAT for each sound, by 

minimizing the following sum-of-squared-error cost function:  
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81 In other words, we treat the set of all trials involving sounds i and j as a set, not a sequence; the index k in di,j(k) will 
only appear in summations over all k. 
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To get from the first to the second line we used the fact that each term in the partial derivative 

will be zero unless i=s (in which case 
  1! j ! i "1= s "1 ) or j=s (in which case i>j=s). From the 

second to the third we renamed j to i and used di,j(k)=-dj,i(k) and Ni,j=Nj,i. From the fourth to the 

fifth note that combining the two summations added an extra term for i=s, but that this is zero 

since Ns,s=0. 

Setting 
  

!

!p
s

J ( p) = 0  for each s produces a system of n linear equations in n unknown values of p: 
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An arbitrary constant can be added to all pi and still equally explain the observed experimental 

results, so the matrix on the left will not be invertible. We can get around this problem by instead 

computing the pseudo-inverse, or by arbitrarily removing one of the columns and removing the 

corresponding pi from the middle column vector.  

Marcus chose this constant “such that 
  

p
i
= 0! ” (Marcus 1981, 248), not attempting to relate 

PAT to absolute time but only finding relative PAT values for all sounds. Based on my 

assumption that PAT should never precede physical onset, I instead choose this constant such that 

  
min( p

i
) = 0 , so that each resulting pi is a lower bound on the absolute PAT of sound i. 

Once we have these estimated intrinsic means, it would be trivial to set all estimated intrinsic 

variances to zero and every
  
var(Penalty

A,B
) = var(D

A,B
) , but of course this tells us nothing about the 

presumably interesting shapes of each sound’s PAT-pdf distributions.  We should therefore 

choose a better estimate for the intrinsic variances.   

3.5.4.3 An Optimal Maximum Likelihood Solution For the Entire Model? 

Our full model says that for each pair of sounds T and R we are able to observe samples of a 

random variable 
  
D

T ,R
 such that 

  
D

T ,R
= I

T
! I

R
+ "

T ,R
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I was unable to obtain a closed-form maximum likelihood solution analytically for all of the 

parameters of this model (namely, mean and variance of each sound’s intrinsic PAT-pdf, plus 

variance for the penalty term for each pair of sounds) in terms of a set of observed experimental 

outcomes; Appendix B (page 170) presents the details.  However, if we assume that all the 

variances are known constants, then we can find a maximum likelihood solution for the means as 

shown in Section B.1.1 (page 173). 

3.5.5 Five Complete Algorithms to Estimate all Normal Model Parameters 

With all of the above caveats, warnings, and partial solutions in mind, here are five complemen-

tary approaches to estimating all of the intrinsic means 
 
µ

i
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term variances 
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i , j

2 given only the observed samples of DT,R for an arbitrary subset of n sounds 

(
  1! i ! n,1! j ! n ) and assuming that everything is Gaussian. 

Note that the result of any of these algorithms is a statistical model, and we can compute the total 

likelihood of any such model given all our experimental results as derived in Appendix B: 
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Many of these algorithms work by searching a space of possible model parameters, computing the 

likelihood of each candidate, and outputting the result with the highest likelihood. 

Note also that the variances always appear only as part of the sum 
  
!

i

2
+!

j

2
+!

i , j

2 , so for any given 

set of variances we can always choose any i, select any x 
  
0 ! x < "

i
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!

i

2
' = !

i

2
" x , then set all 
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i , j

2
' = !
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2
+ x to produce another set of parameters with exactly the same likelihood for any 

possible experimental results.  Only the restrictions 
   
!

i ,i

2
! 0 and 

   
!

i , j

2
! !

i , j

2
, i " j prevent this. 

Another consequence of this relationship among the variances is that, given the observed sample 

variance for each DT,R and a set of estimated intrinsic variances 
  
!

i

2 , we can almost perfectly 

account for all the observed sample variance by setting
  
!̂

i , j

2
= var(D

i , j
) " !̂

i

2
" !̂

j

2 . 
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3.5.5.1 Shortest-Variance Path from a Chosen Reference 

Let us represent the observed results of a PAT alignment experiment as a graph. The nodes are 

the set of n sounds and the edges are the comparisons between sounds, with an edge between 

sounds A and B if and only if we have (enough) experimental results from trials aligning A and B.  

The distance between nodes A and B is 
  
var(D

A,B
) . 

First of all, this graph must be connected in order for any algorithm to be able to estimate all of the 

statistical parameters; otherwise there is no common reference between the disconnected 

subgraphs. 

Suppose we have selected one sound as our reference, and somehow initialized the intrinsic mean 

and variance for this sound. We apply Dijkstra’s well-known shortest path algorithm (Dijkstra 

1959) to produce the shortest path tree rooted on our chosen node. Now we proceed from the 

source node through the tree.  At each step we know the intrinsic mean and variance of the 

parent, so we can use the observed sample mean and variance from trials comparing the parent 

and child to estimate the intrinsic parameters for the child: 

  

µ̂
child

= µ̂
parent

+ µ
D

child , parent

!̂
child

2
= !

D
child , parent

2
" !̂

parent

2

!̂
P

T ,R

2
= 0

 

If at any step in this process 
  
!̂

child

2
< 0 , then we have a problem. Let 

  
x = !"̂

child

2 . We can arbitrarily 

pick some small minimum variance vmin such as 0.1 ms2 and set 
  
!̂

child

2
= v

min
.  Then we must 

subtract x+vmin from 
  
!̂

parent

2 , add x+vmin to 
  
!

D
parent , grandparent

2  (unless parent is the root of the tree), and 

recompute the variances of any other children of parent.  

How do we select the reference and its intrinsic mean and variance? One option is to perform a 

grid search over all possible reference sounds and over a range of plausible intrinsic variances, run 

the algorithm on each option, and choose the parameters with the highest likelihood. There is no 

need to search over a range of intrinsic means for the reference because we can always add the 

same constant to all intrinsic means without changing the likelihood of the model. 

Another option would be to select the reference sound and its intrinsic variance (and possibly also 

mean) based on some a priori knowledge.  For example, if one of the sounds is the ideal digital 
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impulse (see page 75) then we may have reason to use that as the reference.  We might also 

choose the reference’s intrinsic variance according to 
  
!̂

reference

2
= !

D
reference ,reference

2
/2 . 

One motivation for this algorithm is that in general, the derivation of IX that results in the lowest 

variance gives us the most information about IX.  Specfically, 

a. If var(DA,B) < var(DA,C), then B is the better reference sound for finding IA because 

var(PenaltyA,B)+var(IB) < var(PenaltyA,C)+var(IC). 

b. If var(DA,C) > var(DA,B) + var(DB,C) then DA,B and DB,C together tell us more about A’s 

intrinsic PAT-pdf than DA,C: 

var(IA) + var(IC) + var(PenaltyA,C)> var(IA) + var(IB) + var(PenaltyA,B) + var(IB) + var(IC) + 

var(PenaltyB,C) 

var(PenaltyA,C)> + 2var(IB) + var(PenaltyA,B) + var(PenaltyB,C) 

In other words, aligning A with C is so difficult that we get a more accurate understanding 

of the relationship between A and C by aligning A with B and then aligning B with C. 

3.5.5.2 Greedy Search for the Next Sound with the Smallest Intrinsic Variance. 

This method is a slight variant of the shortest-path method just described, motivated by an 

attempt to avoid the backtracking step. 

Again we start by selecting one sound as our reference (or by trying every possible sound as a 

reference with grid search) and perform a greedy algorithm that estimates the intrinsic mean and 

variance for one new sound on each iteration.  This time, however, we choose the next sound that 

has the lowest variance.  Here is pseudo-code for the algorithm: 

until every sound has an estimated intrinsic mean and variance 

for each sound s without estimates for 
  
µ̂

s
and 

  
!̂

s

2  

  lowest_intrinsic_variance(s) = Infinity 

 parent(s) = NULL 

 for each sound r with an estimate for 
  
µ̂

s
and 

  
!̂

s

2  

   
  
guessed _ !̂

s

2
= max(!

min

2 ,!
D

s ,r

2
" !̂

r

2 )  

   if 
  
guessed _ !̂

s

2
<  lowest_intrinsic_variance(s) 
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    lowest_intrinsic_variance(s)= 
  
guessed _ !̂

s

2  

    parent(s) = r 

 next_estimate = s with the lowest lowest_intrinsic_variance(s) 

 
  
!̂

next _ estimate

2
=  lowest_intrinsic_variance(s) 

  
µ̂

next _ estimate
= mean(D

next _ estimate , parent (next _ estimate )
) + µ̂

parent (next _ estimate )
  

3.5.5.3 Batch Estimation from Known Estimates 

Here is one final variation on the theme of successively deriving all intrinsic means and variances 

from a given reference sound R whose intrinsic variance is taken as given. On each iteration of the 

algorithm we will estimate all possible intrinsic means and variances based on the estimates we 

have so far. We choose a minimum intrinsic variance vmin to be a very low number such as 0.01 

ms2. 

On the first step we consider every sound S for which NS,R is sufficient to estimate var(DS,R): 

 

  

µ̂
S
= µ̂

R
+ µ

D
S ,R

!̂
S

2
= max(v

min
,!

D
S ,R

2
" !̂

R

2 )
 

If we have (enough) trials comparing every sound to R then we’re done.  Otherwise we iterate the 

following until we have estimated all of the intrinsic means and variances: 

For each sound T for which there is at least one sound S such that NT,S is sufficient to estimate 

var(DT,S) and we have already estimated 
  
µ̂

S
 and 

  
!̂

S

2 , estimate T’s parameters from taking the 

mean over all sounds S: 

  

µ̂
T
= mean(µ̂

S1
+ µ

D
T ,S1

, µ̂
S 2
+ µ

D
T ,S 2

,...)

!̂
T

2
= max(v

min
,mean(!

D
T ,S1

2
" !̂

S1

2 ,!
D

T ,S 2

2
" !̂

S 2

2 ,...)
 

One variant would be to replace the mean with a weighted average weighted by each NT,S. 

The advantage of this algorithm is that the source of the estimates for each sound is either the 

chosen reference R or an equal weighting of all the sounds that are “as close as possible” to R 

according to the interpretation of the experimental results as a graph. A potential problem is that 

each estimate might be derived from a different number of reference sounds, which could be a 

source of inconsistency. 
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3.5.5.4 Variances from Trials Against Self, Maximum Likelihood Means 

This solution starts by finding the intrinsic variance for each sound from trials using two copies of 

that sound, according to 

var(IS) ! var(DS,S) / 2 

For any sound S for which NS,S is too small to estimate var(DS,S), we need an alternate method of 

estimating intrinsic variance. Given the intrinsic variances that we were able to estimate, we can 

find an upper bound on the remaining variances as follows: 

  

var(D
A,B

) = var(I
A
) + var(I

B
) + var(Penalty

T ,R
)

var(D
A,B

) ! var(I
A
) ! var(I

B
)) " 0

var(D
A,B

) ! var(I
B

)) " var(I
A
)

min
B

var(D
A,B

) ! var(I
B

)( ) " var(I
A
)

  

Since var(DS,S) / 2 is likely to be somewhat of an underestimate for var(IS) due to comb filtering 

effects, for consistency we should choose a similarly low estimate for var(IX).  We can arbitrarily 

pick some !  (0<! <1) and multiply each intrinsic variance’s upper bound by ! to determine the 

estimate. 

Once we have estimated the intrinsic variance for each sound, we can estimate the variance of all 

the penalty terms with 

 var(DT,R) = var(T) + var(R) + var(PenaltyT,R) 

 max(0, var(DT,R) - var(T) - var(R)) = var(PenaltyT,R) 

 In other words, we choose the penalty for any pair of sounds T and R to account exactly for all of 

the observed variance in DT,R that our estimated intrinsic variances do not explain. 

Now that we have estimates for all of the variances of our model, we can use the maximum 

likelihood solution in Appendix B to solve for the intrinsic means. The results are determined 

except for an arbitrary constant c that can be added to all means to produce the same result; we 

choose c such that min( µ )+c>=0, and if we have extremely impulsive sounds, so that 

min( µ )+c=0. 

3.5.5.5 Least Squares Means, Variances from Trials Against Self 

A variant of the previous algorithm is to compute all the means according to “An Optimal Least-

Squares Solution For All Relative PAT Times” (Section 3.5.4.2, page 53), and then independently 
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find the variances as in the previous section.  The only difference is that the least squares solution 

for the means does not depend on variance while the maximum likelihood solution uses the 

estimated variances essentially to down-weight results from pairs of sounds that were more 

difficult to align, as Section B.1.1 (page 173) suggests. 

3.6 Choice of a Reference Sound 

How then should one select the reference sound? One criterion is that the reference sound’s PAT 

should be maximally clear and unambiguous; in other words, its probability distribution should be 

very tall and narrow. Consider the opposite extreme: suppose the reference sound were white 

noise that faded in and out very slowly over 10 seconds. Obviously this sound’s own intrinsic PAT 

would be a very wide probability distribution. Consequently, no matter what sound we tried to 

measure against this highly ambiguous reference, the resulting distributions would always be very 

wide. In other words, our measurements would not tell us very much about the sounds we were 

trying to measure. 

This argues for using a short impulsive percussive sound as the reference, because we expect such 

sounds to have narrow and definite PAT distributions. Gordon tried this: his experiments I and II 

measured the PAT of a set of synthetic orchestral tones against a reference tone drawn from the 

same set, while his experiment III used a sample of a conga slap as the reference for measuring 

PAT of the same orchestral tones. Since the conga slap clearly had a more definite PAT one 

would expect his results for experiment III to be “better,” that is for the measured probability 

distributions to be taller and narrower than in experiments I and II. In fact, he found the 

opposite: the standard deviations when testing against the conga slap were about 10-16 ms, while 

the same measurements against the synthetic clarinet or bassoon had standard deviations of only 

about 6-12 ms, as shown in Table 3.  

Isochrony vs. Clarinet ~8-15 ms 

Synchrony vs. Clarinet or Bassoon ~6-12 ms 

Synchrony vs. ’Cello ~6-17 ms 

Synchrony vs. Conga ~10-16 ms 

Table 3: Standard deviations of PAT measurements from (Gordon 1987, 92)  

Why was the drum a worse reference? “[A]cuity of temporal order was an important factor. 

Confusion was probably enhanced by the inherently different attack characteristics of the drum 

standard and the other 16 stimuli; the drum sound's rise time, as measured from physical onset to 

maximum amplitude, was less than 10 ms, whereas the quickest rise times among the other 16 
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stimuli were 45-50 ms. Some subjects reported simply giving up on several of the trials” (Gordon 

1987, 94). In other words, Gordon is making a sort of “apples and oranges” argument that the 

simple difference in attack times made it more difficult for subjects.  

I do not believe this explanation: in my experience playing in musical ensembles, there does not 

appear to be added difficulty synchronizing fast-attacking instruments with slower-attacking 

instruments, and in fact the overall rhythmic synchronization of an ensemble tends to be easier 

when percussive instruments are present. Gordon acknowledges this as well: “After all, the drum 

is the standard rhythm-setting instrument to which all other instruments synchronize” (Gordon 

1987, 94). 

I believe that Gordon’s results in experiment III are due to auditory streaming effects.82 Research 

has shown that listeners’ ability to detect the temporal order of two sound events is much lower 

when they are further apart in pitch or spectral content: “It seems that accurate judgments of 

order require sounds to be in the same stream and that sounds with grossly different timbres resist 

being assigned to the same stream” (Bregman 1990, 94). Although Bregman is not referring 

specifically to perceptual attack time, a difficulty in discerning the order of sounds will obviously 

lead to a difficulty in discerning whether or not two sounds are perceptually simultaneous. 

So what makes sounds have “different timbres”? The ANSI standard for “Psychoacoustical 

terminology” defines timbre as “that attribute of auditory sensation in terms of which a listener 

can judge that two sounds similarly presented and having the same loudness and pitch are 

dissimilar” (ANSI 1973). This negative definition explains what timbre is not rather than what 

timbre is, and is therefore very broad.  Which aspects of timbre are responsible for auditory 

streaming, and to what degree? Unfortunately, “much of the existing research on the grouping of 

timbres… [does] not ask what the dimensions of timbre [are], or the relative potency of different 

kinds of timbre differences” (Bregman 1990, 95). Bregman goes on to review many studies 

showing a strong effect of spectral content on auditory grouping; this is clearly an important 

factor.  

Later he considers the temporal shape of the beginnings of sounds’ amplitude envelopes (that is, 

“rise time”), first pointing out that the shape of the amplitude envelope determines the overall 

magnitude frequency spectrum,83 and in particular that very fast onsets sound like broad 

                                                     

82 I am deeply grateful to David Wessel for suggesting this interpretation. 
83 Considering that the definition of an amplitude envelope is a signal that is multiplied in the time domain by some 
underlying signal, and that multiplication in the time domain corresponds to convolution in the frequency domain, it is 
obvious that the spectral content of the amplitude envelope will have a strong effect on the spectral content of the 
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frequency clicks that separate perceptually from the rest of the tone (Bregman 1990, 114). In 

other words, the timbral difference supposedly caused by the shape of the amplitude envelope can 

also be explained as a difference in the frequency magnitude spectrum. He reports on some 

“informal observations” he made, in which he used “complex tones that are rich in harmonics” in 

an attempt to compensate for the spectral effect of differences in the rise time of amplitude 

envelopes: “It seemed to me that the difference in onset suddenness did make it more likely that 

the… tones would segregate from each other, but the effect was not strong” (Bregman 1990, 114-

115). 

Let us return to Gordon’s Experiment III and the difficulty he found in measuring synthetic 

orchestral tones’ PAT using a recorded conga slap as a reference. It is safe to say that the 

difference between the conga slap’s overall magnitude frequency spectrum and that of any of the 

orchestral tones was probably much larger than the difference between any pair of tones.84 What 

if the overall spectrum of the conga slap had somehow been close enough to the overall spectrum 

of the orchestral tones for them to be in the same auditory stream?  This question motivates the 

next section.  

3.7 Spectrally Matched Click Synthesis 

We now have two criteria for a good reference sound to measure a test sound’s PAT: 

1. The reference sound should have a low-variance PAT-pdf, that is, its PAT should be 

maximally definite and unambiguous. 

2. The reference sound should be close enough to the test sound in overall magnitude 

frequency spectrum that they will be perceived in the same auditory stream. 

These criteria are somewhat contradictory. The extreme case to satisfy the first criterion would be 

a pure impulse, which would in theory have infinitely short duration. Our closest practical 

approximation to this would be the ideal digital impulse, that is, a digital recording consisting of a 

single sample with nonzero amplitude followed by a series of zero amplitude samples. But the 

ideal digital impulse has a totally flat magnitude frequency spectrum, that is, it contains equal 

energy at all frequencies, and so it will fail to meet the second criterion for any musical sound 

whose PAT one might want to measure. 

                                                                                                                                                            

resulting sound.  In particular, if the amplitude envelope starts abruptly then its spectrum will be broad in frequency; 
see http://ccrma.stanford.edu/~jos/sasp/Relation_Smoothness_Roll_Off_Rate.html 
84 The original recording of the conga slap is now lost, so it is no longer possible to quantify this difference. 
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The extreme case to satisfy the second criterion would be to use a second copy of the test sound as 

the reference sound. This would guarantee that the spectra are identical and that the sounds 

would be in the same auditory stream, but we would expect the distribution of subjects’ responses 

to have a mean of zero, since the PAT of the identical test and reference sounds would of course 

be equal. Therefore aligning a sound with another copy of itself cannot tell us anything about the 

center time of the PAT.85 

Another case that would completely satisfy the second criterion while better satisfying the first 

criterion would be to use a minimum-phase version of the test sound as the reference sound 

(Smith 2007a).86 This minimum-phase signal has a magnitude frequency spectrum identical to the 

test sound, but the phases would be changed so as to maximally concentrate the energy towards 

time zero. That does not mean that the PAT of the minimum-phase signal would be zero, but it 

would be closer to zero than the original, and as close to zero as possible for any sound with the 

exact same magnitude frequency spectrum. 

What if we relax the second criterion somewhat, to allow reference sounds whose spectra are 

similar, but not necessarily identical, to the test sound? I call this spectrally matched click synthesis 

(“SMC”): given any test sound, create a short-duration87 reference sound whose frequency 

magnitude spectrum is as close as possible to the original. This can be formulated as a finite 

impulse response (FIR) filter design problem, as shown in Table 4. 

                                                     

85 However, if we repeatedly align a sound with itself, we can interpret the variance in the distribution as telling us 
something about the width of the sound’s intrinsic PAT distribution; see Section 3.5.3 on page 50. For example, we 
would expect that the variance in the results of aligning short clicks with copies of themselves would be smaller than the 
variance in the results of aligning slow-attacking “mushy” sounds with copies of themselves. 
86 http://ccrma.stanford.edu/~jos/filters/Minimum_Phase_Means_Fastest.html 
87 This desire for short duration sounds is based on the assumption that all else equal they must have narrower PAT 
distributions. Another way of thinking about this is that a sound’s perceptual attack time should occur during the 
window of time during which the amplitude is nonzero. 
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Spectrally Matched Click Synthesis FIR Filter Design 

Spectrum of test sound Desired magnitude frequency response 

Maximum duration of reference click FIR filter order 

Outputted reference click  Outputted filter impulse response 

Play the click as a sampled sound Filter incoming sound by convolving it with the filter’s 
impulse response. 

Table 4: Correspondence between spectrally matched click synthesis and FIR filter design 

3.7.1 Methods for Spectrally Matched Click Synthesis 

Finite impulse response (FIR) filter design is a rich and well-established field and there are many 

techniques for producing FIR filters from various specifications (Rabiner and Gold 1975; Smith 

1983, 2007d; Williams and Taylor 2006).88 I have not made any contribution to this field except 

to discover a new application for these techniques. 

For spectrally matched click synthesis, the format of the filter design specification is a 

nonparametric sampled representation of the desired magnitude filter response, produced by the 

magnitude of the discrete Fourier transform (Smith 2007b) of the input test sound.  

A good method for shortening the eventual impulse response (no matter what filter design strategy 

is used) is to apply critical band smoothing to this spectrum as a pre-processing step before filter 

design (Smith 1982, 1983).  In general any form of smoothing that removes fine detail from the 

desired magnitude frequency response of the filter will tend to reduce the order of the filter and 

hence the duration of the click. Critical-band smoothing is a specific instance in which the 

spectrum is smoothed with a moving average filter whose width is in perceptual units of Equal 

Rectangular Bandwidths (Moore and Glasberg 1996)89  In other words, instead of the moving 

average always encompassing a fixed bandwith in Hertz, the width of the moving average adapts 

in a nonlinear way matched to human auditory perception, so that a wider range of frequencies 

are averaged together in the high frequencies where the perceptual effect of smoothing by a fixed 

linear frequency bandwidth is less audible.  

Matlab (Natick, MA: The MathWorks, mathworks.com)90 is a numerical computing environment 

and programming language, and it comes with optional “toolboxes” that implement many filter-

                                                     

88 See http://ccrma.stanford.edu/~jos/sasp/Optimal_FIR_Digital_Filter.html  
89 http://ccrma.stanford.edu/~jos/bbt/Equivalent_Rectangular_Bandwidth.html 
90 See http://ccrma.stanford.edu/~jos/matlab for a description of Matlab and free alternatives such as GNU’s Octave 
(www.octave.org). 
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design techniques. I chose their “fir2” filter design procedure,91 which designs an FIR filter with 

an arbitrary magnitude frequency response by interpolating “the desired frequency response… 

onto a dense, evenly spaced grid of length npt (512 by default)... The filter coefficients are obtained 

by applying an inverse fast Fourier transform to the grid and multiplying by a window” 

(according to the Help browser’s reference page for “fir2” in Matlab version 7.5.0.338). I used the 

default Hamming window. 

The “fir2” procedure always returns a linear-phase filter, in other words, a filter with a symmetric 

impulse response. We use the filter as an SMC by playing the filter impulse response directly as an 

audio signal, not to filter other signals, so there is no advantage to having the filter be linear-

phase.  Instead, the goal is to make the sharpest possible attack, so that the PAT will be maximally 

definite; therefore I converted the output of “fir2” to a minimum-phase signal “by computing the 

cepstrum and converting anti-causal exponentials to causal exponentials”(Smith 2007a).92  After 

converting the filter to minimum phase, there is often very little energy in the later portion of the 

impulse response, and so often the SMC may be further truncated by brute rectangular 

windowing with no audible consequences. 

3.7.2 Other Applications of Spectrally Matched Click Synthesis 

SMC’s ability to produce arbitrarily short and impulsive sounds matching any input sound has 

applications beyond the production of reference sounds for PAT measurement experiments. 

First of all, simply converting any signal to minimum phase makes it maximally percussive while 

retaining the exact magnitude frequency spectrum, so this can be used to make “drum-like” 

sampled sounds from arbitrary input material. 

                                                     

91 I also experimented with some of Matlab’s other FIR filter design procedures, many optimal in some sense but 
ultimately unsuited for this application.  Most of these are for building specific “classical” filter types such as lowpass 
and are therefore not useful for SMC, where we need to specify an arbitrary sampled shape for the desired magnitude 
frequency response. The “firlpnorm” procedure (in the Filter Design Toolbox) performs “least P-norm optimal FIR 
filter design”, but was not practical for producing filters clicks of longer than a few dozen samples in duration, because 
the running time appears to be exponential in the order of the filter.  The “firpm” procedure (in the Signal Processing 
Toolbox) performs “Parks-McClellan optimal equiripple FIR filter design” but is not well-suited to SMC synthesis 
because the specification requires non-zero-width don’t care regions between each pair of desired line segments; for SMC 
synthesis every region of the frequency spectrum might be important in keeping the SMC in the same auditory stream 
as the test sound. Matlab contains a whole family of filter design functions with the same problem, including “fircband” 
(in the Filter Design Toolbox) for “Constrained-band equiripple FIR filter design,” “firgr” (in the Filter Design 
Toolbox) for “Generalized Remez FIR filter design,” and “firls” (in the Signal Processing Toolbox) for “Linear-phase 
FIR filter design using least-squares error minimization.”  Note that the free Octave provides a version of the fir2 
function and many of Matlab’s other filter design implementations. 
92 See http://ccrma.stanford.edu/~jos/filters/Creating_Minimum_Phase_Filters.html for a description of this 
technique, and in particular http://ccrma.stanford.edu/~jos/filters/Matlab_listing_mps_m_test.html for Prof. Smith’s 
freely-available and quite elegant one-line Matlab implementation: 

sm = exp( fft( fold( ifft( log( clipdb(s,-100) ))))); 
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Creating a series of SMCs with different durations from a single input sound results in a sort of 

“morph” (timbral and temporal interpolation) between the original sound all the way to the ideal 

digital impulse, smoothly becoming shorter, more percussive, and more broad in frequency. 

The result of mixing an SMC back in with an original sound, aligned so that the PATs are equal, 

often fuses into a single perceptual event that sounds just like the original but with a stronger 

attack.93 By controlling the relative volume of the SMC and the original sound, and by varying 

the duration of the SMC, it’s possible to increase the “attackiness” of any sound. As early as 1979 

Wessel pointed out that sharpness of attack is one of the main perceptual dimensions of musical 

timbre and suggested that “both the fine tuning of rhythm in music and psychoacoustic research 

will benefit greatly if the control software of our synthesis systems allows easy and flexible 

adjustment of [attack characteristics] in complex musical contexts” (Wessel 1979). Almost every 

synthesis system does indeed provide easy and flexible adjustment of sharpness of attack for 

synthetic sound through features such as amplitude envelopes. The benefit of controlling sharpness 

of attack through this method of mixing in an SMC is that it applies to any arbitrary sampled 

sound, not just synthesized sound. 

The method described above for converting SMCs to minimum phase requires computing the 

spectrum of the signal.  To do this properly it is important to use sufficient zero-padding to 

produce enough frequency resolution to avoid time aliasing.94  As a compositional effect, 

however, time-aliased minimum-phase signals produce a strange form of periodicity, with an 

impulsive burst of energy at the beginning of the signal, then a weaker and less distinct second 

attack at exactly the midpoint of the resulting signal. This generates a form of quasi-periodicty 

that could be used to advantage in the synthesis of rhythmic material. 

Producing longer SMCs without converting to minimum phase can also produce some musically 

interesting results.  At a duration of about 10ms or longer, the symmetric quality of the linear-

phase impulse response manifests as a clear fade in and fade out around a central point.  It might 

be interesting to explore what is the PAT of these symmetric linear-phase signals. 

Finally, spectrally matched clicks can be useful for the common task of adding multiple copies of a 

new sound on top of an existing music recording to hear the output of an algorithm such as an 

onset detector or pulse tracker.  In this case one generally wants a percussive sound that will 

clearly mark the instants output by the algorithm. Such a sound should be enough like the existing 
                                                     

93 Because of the spectral matching, the SMC is much more likely to fuse perceptually with the original sound than an 
unrelated sound with the same sharp attack. 
94 http://ccrma.stanford.edu/~jos/sasp/Example_2_Time_Domain.html 
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recording that it will be easy to hear the relative timing of the algorithm’s output against the 

music recording, but distinct enough that it will be clearly perceived as something added to the 

original recording.  SMC’s arbitrary tradeoff of spectral similarity for percussiveness makes it 

good for creating a click sound that blends with or stands out from the original recording in the 

desired amount. 

3.7.3 Spectrally Matched Click Synthesis Future Work 

Currently I isolate the sound to be matched by slicing it out in the time domain.  For the SMCs 

described in the next chapter I was able to take the source sounds out of full music recordings 

because in each case I was able to find a segment of time containing only the desired sound event, 

with no other sounds playing.  However, in general it would be desirable to be able to make 

SMCs matched to sound events taken out of arbitrary polyphonic mixes.  The extremely difficult 

problem of extracting an individual sound event from a polyphonic mix95 is much easier when the 

end result is an SMC, because all that is required is the approximate magnitude frequency 

spectrum, which may survive intact even through artifacts and other imperfections of the 

polyphonic source separation process.  It would also be possible to compute the magnitude 

frequency spectrum S of the entire mix during the time span of the desired event, and then not 

even bother trying to recreate the desired event on its own, but instead partition S’s energy 

arbitrarily into the desired spectrum of the SMC and a residual spectrum representing all of the 

other sounds and noise being removed. For example, suppose we want an SMC matching a snare 

drum from a recording, but that snare drum always plays in unison with a hi-hat cymbal.  If we 

can find a segment where the hi-hat cymbal plays a note alone, we can use it to approximate the 

spectrum of that instrument.  Then we can find another segment where the snare drum and hi-

hat play a note together, take the spectrum, subtract the spectrum of the hi-hat, and use the 

remainder to create an SMC of the snare drum. 

As mentioned, there are very many algorithms for FIR filter design, some of which will probably 

perform better than “fir2” plus “mps” as described above.  In this case we can define “better” as 

“producing a (perceptually) closer approximation to the desired magnitude frequency response for 

a given filter order.” It may be the case that different techniques may be optimal depending on 

the duration of the SMC.  It is also likely that an algorithm specifically designed to produce 

minimum-phase filters will perform better than the combination of designing a linear-phase filter 

and then converting the impulse response to minimum phase in a second step. Finally, it might be 

                                                     

95 See, for example, (Master 2006). 
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advantageous to use a filter design method in which the minimized error between the desired 

magnitude frequency spectrum and the filter’s magnitude frequency spectrum is weighted 

perceptually by frequency region. 
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Chapter 4 Listening Experiment 

4.1 Introduction 

I carried out an Internet-based listening experiment in which a total of 57 subjects downloaded 

custom-built software for measuring perceptual attack time (PAT) using the synchrony method, in 

other words, adjusting the relative timing of various pairs of sounds until the attacks were 

perceived as synchronous. 

4.1.1 Hypotheses 

• Subjects will not exactly replicate their response for repetitions of the same trial, but instead 

will fit a probability distribution.  

• The shapes of these probability distributions will vary based on the sharpness of attack and 

other characteristics of the musical material.  

• These probability distributions will be narrower (i.e., subjects will repeat the same results 

more accurately) when the reference sound is spectrally more similar to the sound being 

tested.  

• Subjects will be more accurate when the musical material establishes an understandable and 

predictable rhythmic context. 

In addition to testing these hypotheses, another goal of the experiment was to make statistical 

models of various sounds’ perceptual attack time.  

4.2 Materials and Methods 

4.2.1 Online paradigm 

To measure the shape of the probability density function (pdf) for the difference between the PAT 

of a pair of sounds requires a large number of trials, since each trial provides only a single data 

point that can be interpreted as a sample drawn from the unknown pdf being measured.  In other 

words, it takes many trials with the same condition to estimate the PAT-pdf for that condition.  

Comparing PAT-pdfs for the same test sound against multiple reference sounds further multiplies 

the number of trials required.  To do this for more than a few sounds requires a large total 
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number of trials, so I decided to use a web-based online experimental paradigm (Disley, Howard, 

and Hunt 2006; Honing and Ladinig 2008; Reips 2002). 

My inspiration for using this paradigm was a study in which Honing found 162 subjects online for 

a test on tempo-specific timing in piano recordings of music by Bach, Beethoven, Chopin, and 

Schumann (Honing 2006).  Another group of researchers used a similar paradigm to have 59 

subjects rate twelve musical instrument samples on 15 scales labeled with timbral adjectives such 

as “clear,” “ringing,” and “nasal” (Disley 2006).  In what is probably the largest experiment 

dealing with sound perception, Cox found 130,000 subjects to rate sounds on a six-point scale 

(“not horrible”, “bad”, “really bad”, “awful”, “really awful”, and “horrible”) in a “hunt for the 

worst sound in the world” (Cox 2007).  In a similar spirit, but collecting huge amounts of data 

from people without enrolling them formally as experimental subjects, Slaney and White used 

almost 1.5 million jazz song ratings from 380,000 users to compute a similarity metric (Slaney and 

White 2007). What all this prior work has in common is that subjects listen to a collection of fixed 

sounds, and then answer multiple-choice questions about their perception of the sounds.  My 

experiment required a much greater degree of interactivity, so it had to be administered by 

custom software (described in detail in Appendix A, page 145), not a simple web form. 

4.2.2 Subjects 

Professor Jonathan Berger kindly supported the pilot study for this experiment by incorporating it 

into Stanford’s Music 151 course (“Psychophysics and Cognitive Psychology for Musicians”) 

during Spring 2007.  17 of his students took the experiment in an early form, providing invaluable 

feedback about technical challenges, user interface design, and other aspects of the experiment.  

Although I had to discard about half these trials due to a problem with the sounds, I incorporated 

the remaining 1797 trials from the pilot study into the final analysis. 

Another 40 subjects took the final version of the experiment. Although I took pains to allow 

subjects to participate anonymously in the experiment (as described in Section A.1.3 on page 

149), none actually did so, so I know at least the email address of all these people.  I recruited 

subjects by sending out an email to selected members of my personal lists of musician and 

computer music researcher contacts, to my colleagues at CCRMA and CNMAT, and also to 

appropriate mailing lists such as “AUDITORY” (researchers in auditory perception) and 

“sAmBiStAs!” (“discussion of performance of the music of Brazil”).  Approximately half these 

subjects were people I knew personally. 
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Of the 57 total subjects, 38 said they were male, 10 female, and 5 declined to state.  Subjects 

ranged in age from 19 to 62; Figure 17 is a stem-and-leaf plot (Tufte 2001, 140)96 of the subjects’ 

reported ages.97 

 

1|99 
2|0123345566677778889 
3|001112344455688 
4|1223389 
5| 
6|22 

Figure 17: Stem-and-leaf plot of subjects' reported ages.   

(An additional 7 subjects did not state their ages.) 

4.2.3 Apparatus 

Each subject used his or her own computer and sound system to take the experiment.98  The 

software for the experiment runs on Windows or Macintosh computers99 and is described in detail 

in Appendix A. Subjects needed to have an Internet connection to download the software and 

then again at the end of the experiment to email the results, but did not need to be connected to 

the Internet while taking the experiment.100  

A major weakness of this Internet-based method of performing listening experiments is a lack of 

control over the audio hardware used by subjects (Disley, Howard, and Hunt 2006).  An optional 

question at the end of each trial asked the subject “how are you listening to the sound from the 

computer”;  

Table 5 shows the frequency of each response. 

                                                     

96 A stem and leaf plot is like a histogram, except that instead of simply showing the number of instances in the range 
corresponding to each bin it shows each individual value.  In this case the bin width is ten years, so that the bin number 
is the first digit of the subject’s age (base 10) and the numeral inside each bin is the second digit. 
97 For ethical reasons Stanford’s Institutional Review Board required me to restrict participation in this experiment to 
volunteers at least 18 years of age. 
98 Some subjects in the pilot study took the experiment using computers at CCRMA. 
99 At least one would-be subject was not able to participate due to the lack of Linux support. 
100 At least one subject took the experiment through headphones on a long airplane flight. 
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Table 5: Sound equipment subjects reported using.  

These are the menu options available to answer the question “How are you listening 

to the sound from the computer?” as described in Section A.2.3 (page 164). 

4.2.4 Stimuli 

Table 6 lists the 20 sound files that were used in this experiment.  Each of these 20 files is a sound 

example, whose name is given in the “Name” column, but with spaces replaced by underscores.  

(For example, the sound Brazil loop is the sound example named Brazil_loop.) 

Most of these sounds were derived from John Grey’s historic collection of short orchestral tones 

(Grey 1975), resynthesized sinusoidal models of short notes played by a variety of orchestral 

instruments and equalized perceptually for pitch (always Eb above middle C), duration (about 300 

ms) and loudness, with no partial’s frequency ever exceeding 10 kHz. I chose these tones because 

they were the subject of a pioneering study of PAT (Gordon 1987) as well as many studies of 

timbre (Gordon and Grey 1978; Grey 1975, 1977; Grey and Moorer 1977; Wessel 1979), and 

since I have both the original additive synthesis data (courtesy of David Wessel) and some of the 

results of Gordon’s study (see Section 4.3.5.1 on page 87).  I selected the trumpet, clarinet, and 

violin tones, because they are varied in terms of both their overall magnitude spectra and the 

timing of their attacks, and because this allowed me to replicate three of the conditions of 

Gordon’s earlier study as described in Section 4.3.5 (page 87). Each “Grey tone” exists in the 

form of breakpoint function envelopes for amplitude and frequency trajectories for a small 

collection of sinusoids. I did not have access to the original resynthesized time-domain audio 

samples that Gordon used but instead synthesized them in Matlab. I linearly interpolated each 

amplitude and frequency trajectory, and I started each sinusoid’s phase at zero and let 

instantaneous phase be simply the integral of instantaneous frequency (Wright and Smith 2005).  

For each of these three tones I also synthesized three spectrally matched clicks (“SMC,” as 

described in section 3.7, page 63) with durations of 1024, 512, and 256 samples (corresponding to 

Response Number of trials 

“Good headphones” 600 

“Decent headphones” 239 

“Bad headphones” 0 

“Good speakers” 104 

“Decent speakers” 218 

“Built-in speakers” 180 

“Bad speakers” 0 

[no response] 2138 
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about 23.3, 11.6, and 5.8 ms). I chose these durations according to my personal subjective sense 

of the closeness of the spectral match to the original. In each case, the 23-ms SMC sounded like 

good match, the 12-ms SMC sounded like a decent match, and the 6-ms SMC sounded like a 

click with just some of the characteristics of the original. 

Name Description Duration 
Brazil loop One-bar loop of Brazilian Maracatu drumming (Crook 2005, 145-

166) by members of Maracatu Nação Estrela Brilhante during an 
informal warm-up before a parade in February 2007, recorded 
and looped by me. 

1959.2 ms 

Brazil SMC23 Spectrally matched click (“SMC”) made from an isolated note 
played in unison by gonguê (bell), tarol (snare drum) and abê (beaded 
gourd), taken from Brazil loop. 

23 ms (1024) 

Clarinet Grey’s E-flat Clarinet tone (“ecq716”) 330 ms 
Clarinet SMC23 Spectrally matched click made from Clarinet 23 ms (1024) 
Clarinet SMC12 Spectrally matched click made from Clarinet 12 ms (512) 
Clarinet SMC6 Spectrally matched click made from Clarinet 6 ms (256) 
Funk loop One-bar loop of James Brown’s famous drum break from the song 

Funky Drummer (Greenwald 2002, 261-263; McGuiness 2005, 62-
73; Stewart 2000, 304-305), originally performed by Clyde 
Stubblefield and looped by me.   

2365.2 ms 

Snare Isolated single snare drum note taken from Funk Loop 170.1 ms 
Snare SMC3 Spectrally matched click made from Snare 3 ms (398) 
Ideal impulse Single digital “1” embedded in a stream of “0” samples, aka the 

“Kronecker delta function,” the “unit impulse”, or “ideal digital 
impulse.” 

0.02 ms 
(1 sample) 

Mauritania loop One-bar loop from the metered portion of the instrumental 
introduction to The Tortoise’s Song (Ishteeb Laggatri) by Khalifa Ould 
Eide and Dimi Mint Abba (World Circuit WCD 019, 1990), 
looped by me. 

2053.7 ms 

Mauritania 
SMC12 

Spectrally matched click made from an isolated bass drum note 
from Mauritania loop. 

12 ms (512) 

Trumpet Grey’s Trumpet tone (“tpq642”) 360 ms 
Trumpet SMC23 Spectrally matched click made from Trumpet 23 ms (1024) 
Trumpet SMC12 Spectrally matched click made from Trumpet 12 ms (512) 
Trumpet SMC6 Spectrally matched click made from Trumpet 6 ms (256) 
Violin Grey’s Violin tone (“vcq526”) 344 ms 
Violin SMC23 Spectrally matched click made from Violin 23 ms (1024) 
Violin SMC12 Spectrally matched click made from Violin 12 ms (512) 
Violin SMC6 Spectrally matched click made from Violin 6 ms (256) 

Table 6: Sound files used in the experiment.  

Parenthesized number in “duration” column is duration in samples. 

I also selected three one-bar loop excerpts of rhythmic music.   These were for a different kind of 

task, marking the times of individual events within the loop rather than simply aligning a pair of 
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isolated events.  (See Section 4.2.5.2 “Tasks” below.)  For each loop I isolated one example 

instance of the sound the subject was supposed to mark, then made an SMC from the isolated 

sound.  In the case of the Funk loop (for which the isolated sound was a single snare drum hit), I 

used the original isolated sound in addition to the SMC. 

Finally, I also included the ideal impulse101 so that I would have a reference whose absolute time 

location is known to within a single digital audio sample.  

4.2.5 Procedure 

4.2.5.1 Preliminaries 

Each volunteer subject began by visiting the web page for the experiment.102  That page 

contained links to download the software to run the experiment, installation instructions (which 

were simply to open the downloaded archive and then double-click the appropriate file), and an 

image showing the software’s opening screen.  It also addressed the popular question “how long 

will this experiment take?”  Near the top was a link titled “click here to learn what this research is 

about and why it’s important” that went to a separate page defining PAT, demonstrating it with 

some simple sound examples, and addressing the questions “why is perceptual attack time 

important?”, “what will these experiments find out?”, and “how do these experiments fit into the 

overall research?”  Finally there was an email address allowing potential subjects to contact me 

with any questions.103 

The software for the experiment (described in detail in Appendix A) began with a series of screens 

guiding the subject through various preliminaries:  

• Agreement (Figure 66): Make sure subjects agree to participate in the experiment, offering 

a chance to quit. 

• What’s the point? (Figure 67): Provide some context for the experiment and its user 

interface.104 

• Email test (Figure 85): Create a test message and make sure it opens properly in the 

subject’s email program. 

                                                     

101 http://ccrma.stanford.edu/~jos/filters/Impulse_Response_Representation.html 
102 http://ccrma.stanford.edu/~matt/together 
103 Some subjects asked me questions by email before beginning the experiment; “how long will it take?” was by far the 
most popular. 
104 Thanks to Michelle Logan for pointing out the need for this screen. 



 76 

• Personal information (Figure 68).  Ask subjects for name, age, gender, level of musical 

experience, and description of musical training, all optional.  This additional data might 

become the subject of future research; also, asking these kinds of “filter questions… at the 

beginning of an experiment encourage[s] serious and complete responses” (Reips 2002, 254). 

• Volume adjustment: Starting from zero, have subjects gradually increase the volume to a 

comfortable listening level (which then becomes the default initial volume for all trials).  This 

screen also has a troubleshooting area that diagnoses a few ways that the software might not 

make a sound (such as incomplete download of the software or misconfigured audio settings 

in MSP or the operating system) and offers solutions. 

• Tap input method selection and calibration: Ask subjects to choose whether they will 

enter taps (for multiple-tap trials) via the QWERTY keyboard or audio input, as described in 

Section A.2.2. 

• Explanation of the user interface (Figure 73): A diagram showing the spatial layout of 

the keys used in the interface (which the user could view again at any time by pressing the 

question mark key). 

• Example trials (Figure 70, Figure 71, and Figure 72): Three screens guiding the subject 

step by step through every aspect of the interface in the context of performing two example 

trials. 

4.2.5.2 Tasks 

Each task used the synchrony method to measure the relative PAT of two sounds. The trials came 

in a sequence of blocks with the same task, as shown in Table 7.  Note that the blocks alternated 

between tasks based on aligning a single pair of isolated sounds (tasks beginning with “synchro-

nize”) and tasks based on entering times for multiple sounds against a repeating rhythmic musical 

example (tasks beginning with “mark each”).105 

                                                     

105 In retrospect, since many subjects did not complete the full 75 trials (see Figure 18), it might have been good to 
randomize the order of the trial blocks to avoid the bias of more total trials for the earlier tasks. 
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Trial 
Block 

Trial 
numbers 

“Your task for 
this trial” 

Fixed repeating 
sound (“loop”) 

Sound adjustable by the subject 
(“click”) 

1 1-11 “Synchronize two 
synthetic tones” 

Clarinet, Trumpet, 
or Violin 

Clarinet, Trumpet, or Violin 

2 12-14 “Mark each note of 
the snare drum” 

Funk loop  Clarinet, Snare, Snare SMC3, Brazil 
SMC23, or ideal impulse. 

3 15-41 “Synchronize click 
with tone” 

Clarinet, Trumpet, 
or Violin 

Clarinet SMC23, Trumpet SMC23, or 
Violin SMC23, or SMC12 or SMC6 
matching the fixed sound, or ideal 
impulse 

4 42-44 “Mark each note of 
the bell” 

Brazil loop Brazil SMC23 (which captured the 
timbre of the bell), Snare SMC3, 
Clarinet, or ideal impulse. 

5 45-72 “Synchronize two 
clicks” 

A click sound (ideal 
impulse, Snare or 
any SMC) 

Another click sound (ideal impulse, 
Snare, or any SMC) 

6 73-75 “Mark each note of 
the bass (lowest 
pitched) drum” 

Mauritania loop Mauritania SMC12 (which matched 
the timbre of the bass drum, Clarinet, 
or ideal impulse. 

 Above 75 At this point each trial was selected randomly from one of the above. 

Table 7: Blocks of trials in the listening experiment. 

With only three synthetic tones in my study it was easy to present all 9 possible ordered 

combinations, considering each tone against itself and each of the others and also swapping the 

fixed/adjustable roles (trial block 1).  This would not have been practical in trial block 5 with the 

14 click sounds (ideal impulse, SMCs from three sounds isolated from looped excerpts, and SMCs 

of three different durations from all three synthetic tones, plus the Snare sample that isn’t 

technically a click), so the experiment used only 22 of the 196 possible ordered pairs. Nine of 

these were all of the possible ordered pairs from the subset consisting of Ideal impulse, Snare, and 

Snare SMC3. 

For tasks based on aligning a single pair of isolated sounds, the fixed reference sound repeated 

every 600 ms. The movable test sound started in a random initial temporal relationship to the 

reference sound. For the “synchronize two synthetic tones” trials the initial offset (i.e., the delay 

between the physical onset of the two sounds) was chosen uniformly from the range ± 340 ms. For 

blocks in which one of the sounds was a short click, the initial offset was chosen uniformly from 

the range ± 113 ms. The subject could adjust the relative timing of the sounds either with the 

QWERTYUIOP keys (as shown in Figure 73) or an on-screen slider (as shown in Figure 69).  

Each pixel of the slider corresponded to about 1.2ms, whereas each key moved the test sound 

forward or backward by about 10 ms, about 5 ms, about 1 ms, about ¼ ms, or 1/44.1 ms (one 

audio sample) with respect to the reference. 
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For tasks based on marking multiple notes in a looping example, the repetition period was the 

length of the loop, as shown in Table 6. The subject first had to enter an initial time for each test 

sound by tapping on the keyboard or the audio input, then select each test sound (which would 

mute all the other test sounds) and fine-tune its temporal placement with respect to the loop. 

For all trials the subject had complete control of both the total volume and the relative volume of 

the reference and test sounds, either via on-screen sliders (in increments of about 0.6 dB per pixel) 

or using the arrow keys (each of which changed relative or overall gain by about 1.2 dB per 

keypress).  The software made no attempt to achieve a standard presentation level. 

The subject could pause the experiment at any time, and was forced to do so (and encouraged to 

take a break) for 60 seconds every 15 minutes.  Each trial lasted until the subject was satisfied with 

the resulting temporal alignment between test and reference sounds.  At the end of each trial the 

subject had the opportunity to provide optional additional information about the trial (as shown 

in Figure 82) and the option to continue with another trial or pause and email the results so far.  

After 75 trials the software reminded the subject that only 75 trials were requested, but 

encouraged the subject to continue if desired (as shown in Figure 75).  When the subject quit the 

software it would save the personal information and number of trials completed into text files; if 

the subject opened the software again it would go through the same series of opening screens (to 

re-confirm subject’s agreement to participate, to re-configure the necessary settings, and to 

remind the subject of the user interface) and then resume from the next trial in the sequence. 

4.3 Analysis  

4.3.1 Removal of Bogus Trials 

Because the software recorded the entire time sequence of user actions for each trial, it was 

possible to examine what the user did for each trial.  In a few cases the user “accepted” the 

random initial time offset between two sounds in less than one second; I judged these kinds of 

trials (which generally tended to be extreme outliers) to be user errors due to lack of experience 

with the interface and removed them. 

I also removed all trials from one pilot study subject who did the experiment in a noisy computer 

lab at CCRMA listening through the relatively quiet built-in speaker on a Mac mini computer; a 

huge proportion of these trials were outliers. 
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Also, I manually examined each trial whose result was more than three standard deviations from 

the mean.  In each case I listened to the two sounds with the subject’s final time offset for that trial 

(in other words, the final alignment that supposedly sounded “synchronized” to the subject), and if 

the result sounded obviously wrong (in other words, if it sounded like two distinct attacks 

separated in time) I labeled it as an outlier and removed it. 

4.3.2 Subjects’ Seriousness: Dropout, Time per Trial, and Trial Self-

Ratings 

One issue that must be addressed with online experiments is “to distinguish between serious and 

unserious responses” (Honing and Ladinig 2008, 5).  The typical method for this is to measure 

dropout, the situation in which a subject begins but does not complete the experiment (Reips 2002). 
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Figure 18: Stem-and-leaf plot of the number of trials completed by each subject. 

Note the two modes at 75 and 100 trials (the number of trials requested for the full experiment 

and the pilot study respectively).  Many subjects dropped out before completing 75 trials, and 

five subjects kept going with extra trials after “finishing” the experiment.  
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I did not keep a log of the number of times the website for the experiment was viewed or the 

number of times the software was downloaded, so there is no way to know how many people 

started the experiment (or thought about starting it) but did not email any trials. Figure 18 is a 

stem-and-leaf plot of the number of trials completed by each subject.  Many of the single-digit 

responses come from students who spent a total of one classroom hour on the experiment. 

The software automatically kept track of the total amount of time spent on each trial, including 

breaks.  Of course there’s no way to know the portion of this time during which the subject was 

actually listening and paying attention, though in some cases the log shows that the subject made 

no adjustments for a long period of time, so it’s highly likely that this was a break.  Figure 19 is a 

histogram of the time spent on each trial; the extreme outliers to the right were all from trials in 

which the subject must have taken a very long break. 

 

Figure 19: Histogram of (log) amount of time spent on each trial (including breaks).  

Most trials took about a minute. 

An optional question at the end of each trial asked the following question: “On a ten-point scale 

of accuracy, precision, and how much you care about this trial and the experiment as a whole, 

how would you rate this trial?”  These example responses calibrated the scale: 

• Zero: “I don't care, I'm not paying attention, the data I'm giving you is random junk, I have 

no idea what you want me to do, the sound isn't working, etc.” 

• Five: “Nothing sounds exactly right to me, but this answer is more or less OK”  

• Ten: “I listened as carefully as I could for as long as necessary to come up with my definitive 

best final answer.” 
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Figure 20: Histogram of subjects' holistic rating of each trial “on a ten-point scale of 

accuracy, precision, and how much you care about this trial and the experiment as a 

whole.”  (-1 indicates no response.) 

Figure 20 shows the histogram of the frequency of each of the 11 possible responses to this 

question.  There is a huge mode at the response “9,” with the vast majority of trials (> 85%) 

having a response of 8, 9, or 10, and the frequencies falling off steadily towards 5.  97.9% of 

responses had a rating of at least five (“this answer is more or less OK”).  Of the 19 trials that the 

subject scored as zero, all but one were tasks of the “mark each” variety, which was more difficult 

to understand and to perform than the tasks aligning pairs of isolated sounds.106   

As one might expect, for the 1703 trials for which the subject gave a rating, there was a small but 

significant correlation (r=0.12, p < 10-5) between the log of the time spent and the trial’s rating.107  

Figure 21 compares these two variables in a scatter plot.  

                                                     

106 On the other hand, one subject made the following comment after the second trial involving a pair of isolated tones: 
“Make it more interesting than just one repeated sound. Something more musical.” 
107 To compute this correlation I removed trials that the subject did not rate.  However, the unrated trials appear 
(encoded with a rating of -1) in Figure 21. 
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Figure 21: Scatter plot of subject’s holistic rating of each trial versus the time spent on 

the trial.  A “rating” of -1 indicates no response.  

All in all, I am confident that the vast majority of these data come from trials in which the subject 

was taking the experiment seriously. 

4.3.3 Method of Plotting Results Comparing Pairs of Sounds 

Throughout the rest of this chapter I will display results graphically for PAT comparisons of 

various pairs of sounds, for example Figure 22.  Each such figure contains two or three plots 

sharing the same X axis.  The X axis is always relative time in milliseconds between physical 

onsets of the two sounds, which is equal to the relative time in milliseconds between the sounds’ 

PATs.  Labels on the two extremes of the X axis indicate the meaning of positive versus negative 

values of X; for example in Figure 22 the negative portion of the X axis is labeled “Trumpet 

earlier” while the positive portion is labeled “Clarinet earlier.”  

The bottom area contains one or more box plots, also known as “box and whisker” plots 

(Cleveland 1993, 25-27). Each displays the following: 

• The median (the short red vertical line in the middle of each box) 

• The positions of the 25th and 75th percentiles (the left and right edges of the box) 

• The extent of the rest of the non-outlier data (the “whiskers,” plotted as dotted lines 

extending outwards from the box), and 

• The outliers (plotted individually with “+” and defined as data lying more than 1.5 times the 

interquartile range away from the median). 
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Above the box plots is an area containing the same number of one-dimensional scatter plots in the 

same vertical order, each of which simply shows every data point for the given pair of sounds. I 

added slight random jitter to the vertical axis to enhance readability. 

Finally, for some plots (including Figure 22) the top area consists of nonparametric kernel density 

estimates of the shapes of the underlying probability density functions. A Gaussian distribution of 

fixed variance is placed around each data point and these are all summed together. The trick with 

these estimates is in choosing the standard deviation of each Gaussian, which in the context of 

kernel density estimation is called the “window width” h.  The value of h that minimizes the 

asymptotic mean integrated squared error (“MISE”) between the estimate and the true (unknown) 

underlying distribution is  

 
  
h = (4 /3)1/5

!n
"1/5

#1.06!n
"1/5  

where n is the number of data points and ! is an estimate of the standard deviation of the 

underlying distribution, the smaller of the sample standard deviation or 0.7418 times the 

interquartile range (Martinez and Martinez 2002, 280-285). 

4.3.4 Interchangeability of Fixed and Moveable Sounds 

For trials involving the synchronization of two isolated sound events (trial blocks 1, 3, and 5), the 

task was to “synchronize” the sounds by adjusting the physical onset time of the moveable one to 

make it “sound like it’s lined up exactly” with the one that was repeating at a fixed rate.  In other 

words, the task was to make the PATs of two sounds be equal to each other.  By the symmetric 

property of equality, one would assume that subjects would arrive at the same the relative timing 

of a given pair of sounds regardless of whether the task was to move A with respect to B or to 

move B with respect to A.  After all, what the subject hears in either case is an identical mixture of 

A and B.  On the other hand, the fact that one sound is fixed in time while the subject can adjust 

the second sound might have some impact.108  

There were six pairs of sounds for which there were trials using both possibilities of which was 

fixed and which was adjustable by the subject: all three pairs of Grey’s Clarinet, Trumpet, and Violin 

tones, and all three pairs of the Snare sample, its spectrally matched click Snare SMC3, and the Ideal 

                                                     

108 As an analogy, a harmonic series synthesized by additive synthesis will tend to fuse perceptually into a single tone, 
but if one of the partials moves independently in frequency then we will tend to hear it a separate sound object. Even if 
that partial’s frequency ends up in the “correct” place in the harmonic series, the memory of its previous independent 
motion will often cause us to keep hearing it as a separate sound object. (See Bregman’s description of his “Old-Plus-
New Heuristic” (Bregman 1990, 222-227).) Perhaps there is some equivalent effect in the PAT alignment case. 
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impulse.  The following six figures (Figure 22 through Figure 27) compare the results of swapping 

the test and reference sounds for each of these six pairs of sounds.  (Of course it’s always necessary 

to reverse the sign of each result when changing the sense of which was test and which was 

reference.) 

 

Figure 22: Comparison of trials with Trumpet and Clarinet depending on which was 

fixed and which was moveable. 

 

Figure 23: Comparison of trials with Violin and Clarinet depending on which was 

fixed and which was moveable. 
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Figure 24: Comparison of trials with Trumpet and Violin depending on which was 

fixed and which was moveable. 

 

Figure 25: Comparison of trials with Snare and Snare SMC3 (Spectrally Matched 

Click created from Snare sample) depending on which was fixed and which was 

moveable. 
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Figure 26: Comparison of trials with Snare and Ideal impulse depending on which 

was fixed and which was moveable. 

 

Figure 27: Comparison of trials with Ideal impulse and Snare SMC3 (Spectrally 

Matched Click created from Snare sample) depending on which was fixed and which 

was moveable. 

For each of these pairs of sounds I also computed the two-sample Kolmogorov-Smirnov 

goodness-of-fit hypothesis test109 to see whether the results seem to be drawn from the same 

underlying distribution.  The null hypothesis of this test is that they are from the same 
                                                     

109 I used the kstest2 procedure from Matlab’s Statistics Toolbox. 
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distribution, and in no case was the test able to reject the null hypothesis.110  Table 8 shows the 

results. 

Sound A Sound B NA,B  NB,A Result  pval 
Clarinet Trumpet 46 45 same  0.73465 

Clarinet Violin 34 36 same  0.35733 

Snare Snare SMC3 14 22 same  0.51087 

Snare Ideal impulse 21 31 same  0.086796 

Snare SMC3 Ideal impulse 19 36 same  0.49088 

Trumpet Violin 44 40 same  0.81767 

Table 8: For the six pairs of sounds for which there were trials with each sound in 

both the fixed and moveable role, the result of the two-sample Kolmogorov-Smirnov 

goodness-of-fit hypothesis test of whether the samples seem to come from the same 

underlying distribution. 

  NA,B is the number of trials with A moveable and B fixed; NB,A is the number of trials 

with B moveable and A fixed.  In every case the result is “same,” meaning that this 

test was unable to reject the null hypothesis that the two samples were drawn from 

the same underlying probability distribution. 

I conclude that the distribution of results does not in fact depend on which sound was fixed and 

which was moveable, so for subsequent analysis I combined the results from both conditions for 

each pair of sounds. 

4.3.5 Reproduction of Gordon’s 1985 Results 

As mentioned previously, John Gordon’s pioneering PAT measurement work (Gordon 1987; 

Gordon 1984) was an important inspiration for this study, and I was fortunate to be able to re-use 

the same synthesized orchestral tones (Grey 1975) over twenty years later in this experiment. This 

section compares the old and new results for the conditions that I replicated.  

4.3.5.1 Resurrecting Gordon’s Results 

Although Dr. Gordon was kindly willing to share his data with me, he no longer had a copy of 

any of the results of his experiment, and an attempt to resurrect his circa-1984 files from CCRMA 

backups indicated that this would not be easy, and likely impossible.111 It appears that the only 

                                                     

110 Lack of proof that the distributions are different is not proof that they are the same, but it’s better than nothing. 
111 I am grateful to Fernando Lopez-Lezcano and Bill Schottstaedt for their intrepid assistance in this endeavor. 
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surviving results of his experiment are the published figures (Gordon 1987; Gordon 1984).  

Therefore I reverse-engineered the figures from a PDF file of a scan of Gordon’s paper. (See 

Figure 12 [page 40] for an example copied [with permission] from Gordon’s paper.) Specifically, I 

copied each graph as a digital image, being very careful to orient the lower left corner of the 

“copy” rectangle exactly on the origin of each graph, and pasted it into an image file, which I 

then cleaned up in Adobe Photoshop (e.g., to get rid of random stray pixels presumably added by 

the process of scanning the original document to create the PDF, and also to remove the numerals 

and vertical lines that had been added on top of the graphs), and then finally brought into Matlab, 

where I computed the vertical centroid of the “ink” (i.e., degree of blackness of each pixel) to 

generate a Y data point for each X value on my axis. 

The scaling of the Y axis is immaterial, since it represents relative probability. What about the 

scaling of the X axis (representing time)?  I needed a function to map each horizontal pixel 

position to a time in milliseconds.  Luckily for me, each of Gordon’s graphs has the same scaling 

for the X axis and tick marks every 10 ms, so I only had to do the following operation once.  First 

I copied and pasted just the X-axis tick marks to an image file. Since each of these tick marks had 

a horizontal width of two or more pixels (black in the middle and grey on the ends), I visually 

estimated a fractional pixel value to be the “center” of each tick mark. I then performed a linear 

regression through my table of tick times (-50 to +50 in increments of 10) versus estimated 

fractional pixel positions to find the desired function.  

4.3.5.2 Similarities and Differences Between the Two Experiments 

By including the Clarinet, Trumpet, and Violin sounds in this experiment and including trials 

synchronizing each of the three to the Clarinet sound, I was able to give subjects the same sounds 

and the same tasks as three of Gordon’s conditions, namely, measuring PAT of each with the 

synchrony method against the Clarinet reference. 

One subtlety about the stimuli has to do with the additive synthesis necessary to recreate these 

three sounds. I was not able to reuse the exact synthesized time-domain samples from Gordon’s 

experiment, but instead resynthesized them from the additive synthesis breakpoint functions as 

described in Section 4.2.4 (page 73).112  Gordon also used linear interpolation of amplitude and 

frequency trajectories and also started each oscillator’s phase at zero (John Gordon, personal 

communication, Jan 24 2008). 

                                                     

112 I probably would have resynthesized these sounds anyway, even if I had the originals, because of differences in 
sampling rates. 
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In terms of apparatus, each of Gordon’s subjects performed the experiment in the same “quiet 

listening environment” listening to sound through the same “single loudspeaker having a wide, 

flat frequency response and situated about 8-10 feet directly in front of the subject” (Gordon 

1984, 32); my subjects each performed the experiment through different audio hardware and in a 

different physical location, as described in Section 4.2.3. The digital audio sampling rates were 

different in the two experiments, but this is immaterial because the additive synthesis data was 

band-limited.  

The software for administering the experiment was similar in the two cases, with different keys 

changing the relative delay by varying amounts (in both cases down to a single audio sample) and 

visual feedback of the current delay shifted by a random amount so as to prevent subjects from 

choosing a value such as zero.  My software, however, also provided an on-screen slider (shown in 

Figure 69) as a second option for changing the relative times.  Perhaps more importantly, my 

software also provided on-screen sliders allowing the subject to adjust the relative volume of the 

two sounds.  Another difference is that in Gordon’s experiment “each trial began with the relative 

onset times ~120 ms apart; the subject was thus forced to synchronize a pair of tones that initially 

was obviously asynchronous” (Gordon 1984, 69), whereas in my experiment the relative onset 

times were chosen randomly from a uniform range and might have initially sounded synchronous 

or close to synchronous in some cases. 

All 8 of Gordon’s subjects “were experienced in computer music and considered to have well-

trained ears” (Gordon 1984, 32), and each performed a total of 270 of these kinds of trials (6 

instances each of 15 test tones times 3 reference tones), so his N=48 for each of the three pairs of 

sounds.  My 55 subjects had a wide range of backgrounds, degree of familiarity with computer 

music, and musicianship, and each performed an average of about 7 trials aligning these 

particular three sounds.113 My N is 45 for Clarinet against Clarinet, 91 for Clarinet against 

Trumpet, and 70 for Clarinet against Violin. 

                                                     

113 Table 7 indicates that each subject should have performed 11 trials.  The actual average number is lower because 
some subjects dropped out before completing the first trial block (as shown in Figure 18) and because some of these 
trials were bogus or extreme outliers as described in Section 4.3.1. 
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4.3.5.3 Comparison 

The next three figures (Figure 28 through Figure 30) plot an average shifted histogram114 of my 

results for each pair of sounds against Gordon’s published results for the same pair.115  In each 

case they are somewhat similar, with the modes of the two distributions only a few milliseconds 

apart.  For both Clarinet vs. Trumpet and Clarinet vs. Violin the distributions from my 

experiment extend further to the left (which means further in the direction of starting the Clarinet 

earlier than the other tone) than Gordon’s. Perhaps the real difference is that my results have a 

higher variance because of the greater variability in my subjects’ backgrounds and sound 

hardware (and the simple fact of my having fewer trials each from a larger number of subjects); 

the fact that this added width is on the left of these figures may be a coincidence. 

 

Figure 28: Comparison of Gordon's versus my results synchronizing Clarinet against 

Violin 

                                                     

114 To make an average shifted histogram from a set of data points, first make a series of histograms from the same data 
points and with the same bin widths, but steadily varying the absolute starting position of all bins, then add them all 
together (Martinez and Martinez 2002, 274-280). 
115 For every figure in this section I scaled the heights of the two curves to make their areas equal. 
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Figure 29: Comparison of Gordon's versus my results synchronizing Clarinet against 

Trumpet 

 

Figure 30: Comparison of Gordon's versus my results synchronizing Clarinet against 

Clarinet. 

The two distributions in Figure 30 are remarkably similar in that both have a mode near time 6 

ms and another mode around 21 ms, but quite different because mine also has another mode (and 

the largest) near time -14 ms, in a region where Gordon’s distribution has fallen almost to zero. 

Since these trials compared two instances of the same Clarinet sound, we would expect the results 

to be symmetric, as Section 3.5.3 (page 50) suggests.  So I artificially made each distribution 
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symmetric by adding a second copy that had been time-reversed around the zero point. Figure 31 

compares the resulting pair of symmetric distributions: we see that the formerly distinct structure 

of the prominent modes has been blurred away, and that they now appear similar only in that 

they both appear vaguely Gaussian. 

 

Figure 31: Comparison of Gordon’s versus my results synchronizing Clarinet against 

Clarinet, after artificially forcing both distributions to be symmetric around time 

zero. 

 

Figure 32: Comparison of Gordon’s versus my results synchronizing Clarinet against 

Clarinet, after artificially forcing both distributions to be symmetric around the 6 

millisecond point. 
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I again forced each distribution to become symmetric, but this time time-reversing around the 6 

millisecond point instead of time zero.  Figure 32 compares the resulting curves: the central mode 

is now still distinctly visible (by construction), but in Gordon’s results the side mode has been 

almost smoothed away, while in mine the side mode is almost as prominent as the central mode.    

4.3.6 Test of Normality of Results 

I used Lilliefors’ goodness-of-fit test of composite normality to see whether the results from each 

pair of sounds fit a Gaussian distribution.116  The null hypothesis for this test is that the data are 

normally distributed with unspecified mean and standard deviation. Of the 48 pairs of sounds in 

this experiment, 12 of the distributions were found to be non-Gaussian, as shown in Table 9, and 

the remaining 36 were found to be Gaussian, as shown in Table 10.117  Figure 33 through Figure 

36 show histograms of the non-normal distributions superimposed against Gaussian bell curves 

with the sample mean and sample standard deviation. 

Sound A Sound B N Skewness Kurtosis Nrml? P-val T.S. 
Snare self 40 0.0837 3.93 no <0.001 0.218 
Snare SMC3 Ideal impulse 55 0.418 5.98 no <0.001 0.183 
Ideal impulse Violin SMC6 37 1 5.42 no <0.001 0.203 
Violin SMC6 self 20 1.63 5.74 no <0.001 0.27 
Snare Ideal impulse 52 -0.121 4.02 no 0.00175 0.161 
Trumpet Violin 84 0.506 4.17 no 0.00255 0.125 
Ideal impulse Maurit. SMC12 32 0.747 4.63 no 0.00974 0.18 
Snare SMC3 self 33 1.12 6.43 no 0.0128 0.173 
Trumpet Trumpet SMC6 28 0.747 3.1 no 0.0156 0.184 
Clarinet self 45 0.512 2.42 no 0.0172 0.146 
Maurit. SMC12 self 28 1.44 6.02 no 0.0192 0.181 
Violin Violin SMC6 36 0.708 2.85 no 0.0233 0.158 

Table 9: Results of Lilliefors' goodness-of-fit test of composite normality for the pairs 

of sounds whose distributions are not normal.  

The sample skewness measures a distribution’s asymmetry.118 The sample kurtosis 

is a measure of how much a distribution is “peaked”; it would be exactly 3 for a per-

fectly normal distribution.  “Nrml?” stands for “Normal?”; all of the distributions in 

this table were found not be normal.  “P-val” is the P-value giving the statistical sig-

nificance of this result, and “T.S.” is the test statistic.  Results are sorted by P-value. 

                                                     

116 I used the lillietest procedure from Matlab’s Statistics Toolbox. 
117 Actually, for these 36 sounds all we know is that Lilliefors’ test was unable to reject the null hypothesis that the 
distributions are normal, which is not quite the same as determining that they are normal. 
118 Skewness is zero for a perfectly symmetric distribution. To help give some intuition for the units of the skewness 
measure, the skewness of a distribution of points each of which is the absolute value of a sample drawn from a zero-mean 
unit-variance Normal distribution (i.e., a Gaussian bell curve chopped in half exactly at the midpoint) is about 1. In 
other words, this Matlab expression will always have a value close to one: 
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Sound A Sound B N Skewness Kurtosis Nrml? P-val T.S. 
Ideal impulse self 91 -0.586 4.1 yes 0.0554 0.0921 
Snare Snare SMC3 36 0.0165 2.7 yes 0.0634 0.142 
Violin Violin SMC23 28 0.936 3.21 yes 0.0874 0.153 
Clarinet SMC23 self 27 -0.0618 3.22 yes 0.0921 0.155 
Brazil SMC23 Ideal impulse 16 1.6 6.7 yes 0.105 0.194 
Violin Violin SMC12 29 0.471 3 yes 0.125 0.144 
Violin SMC23 Violin SMC6 20 0.773 3.62 yes 0.126 0.171 
Clarinet SMC6 Violin SMC6 21 -0.323 2.11 yes 0.138 0.165 
Trumpet SMC23 Violin 30 -1.03 4.54 yes 0.158 0.136 
Trumpet self 37 0.482 2.48 yes 0.158 0.123 
Clarinet SMC23 Violin SMC6 14 -0.0433 1.72 yes 0.221 0.183 
Clarinet Ideal impulse 33 0.0387 1.93 yes 0.276 0.118 
Clarinet Trumpet 91 -0.189 2.57 yes 0.28 0.0723 
Clarinet Clarinet SMC23 38 -0.0475 2.33 yes 0.283 0.11 
Clarinet Clarinet SMC12 33 -1.05 4.45 yes 0.285 0.117 
Brazil SMC23 self 24 0.0632 2.38 yes 0.329 0.132 
Clarinet Violin 70 0.0308 2.45 yes 0.382 0.0767 
Clarinet Trumpet SMC23 34 0.0859 2.47 yes 0.388 0.108 
Clarinet SMC6 self 25 -0.631 3.18 yes 0.401 0.124 
Ideal impulse Trumpet 34 -0.135 1.95 yes 0.431 0.105 
Violin self 36 0.395 3.24 yes 0.453 0.101 
Ideal impulse Violin 27 -0.101 2.87 yes 0.484 0.113 
Clarinet Clarinet SMC6 33 -0.27 2.51 yes >0.5 0.0944 
Clarinet Violin SMC23 27 -0.486 2.85 yes >0.5 0.112 
Clarinet SMC23 Clarinet SMC6 16 -0.153 1.94 yes >0.5 0.119 
Clarinet SMC23 Ideal impulse 30 -0.324 2.3 yes >0.5 0.0924 
Clarinet SMC23 Trumpet 28 -0.0174 2.51 yes >0.5 0.0755 
Clarinet SMC23 Violin 36 -0.369 2.51 yes >0.5 0.0856 
Clarinet SMC23 Violin SMC23 16 -0.128 2.54 yes >0.5 0.131 
Clarinet SMC6 Ideal impulse 19 -0.156 2.77 yes >0.5 0.123 
Clarinet SMC6 Violin SMC23 13 -0.284 3.09 yes >0.5 0.114 
Ideal impulse Violin SMC23 21 0.623 3.62 yes >0.5 0.119 
Trumpet Trumpet SMC23 32 -0.117 2.56 yes >0.5 0.0898 
Trumpet Trumpet SMC12 31 0.0437 2.35 yes >0.5 0.0681 
Trumpet Violin SMC23 30 0.222 3.04 yes >0.5 0.0857 
Violin SMC23 self 24 -0.0746 3.49 yes >0.5 0.114 

Table 10: Results of Lilliefors' goodness-of-fit test of composite normality for the 

pairs of sounds whose distributions are normal.  

Columns are the same as in Table 9. 

                                                                                                                                                            

skewness(abs(randn(1,10000))) 
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Figure 33: Histograms of the five least likely to be normal distributions from this ex-

periment, with normal curve (of sample mean and sample variance) superimposed. 

Thick vertical lines indicate the mean and ± 1 and 2 standard deviations from the mean 
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Figure 34: Histograms of the next five least likely to be normal distributions (after those 

shown in Figure 33). Again a normal curve (of sample mean and sample variance) is 

superimposed over each. 
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Figure 35: Histogram of the final two non-normal distributions (after those shown in 

Figure 33 and Figure 34), again with normal curves superimposed. 

To compare, Figure 36 shows the same kind of plots for a few examples of normal distributions. 

 

 

Figure 36: Histograms of three normal distributions with normal bell curves. 
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4.3.7 Quartiles of Each Distribution 

Sound A Sound B 0% 25% 50% 75% 100% 
Brazil SMC23 Brazil SMC23 -1.9 -0.4 0.1 1.1 2.2 
Brazil SMC23 Ideal impulse -2.4 -0.2 0.2 1.1 6.5 
Clarinet Clarinet -29.5 -15.7 -6.5 7.9 32.7 
Clarinet Clarinet SMC23 17.4 29.8 40.2 43.9 60.3 
Clarinet Clarinet SMC6 4.2 23.6 33.2 42.8 59.6 
Clarinet Clarinet SMC12 6.1 35.9 42.4 49.1 62.2 
Clarinet Ideal impulse 2.4 18.5 35.9 45.1 67.8 
Clarinet Trumpet -20.3 9.7 23 34.7 62.9 
Clarinet Trumpet SMC23 14.4 25.4 33.9 42.3 59.4 
Clarinet Violin -23.8 4.1 18.5 32 63.2 
Clarinet Violin SMC23 -0.7 20.6 28.8 36.8 50.8 
Clarinet SMC23 Clarinet SMC23 -12.9 -2.4 0.2 1.6 11.1 
Clarinet SMC23 Clarinet SMC6 -4 -0.5 1 4.3 6.3 
Clarinet SMC23 Ideal impulse -17.4 -7.3 -0.5 4.7 12.4 
Clarinet SMC23 Trumpet -28.3 -16.2 -7.1 -0.4 13.8 
Clarinet SMC23 Violin -41.1 -22.3 -12 -4 12.1 
Clarinet SMC23 Violin SMC23 -12 -2.3 0.7 4.5 12.3 
Clarinet SMC23 Violin SMC6 -9.9 -5.2 -1.7 4.8 7.1 
Clarinet SMC6 Clarinet SMC6 -6.3 -1.6 -0.4 1 4 
Clarinet SMC6 Ideal impulse -8.8 -2.4 0.6 2.9 8.4 
Clarinet SMC6 Violin SMC23 -16.2 -8.8 -5.6 -2.6 3 
Clarinet SMC6 Violin SMC6 -7.6 -4.4 -0.5 0.4 4.3 
Snare Snare -17.9 -4.3 -0.3 0.2 17 
Snare Snare SMC3 -9.8 10.4 15.2 25.2 36.1 
Snare Ideal impulse -25.8 7.6 14 18.3 41.3 
Snare SMC3 Snare SMC3 -1.7 -0.2 0.1 0.5 3.7 
Snare SMC3 Ideal impulse -7.3 -0.8 -0.1 0.7 6.3 
Ideal impulse Ideal impulse -2.5 -0.6 -0.2 0.2 1.7 
Ideal impulse Maurit. SMC12 -6.8 -0.4 0.2 2.4 10.1 
Ideal impulse Trumpet -51.8 -25.5 -8.9 9.5 23.7 
Ideal impulse Violin -67.2 -28.3 -14 -1.7 30.9 
Ideal impulse Violin SMC23 -14.6 -6.3 -3.2 0.7 15.8 
Ideal impulse Violin SMC6 -7.5 -0.6 0.7 1.8 13.5 
Maurit. SMC12 Maurit. SMC12 -1.3 -0.6 -0 0.6 3.6 
Trumpet Trumpet -30.9 -13.8 -0.3 18 46.3 
Trumpet Trumpet SMC23 -14.1 3 8.2 16.1 28.1 
Trumpet Trumpet SMC6 -20.7 -0.4 6.6 17.6 48.1 
Trumpet Trumpet SMC12 -7.3 3.5 8.7 15.9 26 
Trumpet Violin -84.6 -20 -4.3 8.4 78.5 
Trumpet Violin SMC23 -22.2 -0.7 6.2 18.4 40.8 
Trumpet SMC23 Violin -55.6 -20.1 -12.2 -1.9 13 
Violin Violin -43.9 -14.6 -7 8 46.3 
Violin Violin SMC23 -2.5 5.7 11.1 23.7 50.7 
Violin Violin SMC6 -13.6 1.3 10.4 20.6 54.3 
Violin Violin SMC12 -3.7 6.7 14.1 18.3 37.9 
Violin SMC23 Violin SMC23 -8.3 -1.3 0.5 2.5 9.5 
Violin SMC23 Violin SMC6 -3.5 -0.5 0.4 3.6 9 
Violin SMC6 Violin SMC6 -1.5 -0.4 -0.2 0.2 3.7 

Table 11: Quartiles (in ms) of every distribution from this experiment. Positive val-

ues indicate starting Sound B after Sound A.   
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Table 11 displays the quartiles for all 48 pairs of sounds compared in this experiment. The 0% 

and 100% values are the furthest outliers in each direction. There is a sound example 

corresponding to each of these pairs of sounds that plays the two sounds separated by a delay time 

equal to each of the five quartiles. Each example contains three repetitions of each delay time, 

then a brief pause before the next delay time.  The five delay times appear in the same order as in 

the table, in other words, the first delay time has Sound A earliest relative to Sound B.  Each 

sound example’s name is of the form quart-Clarinet.vs.Violin, in other words “quart-” followed by one 

sound’s name followed by “.vs.” followed by the other sound’s name. 

4.3.8 Synchronizing Two Instances of the Same Sound 

There were twelve sounds that subjects aligned against copies of themselves. As described in 

Section 3.5.3 (page 50), we expect the mean result to be zero and the distribution to be symmetric 

in each case. Table 12 shows how well the measured data fits these predictions, showing the 

number of trials, mean, standard deviation, Z-score119 of zero, and skewness for each of the twelve 

sounds.  Here the sign convention (for the mean and Z-score of zero) is that the positive direction 

means the movable copy of the sound ended up starting later than the fixed copy of the sound. 

Sound N Mean (ms) STD (ms) Z-score of zero Skewness 
Clarinet SMC23 27 -0.2755 5.62 -0.049 -0.06184 
Violin SMC6 20 0.1043 1.174 0.089 1.633 
Mauritania SMC12 28 0.0988 1.039 0.095 1.438 
Trumpet 37 1.88 19.7 0.095 0.4823 
Violin SMC23 24 0.48 3.862 0.12 -0.07459 
Snare 40 -1.071 7.215 -0.15 0.08374 
Violin 36 -3.356 19.3 -0.17 0.3948 
Snare SMC3 33 0.1752 0.9869 0.18 1.125 
Clarinet 45 -3.207 15.76 -0.2 0.5119 
Clarinet SMC6 25 -0.537 2.617 -0.21 -0.6314 
Brazil SMC23 24 0.2853 1.03 0.28 0.06315 
Ideal impulse 91 -0.24 0.7092 -0.34 -0.5859 

Table 12: Summary statistics for trials aligning two copies of the same sound. 

N is number of trials. Z-score of zero is the number of standard deviations away from 

the mean that zero (i.e., perfect synchrony of physical onsets) lies.  Since the mean 

should be zero when aligning two instances of the same sound, we expect the Z-score 

of zero to be low.  Skewness measures asymmetry and is zero for a perfectly symmet-

ric distribution. 

                                                     

119 A data point’s Z-score is its number of standard deviations away from the mean.  The Z-score of zero is therefore 
just the mean divided by the standard deviation. 
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4.3.9 Pairwise Variance Versus Variance Against Self 

We would expect that aligning a sound against a second copy of itself would be the easiest task 

from the point of view of the auditory streaming effects discussed in Section 3.6 (page 61). In 

addition, some subjects might attend to spectral comb filtering effects. So we would expect the 

variance of sound A’s intrinsic PAT-pdf to be not much less than half the measured variance from 

trials aligning sound A against sound A. Also, we would expect in general that the variance from 

trials aligning sound A against sound B should be at least the sum of the variance of A’s and B’s 

intrinsic PAT-pdfs: 

 var(DA,B) ≥ 0.5 (var(DA,A)+var(DB,B)) 

Does this inequality hold for the results of this experiment? As Table 13 shows, the inequality 

holds for 24 of the 29 pairs of sounds.120 Note that Clarinet SMC23 was involved in four of the 

five cases (the first five rows of the table) where the inequality did not hold.  Removing just one 

value from each extreme of the results of Clarinet SMC23 against itself would reduce its variance 

to 22.24 ms2, which would make the inequality hold within a few percent for all but the 

comparison against the Trumpet, which is discussed below. Perhaps there is something special 

about the Clarinet SMC23 sound that makes subjects especially consistent in their results aligning 

it against other sounds. 

In general our prediction is accurate (in other words, “extra” variance is positive) in most cases, 

and we can interpret the “extra” variance as the specific difficulty of aligning each particular pair 

of sounds.  Note in particular that the ideal was a member of all seven sound pairs with the 

highest percentage of extra variance (the bottom 7 rows of Table 13), which makes sense because 

the ideal impulse is spectrally furthest from all of the other sounds.  

Surprisingly, however, the next highest percentage penalty is for the Snare sound against its 

spectrally matched click.  This click (like most clicks) has extremely low variance against itself, but 

the variance of the click against the snare drum is almost twice the variance of the snare drum 

against itself. Perhaps the click is not sufficiently spectrally matched.  (Snare SMC3 is the shortest-

duration SMC in this study.) Another difference is that the Snare sound exhibits pronounced 

comb filtering when aligned against itself (as demonstrated in Sound Example quart-Snare.vs.Snare), 

while there is no such effect when aligning the Snare to the Snare SMC3 (as demonstrated in 

Sound Example Snare.vs.Snare_SMC3).  

                                                     

120 These are all 29 pairs of single-event sounds that subjects synchronized with each other and also with themselves. 



 101 

Sound A var(AA) Sound B var(BB) var(AB) Extra  
var. 

% Extra 
var 

Clarinet SMC23 31.59 Trumpet 388.2 107.3 -102.6 -48.9 
Clarinet SMC23 31.59 Clarinet SMC6 6.85 10.96 -8.262 -43.0 
Clarinet 248.4 Clarinet SMC23 31.59 123.8 -16.2 -11.6 
Clarinet SMC23 31.59 Violin 372.6 186.5 -15.59 -7.7 
Violin 372.6 Violin SMC23 14.91 188.8 -4.912 -2.5 
Trumpet 388.2 Violin SMC23 14.91 209.4 7.847 3.9 
Violin SMC23 14.91 Violin SMC6 1.379 8.556 0.4104 5.0 
Clarinet 248.4 Violin 372.6 394.4 83.97 27.0 
Clarinet 248.4 Trumpet 388.2 406.9 88.59 27.8 
Violin 372.6 Violin SMC6 1.379 257.4 70.37 37.6 
Clarinet 248.4 Clarinet SMC6 6.85 178.7 51.07 40.0 
Clarinet 248.4 Violin SMC23 14.91 190 58.34 44.3 
Clarinet SMC23 31.59 Violin SMC6 1.379 29.73 13.24 80.3 
Clarinet SMC23 31.59 Violin SMC23 14.91 49.78 26.53 114.1 
Clarinet SMC6 6.85 Violin SMC23 14.91 23.61 12.73 117.0 
Ideal impulse 0.503 Trumpet 388.2 425.2 230.9 118.8 
Trumpet 388.2 Violin 372.6 832.6 452.3 118.9 
Clarinet 248.4 Ideal impulse 0.503 333.7 209.3 168.2 
Ideal impulse 0.503 Violin 372.6 536.2 349.6 187.4 
Clarinet SMC6 6.85 Violin SMC6 1.379 12.56 8.449 205.3 
Clarinet SMC23 31.59 Ideal impulse 0.503 68.89 52.84 329.3 
Snare 52.05 Snare SMC3 0.974 119.8 93.24 351.7 
Brazil SMC23 1.062 Ideal impulse 0.503 3.815 3.033 387.6 
Clarinet SMC6 6.85 Ideal impulse 0.503 18.79 15.11 410.9 
Ideal impulse 0.503 Violin SMC23 14.91 47.69 39.98 518.7 
Snare 52.05 Ideal impulse 0.503 164.3 138 525.1 
Snare SMC3 0.974 Ideal impulse 0.503 4.949 4.211 570.2 
Ideal impulse 0.503 Maurit. SMC12 1.079 10.71 9.918 1253.7 
Ideal impulse 0.503 Violin SMC6 1.379 15.48 14.54 1545.3 

Table 13: Comparison of variance for each pair of sounds against the variances for 

each sound against itself.  

The variance of Sound A against itself (“var(AA)”) and the variance of Sound B 

against itself (“var(BB”) give us estimates for A’s and B’s intrinsic variance, so the 

mean of these two values is our predicted lower bound on the variance of aligning the 

two sounds against each other.  The actual sample variance for aligning the two 

sounds is “var(AB)”, so the “extra” variance is var(AB)-mean(var(AA), var(BB)). The 

rows are sorted by the last column, “Percent extra variance”, which expresses the 

“extra” variance as a percentage of the predicted variance. High values (at the bot-

tom of the table) indicate pairs of sounds that are relatively difficult to align against 

each other. Negative values indicate unexpected situations where the results aligning 

the two different sounds are “too accurate”. All variance is in units of (ms)2. 
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Figure 37: Examination of trials with Trumpet and Clarinet SMC23.  

The top plot shows the distributions for both sounds compared to Trumpet; the bot-

tom shows the distributions for both sounds compared to Clarinet SMC23. The 

variance of aligning these sounds with each other is much lower than the mean of the 

variances of aligning each sound with itself, as shown in Table 13.  

The biggest failure of our prediction is for Trumpet versus Clarinet SMC23, the top row of Table 

13. Figure 37 examines the distributions for these sounds against themselves and against each 

other. One would expect that subjects would be more consistent aligning the Trumpet with the 

click than the Trumpet against itself, and the upper plot shows that this is indeed the case.  Part of 

the problem could be the five outliers from trials aligning two copies of Clarinet SMC23 (shown 

as “+” signs in the bottom box plot), but keep in mind that even if the variance of aligning 

Clarinet SMC23 against itself were zero, the variance of the click against the Trumpet is less than 

half of the variance of aligning the Trumpet against itself. 



 103 

4.3.10 Check of Predicted Mean for each Trio of Sounds 

Sound A Sound B Sound C AB BC AC AB+BC-AC 
Clarinet Trumpet Violin 22.4 -3.77 18.7 -0.0451 
Ideal impulse Trumpet Violin -10.4 -3.77 -14.2 0.0855 
Trumpet Tpt. SMC23 Violin 9.52 -13.1 -3.77 0.181 
Ideal impulse Trumpet ViolinSMC23 -10.4 8.01 -2.19 -0.188 
Clar. SMC23 Clar. SMC6 Violin SMC6 1.54 -1.73 -0.407 0.218 
Clar. SMC23 Ideal impulse Violin SMC6 -1.15 0.985 -0.407 0.245 
Clarinet Ideal impulse Violin 33.4 -14.2 18.7 0.449 
Clarinet Ideal impulse Trumpet 33.4 -10.4 22.4 0.58 
Clar. SMC23 Violin Violin SMC6 -13.2 13.6 -0.407 0.858 
Clar. SMC23 Trumpet Violin -8.28 -3.77 -13.2 1.12 
Clar. SMC23 Trumpet Violin SMC23 -8.28 8.01 0.887 -1.16 
Clarinet Clar. SMC6 Ideal impulse 31.8 0.329 33.4 -1.28 
Clar. SMC23 Violin Violin SMC23 -13.2 15.4 0.887 1.31 
Ideal impulse Violin Violin SMC6 -14.2 13.6 0.985 -1.61 
Ideal impulse Violin SMC23 Violin SMC6 -2.19 1.25 0.985 -1.93 
Clarinet Trumpet Violin SMC23 22.4 8.01 28.3 2.09 
Clar. SMC23 Ideal impulse Violin -1.15 -14.2 -13.2 -2.23 
Clarinet Clar. SMC6 Violin SMC23 31.8 -5.76 28.3 -2.31 
Clarinet Trumpet Tpt. SMC23 22.4 9.52 34.3 -2.35 
Clarinet Tpt. SMC23 Violin 34.3 -13.1 18.7 2.49 
Clar. SMC23 Violin SMC23 Violin SMC6 0.887 1.25 -0.407 2.54 
Clar. SMC6 Violin SMC23 Violin SMC6 -5.76 1.25 -1.73 -2.78 
Clarinet Ideal impulse ViolinSMC23 33.4 -2.19 28.3 2.86 
Clarinet Clar. SMC23 Ideal impulse 37.5 -1.15 33.4 2.96 
Violin Violin SMC23 Violin SMC6 15.4 1.25 13.6 2.99 
Clar. SMC23 Clar. SMC6 Ideal impulse 1.54 0.329 -1.15 3.02 
Clar. SMC6 Ideal impulse Violin SMC6 0.329 0.985 -1.73 3.05 
Clar. SMC23 Ideal impulse Trumpet -1.15 -10.4 -8.28 -3.26 
Ideal impulse Violin Violin SMC23 -14.2 15.4 -2.19 3.31 
Trumpet Violin Violin SMC23 -3.77 15.4 8.01 3.58 
Snare SnareSMC3 Ideal impulse 17.5 0.148 13.9 3.78 
Clar. SMC6 Ideal impulse Violin SMC23 0.329 -2.19 -5.76 3.9 
Clar. SMC23 Ideal impulse Violin SMC23 -1.15 -2.19 0.887 -4.23 
Clar. SMC23 Clar. SMC6 Violin SMC23 1.54 -5.76 0.887 -5.1 
Clarinet Clar. SMC23 Violin 37.5 -13.2 18.7 5.63 
Clarinet Violin Violin SMC23 18.7 15.4 28.3 5.72 
Clarinet Clar. SMC23 Trumpet 37.5 -8.28 22.4 6.8 
Clarinet Clar. SMC23 Clar. SMC6 37.5 1.54  31.8 7.26 
Clarinet Clar. SMC23 Violin SMC23 37.5 0.887 28.3 10 

Table 14: Check of prediction of means for trios of sounds.  

For each trio of sounds (“A”, “B”, and “C”), we expect that the mean result of trials 

aligning A and B (“AB”) plus the mean result of aligning B and C (“BC”) will be (ap-

proximately) equal to the mean result of trials aligning A and C (“AC”). The last 

column shows AB+BC-AC, which would be zero if the prediction were exactly correct; 

the table is sorted in increasing order of absolute value of this column (i.e., in de-

creasing order of the correctness of the prediction) All numeric data are in 

milliseconds. 
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This section considers all trios of sounds A, B, and C for which this experiment tested all three 

pairwise comparisons (A vs. B, A vs. C, and B vs. C). Section 3.5.1 (page 49) suggests that the 

mean result of trials comparing a pair of sounds will be the difference in means of the intrinsic 

PAT-pdfs of the two sounds, and therefore predicts the following: 

 mean(DA,C) = µA-µC = µA-µC+(µB-µB) = (µA-µB)+(µB-µC) = mean(DA,B)+mean(DB,C) 

Table 14 shows how closely the experimental results match this prediction. 

4.3.11 What is the Mean of the Intrinsic PAT-pdf for the Ideal Impulse? 

The standard deviation of all trials aligning the ideal impulse against itself is only 0.71 ms, so the 

ideal impulse must have a very narrow PAT-pdf. 121  The ideal impulse has the shortest possible 

duration of any digital signal, just a single audio sample. (Since the experiment ran entirely at a 

44.1 kHz sampling rate, the theoretical duration is about 23 microseconds, though it’s likely that 

reconstruction filters and other aspects of subjects’ audio hardware actually produced slightly 

longer stimuli.) 

Sound Mean Median STD N 
Clarinet SMC23 -1.15 -0.45 8.30 30 
Mauritania SMC12 -1.09 -0.25 3.27 32 
Violin SMC6 -0.99 -0.70 3.93 37 
Snare SMC3 0.15 -0.09 2.22 55 
Ideal impulse 0.24 0.20 0.71 182 
Clarinet SMC6 0.33 0.63 4.33 19 
Brazil SMC23 0.58 0.19 1.95 16 
Violin SMC23 2.19 3.17 6.91 21 
Trumpet 10.39 8.88 20.62 34 
Snare 13.89 14.05 12.82 52 
Violin 14.24 14.01 23.16 27 
Clarinet 33.36 35.94 18.27 33 

Table 15: Mean, median, standard deviation, and N for the results of each sound 

compared against the ideal impulse. 

Mean, median, and standard deviation are in ms. Negative values for mean indicate 

that the average final alignment was for the ideal impulse to begin before the other 

sound. 

My study compared almost every sound against the ideal impulse. (All three of the loops and 12 of 

the 17 single-event sounds.) If the narrow PAT-pdf of the ideal impulse were centered in time 

around the single audio sample of the ideal impulse, then its mean would be approximately zero. 
                                                     

121 The sample variance of all trials aligning the ideal impulse against itself is 0.5030 ms2. We assume this is about twice 
the variance of the ideal impulse’s intrinsic PAT-pdf as described on page 51, which would make the ideal impulse’s 
intrinsic variance about 0.25 ms2 and its intrinsic standard deviation about 0.50 ms.  
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We would then expect the mean result for any trial using the ideal impulse to be positive, on the 

theory that any other sound’s PAT should be later in absolute time than the PAT of the ideal 

impulse.  Table 15 and Figure 38 show that this is not quite the case, that for three of the short 

click sounds (Clarinet SMC23, Mauritania SMC12, and Violin SMC6) the mean response 

corresponds to starting the ideal impulse before the other click.   

 

Figure 38: Results of all trials synchronizing any click sound against the ideal im-

pulse, in order of mean. 

Figure 45 (page 109) is identical to this one except that it also shows results for the 

non-click sounds against the ideal impulse. 

Table 15 says that the mean of the intrinsic PAT-pdf for Clarinet SMC23 is 1.15 ms before the 

mean of the intrinsic PAT-pdf for the ideal impulse.  So if we assume the ideal impulse’s PAT is 

centered on the single nonzero sample, then the PAT of sound Clarinet SMC23 would come 1.15 

ms before its physical onset, which should be impossible.  To avoid this situation we’re forced to 

place the center of the ideal impulse’s intrinsic PAT-pdf at least 1.15 ms after its single nonzero 

sample. 

Listening to the quartiles of the distribution for Clarinet SMC23 against Ideal Impulse (Sound 

Example quart-C_SMC23.vs.Ideal) suggests another interpretation. In nature there are many 

sounds that begin with a sharp percussive transient followed by a sustained or decaying steady-

state portion, such as most sounds produced by plucking or striking.  In nature we almost never 

hear a sound that starts with the sustaining portion followed by a sharp transient.  When listening 
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carefully to the outliers in the direction of starting the ideal impulse before Clarinet SMC23 and 

even the 25% percentile, it is possible to hear that the ideal impulse clearly comes before the 

longer sound.  But they’re close enough that it is also possible to hear a single sound event with a 

sharp attack (the ideal impulse) followed by the more sustaining and pitched portion (the Clarinet 

SMC23), which is a plausible natural sound. 

4.4 Results 

4.4.1 Plots of All Data 

The following 23 figures (Figure 39 through Figure 61) display the results of all 1640 trials 

aligning pairs of single-event sounds, grouped so that each individual figure shows all results 

involving one particular sound.  Results comparing two different sounds therefore appear in the 

figure corresponding to each of the two sounds.  (For example, the results for comparisons of 

Trumpet and Violin appear in Figure 53, since they involve the Trumpet, and also Figure 60, 

since they involve the Violin.) 

 

 

Figure 39: Results of all trials involving Brazil SMC23 



 107 

 

Figure 40: Results of all trials involving Clarinet SMC6 

 

Figure 41: Results of all trials involving Clarinet SMC12 
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Figure 42: Results of all trials involving Clarinet SMC23 

 

Figure 43: Results of all trials involving Clarinet, in order of mean 
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Figure 44: Results of all trials involving Clarinet, in order of variance 

 

Figure 45:Results of all trials involving the Ideal Impulse, in order of mean 
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Figure 46: Results of all trials involving the Ideal Impulse, in order of variance 

 

Figure 47: Results of all trials involving Mauritania SMC12 
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Figure 48: Results of all trials involving Snare SMC3 

 

Figure 49: Results of all trials involving Snare 
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Figure 50: Results of all trials involving Trumpet SMC6 

 

Figure 51: Results of all trials involving Trumpet SMC12 
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Figure 52: Results of all trials involving Trumpet SMC23 

 

Figure 53: Results of all trials involving Trumpet, in order of mean 
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Figure 54: Results of all trials involving Trumpet, in order of variance 

 

Figure 55: Results of all trials involving Violin SMC6, in order of mean 
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Figure 56: Results of all trials involving Violin SMC6, in order of variance 

 

Figure 57: Results of all trials involving Violin SMC12. 
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Figure 58: Results of all trials involving Violin SMC23, in order of mean 

 

Figure 59: Results of all trials involving Violin SMC23, in order of variance 
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Figure 60: Results of all trials involving Violin, in order of mean 

 

Figure 61: Results of all trials involving Violin, in order of variance 
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4.4.2 Why Do Subjects Align Shorter Sounds Before Longer Sounds? 

Since a click is relatively percussive and short in duration, we would expect its PAT to be close to 

its physical onset, while we would expect a sound with a more gradual attack to have a relatively 

later PAT. The naïve assumption of the synchrony method for measuring PAT using these two 

sounds is that subjects will on average start the longer sound earlier than the click, so that their 

PATs will line up.  On average this was indeed the case, but there was often also a secondary 

effect that added another mode near starting the click at the same time as the londer sound, or 

even before.  Many natural sounds begin with an impulsive attack followed by a sustained or 

decaying segment.  I believe that in some cases subjects perceived the click and the longer sound 

as fused into a single sound event (with a stronger attack than the longer sound by itself), and 

adjusted their relative timing to make the composite result fit this model of impulsive attack 

followed by sustaining portion.  Sound examples such as quart-Clarinet.vs.C_SMC23 and quart-

C_SMC23.vs.Ideal demonstrate this percept. 

Section 4.3.11 (page 104) discusses this same effect in the context of aligning the ideal impulse 

with the relatively much longer Clarinet SMC23 click. 

4.4.3 Effectiveness of Spectrally Matched Clicks 

One of the hypotheses that this experiment investigated was that the distributions would have less 

variance when the reference sound is spectrally more similar to the sound being tested. This 

experiment compared the Clarinet, Trumpet, Violin, and Snare sounds to a variety of clicks.  In 

each case at least one of the clicks was spectrally matched to the longer sound, so we can compare 

the standard deviations for all clicks versus to see whether SMCs do indeed make better reference 

sounds, as shown in the next four tables (Table 16 through Table 19).  The first point to note is 

that in all four cases the Ideal Impulse is the “worst” reference for measuring the PAT, in the 

sense that comparisons to the Ideal impulse have the highest standard deviation of any reference. 

Sound Mean Median STD N 
Trumpet SMC12 -9.27 -8.73 8.46 31 
Trumpet SMC23 -9.52 -8.16 9.93 32 
Clarinet SMC23 -8.28 -7.11 10.36 28 
Violin SMC23 -8.01 -6.20 14.47 30 
Trumpet SMC6 -10.26 -6.61 16.91 28 
Trumpet -1.88 0.27 19.70 74 
Ideal impulse -10.39 -8.88 20.62 34 

Table 16: Summary statistics for click sounds compared to the trumpet. 

Mean, median, and standard deviation are in ms. See also Figure 54: Results of all 

trials involving Trumpet, in order of variance (page 114). 
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For the Trumpet (Table 16) the results support the hypothesis: the two clicks with the lowest 

standard deviation are the 12 and 23 ms clicks that are spectrally matched to the trumpet.  The 

other two 23 ms clicks had higher standard deviations even though the durations are identical.  

Note that the 6ms SMC had higher variance than any of the 23ms clicks; this suggests that the 

spectral match at this shorter duration was not good enough to keep Trumpet SMC6 in the same 

auditory stream as Trumpet.122  

Sound Mean Median STD N 
Violin SMC12 -14.63 -14.10 10.23 29 
Clarinet SMC23 -13.16 -12.03 13.66 36 
Violin SMC23 -15.36 -11.08 13.74 28 
Trumpet SMC23 -13.11 -12.15 14.73 30 
Violin SMC6 -13.61 -10.40 16.04 36 
Violin 3.36 6.96 19.30 72 
Ideal impulse -14.24 -14.01 23.16 27 

Table 17: Summary statistics for click sounds compared to the Violin. Mean, median, 

and standard deviation are in ms. See also Figure 61: Results of all trials involving 

Violin, in order of variance (page 117). 

For the Violin (Table 17), again the lowest-variance reference sound is an SMC made from the 

violin, though in second place the Clarinet SMC23 barely beat the Violin SMC23.  Again the 6-

ms SMC seems not to be sufficiently spectrally matched to be a good reference. 

Sound Mean Median STD N 
Clarinet SMC23 -37.47 -40.18 11.13 38 
Trumpet SMC23 -34.27 -33.88 11.25 34 
Clarinet SMC12 -40.95 -42.36 12.52 33 
Clarinet SMC6 -31.76 -33.22 13.37 33 
Violin SMC23 -28.31 -28.82 13.78 27 
Clarinet 3.21 6.49 15.76 90 
Ideal impulse -33.36 -35.94 18.27 33 

Table 18: Summary statistics for click sounds compared to the Clarinet. Mean, me-

dian, and standard deviation are in ms. See also Figure 44: Results of all trials 

involving Clarinet, in order of variance (page 109). 

Sound Mean Median STD N 
Snare 1.07 0.26 7.21 80 
Snare SMC3 -17.53 -15.19 10.94 36 
Ideal impulse -13.89 -14.05 12.82 52 

Table 19: Summary statistics for click sounds compared to the Snare. Mean, median, 

and standard deviation are in ms. See also Figure 49: Results of all trials involving 

Snare (page 111). 

                                                     

122 Section 3.7.3 (page 68) suggests some more sophisticated techniques for synthesizing SMCs; perhaps one of these 
would be able to make a 6ms SMC that was a better spectral match to the Trumpet. 



 120 

Unlike the synthetic orchestral tones, the Snare drum’s smallest standard deviation comes from 

aligning a second copy of the same sound.  I believe this is due to a combination of the greater 

percussiveness of the Snare sound and possible comb filtering effects. Of the two clicks that 

subjects aligned with the Snare, the Snare SMC3 had the lower standard deviation, but this is not 

surprising, since the ideal impulse is the reference with the highest standard deviation in all four of 

these cases.  Again I conclude that the short SMC may not allow the SMC synthesis method to 

produce a sufficiently close spectral match.  

I conclude that Spectrally Matched Clicks are indeed superior reference sounds for measuring 

PAT, though with the SMC synthesis methods used in this study (see Section 3.7.1 on page 65) it 

appears that the duration of the SMC needs to be greater than 6ms. 

4.4.4 Intrinsic PAT-pdf Means and Variances of all Sound Events 

 Algorithm Name log likelihood 
17 

log likelihood 
11 

1 Shortest-variance path from Ideal Impulse -5837.4 -5139.4 
2 Shortest-variance path from best likelihood reference -5824.9 -5125.9 
3 Greedy next smallest intrinsic variance starting from ideal 

impulse 
-5862.6 -5183.1 

4 Greedy next smallest intrinsic variance starting from best 
likelihood reference 

-5882.1 -5217.2 

5 Batch estimation starting from Ideal impulse -6014.1 -5283.5 
6 Batch estimation starting from Snare SMC3 (best likelihood)  -6008.0 -5277.4 
7 Variances from Trials Against Self & Maximum Likelihood 

Means 
-5720.6 -5054.3 

8 Least Squares Means & Variances from Trials Against Self -5723.6 -5058.1 

Table 20: The eight methods used to estimate all sound’s intrinsic PAT means and variances by 
assuming normality.  See Section 3.5.5 (page 56) for descriptions of the methods. The last two 
columns are the overall log likelihood of each model given all the observed experimental data.  
“17” refers to the first set of estimates, for all 17 single-event sounds, as shown in Table 21 and 

Table 22, while “11” refers to the second set of estimates, taking into account only the 11 sounds 
that were each compared against two other sounds, as shown in Table 23 and Table 24.  The overall 

likelihoods are much higher for the second model simply because it considers many fewer trials. 
Algorithms 4 and 6 have the free parameter of which sound to take as the starting reference point 
for the grid search, chosen to produce the highest overall likelihood. Algorithm 4 chose Clarinet 

SMC23 and Clarinet SMC6 respectively for the “17” and “11” runs, while Algorithm 6 chose Snare 
SMC3 in both cases. 

This section applies the theoretical results of Section 3.5.5 (page 56) to the observed data from this 

experiment. Assuming that every sound’s intrinsic PAT-pdf is Gaussian, what are the intrinsic 

mean123 and variance for each sound? The first three algorithms derive everything from a known 

starting point, so I ran each of them twice: once using the ideal impulse as the known starting 

                                                     

123 Every algorithm uniformly shifts all of its estimated intrinsic means so that the minimum will be zero. This is justified 
only because in each case some of the sounds are very impulsive and “should” have their PATs near their physical 
onsets. 



 121 

point, and a second time trying each of the sounds as a starting point and selecting the result with 

the highest likelihood. Table 20 names the eight algorithms. Table 21 and Table 22 show the 

intrinsic means and variances, respectively, resulting from each algorithm when applied to all of 

the single-event sounds in the experiment. 

sound alg. 1 alg. 2 alg. 3 alg. 4 alg. 5 alg. 6 alg. 7 alg. 8 mean  
Clarinet SMC12  0  0  0  0  0  0  0  0 0 
Trumpet SMC6 1.503 1.503 1.503 1.503 7.721 7.721 4.325 7.742 4.1903 
Violin SMC12 2.606 2.606 2.021 2.021 7.206 7.206 5.615 7.397 4.5846 
Maurit. SMC12 0.525 0.525 3.572 3.572 6.505 6.505 9.017 6.899 4.6399 
Violin SMC6 0.6251 0.6251 3.672 3.672 6.605 6.605 9.921 8.058 4.9729 
Clarinet SMC6 1.94 1.94 1.94 1.94 7.92 7.92 9.025 7.274 4.9872 
Trumpet SMC23 2.235 2.235 2.235 2.235 7.951 7.951 8.014 7.975 5.104 
Trumpet SMC12 2.485 2.485 2.485 2.485 8.703 8.703 7.082 8.723 5.3937 
Clarinet SMC23 3.483 3.483 3.483 3.483 6.443 6.443 9.69 7.563 5.509 
Ideal impulse 1.611 1.611 4.657 4.657 7.59 7.59 10.43 7.984 5.7663 
Snare SMC3 1.758 1.758 4.805 4.805 7.738 7.738 10.57 7.078 5.781 
Brazil SMC23 2.189 2.189 5.236 5.236 8.168 8.168 11.01 8.563 6.3444 
Violin SMC23 1.871 1.871 4.918 4.918 9.781 9.781 11.39 9.701 6.7791 
Trumpet 11.76 11.76 11.76 11.76 17.98 17.98 17.97 18 14.8688 
Violin 17.23 17.23 16.65 16.65 21.83 21.83 22.63 22.02 19.5094 
Snare 19.28 19.28 22.33 22.33 21.48 25.26 25.86 22.99 22.3534 
Clarinet 40.95 40.95 40.95 40.95 40.95 40.95 42.04 40.95 41.0907 

Table 21: Intrinsic means for all single-event sounds as estimated by the algorithms 

listed in Table 20 given all the results of the experiment. The table is sorted by the last 

column, which gives the mean result across all 8 algorithms.  

sound alg. 1 alg. 2 alg. 3 alg. 4 alg. 5 alg. 6 alg. 7 alg. 8 mean 
Clarinet 
SMC12 

33.03 33.03 43.19 36.83 0.01 0.01 9.785 9.785 20.71 

Trumpet SMC6 214.2 214.2 188.7 182.3 0.01 0.01 27.51 27.51 106.8 
Violin SMC12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Maurit. SMC12 10.46 10.7 7.009 0.649 10.4 10.41 0.5396 0.540 6.34 
Violin SMC6 8.546 8.546 11.78 5.419 15.17 15.18 0.6893 0.690 8.25 
Clarinet SMC6 10.95 10.95 0.7838 7.144 18.48 18.49 3.425 3.425 9.20 
Tpt. SMC23 27.01 27.01 1.462 0.01 0.01 0.01 0.01 0.01 6.941 
Tpt. SMC12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Clarinet 
SMC23 

0.01 0.01 10.17 3.814 68.58 68.59 15.79 15.79 22.85 

Ideal impulse 0.2515 0.01 3.7 10.06 0.3083 0.3 0.2515 0.2515 1.8915 
Snare SMC3 4.698 4.939 1.25 0.01 4.641 4.649 0.487 0.487 2.65 
Brazil SMC23 3.564 3.805 0.1156 0.01 3.507 3.515 0.5309 0.5309 1.5 
Violin SMC23 0.01 0.01 0.01 3.137 47.38 47.39 7.456 7.456 14.11 
Trumpet 71.56 71.56 97.11 103.5 424.9 424.9 194.1 194.1 197.71 
Violin 104.7 104.7 176.3 182.7 535.9 535.9 186.3 186.3 251.61 
Snare 115.1 26.03 118.5 119.7 164 115.1 26.03 26.03 88.81 
Clarinet 123.8 123.8 113.6 120 333.4 333.4 124.2 124.2 174.5 

Table 22: Intrinsic variances for all single-event sounds as estimated by the algo-

rithms listed in Table 20 given all the results of the experiment. The last column gives 

the average estimated intrinsic variance across all 8 algorithms.  Rows are in the 

same order as in Table 21. 
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Given the dissimilarities among the eight algorithms it is no surprise that the results diverge in 

many cases.  However, there are also points of agreement among the eight algorithms, such as 

every algorithm’s estimated mean of the Clarinet’s PAT-pdf being around 41-42 ms after its 

physical onset.  Why was the Clarinet SMC12 the sound with the earliest PAT-pdf in every case?  

Referring to Figure 41 (page 107), we see that Clarinet SMC was only compared against the 

Clarinet, and not to any other sounds, so all eight algorithms have no choice but to derive the 

Clarinet SMC’s intrinsic mean from that of the Clarinet. 

With that in mind, I re-ran all 8 algorithms on only the 11 sounds that were compared against at 

least two other sounds (thereby excluding Clarinet SMC12 as well as Brazil SMC23, Mauritania 

SMC12, Trumpet SMC6, Trumpet SMC12, and Violin SMC12). Table 23 and Table 24 show 

the results.  Note that the ordering of the sounds by average estimated mean is the same (that is, 

the order of rows in Table 23 is the same as in Table 21 for the sounds that appear in both tables). 

sound alg. 1 alg. 2 alg. 3 alg. 4 alg. 5 alg. 6 alg. 7 alg. 8 mean 
Violin SMC6 0.00 0.00 1.73 1.73 0.16 0.16 2.18 0.98 0.87 
Clarinet SMC6 1.31 1.31 0.00 0.00 1.48 1.48 1.39 0.20 0.90 
Trumpet SMC23 1.61 1.61 0.30 0.30 1.51 1.51 0.00 0.90 0.97 
Clarinet SMC23 2.86 2.86 1.54 1.54 0.00 0.00 2.05 0.48 1.42 
Ideal impulse 0.99 0.99 2.72 2.72 1.15 1.15 2.98 0.91 1.70 
Snare SMC3 1.13 1.13 2.87 2.87 1.29 1.29 3.12 0.00 1.71 
Violin SMC23 1.25 1.25 2.98 2.98 3.34 3.34 3.58 2.62 2.67 
Trumpet 11.13 11.13 9.82 9.82 11.53 11.53 10.66 10.92 10.82 
Violin 16.61 16.61 14.71 14.71 15.39 15.39 14.91 14.94 15.41 
Snare 18.66 18.66 20.39 20.39 15.04 18.82 18.41 15.92 18.29 
Clarinet 40.33 40.33 39.01 39.01 34.51 34.51 34.43 33.88 37.00 

Table 23: Intrinsic means for all sounds that were compared to at least two other 

sounds, estimated by the algorithms listed in Table 20.   

The data is sorted by the last column, the average estimate from all 8 algorithms.  

sound alg. 1 alg. 2 alg. 3 alg. 4 alg. 5 alg. 6 alg. 7 alg. 8 mean 
Violin SMC6 8.55 8.55 10.78 5.62 15.18 15.18 0.69 0.69 8.15 
Clarinet SMC6 10.95 10.95 1.78 6.95 18.49 18.49 3.43 3.43 9.31 
Trumpet SMC23 0.01 0.01 0.46 0.01 0.01 0.01 0.01 0.01 0.07 
Clarinet SMC23 0.01 0.01 9.17 4.01 68.59 68.59 15.79 15.79 22.75 
Ideal impulse 0.25 0.01 4.70 9.86 0.30 0.30 0.25 0.25 1.99 
Snare SMC3 4.70 4.94 0.25 0.01 4.65 4.65 0.49 0.49 2.52 
Violin SMC23 0.01 0.01 0.01 2.94 47.39 47.4 7.46 7.46 14.08 
Trumpet 98.56 98.6 98.11 103.3 424.9 424.9 194.1 194.1 204.6 
Violin 188.8 188.8 177.3 182.5 535. 9 535.9 186.3 186.3 272.7 
Snare 115.1 26.03 119.5 119.7 164.0 115.1 26.0 26.03 88.93 
Clarinet 123.7 123.7 114.6 119.8 333.4 333.4 124.2 124.2 174.6 

Table 24: Intrinsic variances for all sounds that were compared to at least two other 

sounds, estimated by the algorithms listed in Table 20 
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4.5 Discussion 

As expected subjects certainly were not perfectly consistent in their results for this experiment.  

The distributions of results for the different pairs of sounds have noticeably different shapes, the 

most obvious factor being the large differences in standard deviation.  Many, but not all, of the 

results appear to be Gaussian. 

The experiment supported all of the factors motivating Spectrally Matched Click Synthesis. The 

ideal impulse consistently had the highest variance of any reference sound aligned against any 

non-click sound. Although it is perfectly localized in time, it seems especially difficult to align 

natural sounds consistently with the ideal impulse, as predicted by the completely broad spectrum 

of the ideal impulse in light of the auditory streaming factors discussed in Section 3.6 (page 61). 

However, a Spectrally Matched Click was the most consistent reference for each of the natural 

instrumental tones. 

Also as predicted, aligning the ideal impulse against itself was the lowest-variance task in the 

entire experiment.  As figure Figure 46 (page 110) shows, the variance increased by a small 

amount when aligning the ideal impulse with very short clicks or clicks derived from percussive 

sounds, then increased by more when aligning the ideal impulse with longer SMCs derived from 

the instrumental tones, and then became extremely large when aligning the ideal impulse against 

the instrumental tones themselves.  Table 13 (page 101) shows this property of the ideal impulse 

in another way: although subjects were extremely consistent aligning two copies of the ideal 

impulse (standard deviation 0.71 ms, as described in Section 4.3.11 [page 104]), the ideal impulse 

generally brought a lot of “extra” variance when aligned with another sound. 

For modeling purposes, I had hoped that the mean of the ideal impulse would be close to zero, 

i.e., that all other sounds’ PATs would on average be later than that of the ideal impulse.  As 

Section 4.3.11 (page 104) explains, this was not the case; three other short click sounds on average 

were aligned with the ideal impulse as if their PATs were earlier than that of the ideal impulse, so 

that in Table 21 the estimated mean of the ideal impulse is 1.6 to 10.4 ms after its physical onset.  

By excluding the sounds that were not compared against at least two other sounds, all estimates 

for the mean of the ideal impulse’s PAT-pdf stayed below 3ms. 

The trials from tasks aligning multiple copies of a single-event sound to a looped recording of 

metric music should definitely be analyzed in the future. 
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Chapter 5 Motivations, Implications, and Future Work  

5.1 Predictive Modeling of PAT 

It would be useful to have a predictive model of PAT that could take in any arbitrary input sound 

event (whose PAT has not been measured experimentally), compute some deterministic function 

of the acoustic signal, and output an estimate of the sound’s PAT.  More generally, a PAT model 

could take in arbitrary input sound consisting of arbitrarily many sound events, and combine the 

onset-detection-like task of identifying each individual perceived event along with estimating the 

PAT for each event. 

 

Figure 62: System dataflow diagram for predictive modeling of PAT-pdf with regres-

sion. 

Existing models for predicting PAT (or P-Center) all treat PAT as a single moment in time 

(Collins 2006; Villing, Ward, and Timoney 2007). The most important distinction among these 

models is between those that use information only from the local portion at the beginning of a 

sound event versus those that consider the entire sound event to compute its PAT.  All models 

compute one or more features from the acoustic signal such as a rectified signal (Vos and Rasch 

1981), slope of the energy envelope (Gordon 1987), energy in one or more spectral bands (Marcus 

1981; Scott 1998), or  modulation of energy in spectral bands (Harsin 1997). All predictive 

models of which I am aware take in one entire isolated sound event as input, so to use them to 

find the PAT of multiple sound events in a continuous audio signal would require first segmenting 

the signal manually and/or with an automatic onset detector. 

The novel approach here, continuing with the theme of a continuous probability density function 

representation for PAT, is to formulate the prediction of PAT as a regression problem, as shown 

in Figure 62.  The inputs to the predictive model are various functions of time computed from the 

acoustic signal, in particular, a large collection of the detection functions (described in Section 5.1.1) 

known in the onset detection literature. The output of each model is another (sampled) 
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continuous function of time whose value at each moment is proportional to the probability of a 

listener assigning a sound’s PAT to that moment. With formulation we can try a wide variety of 

regression techniques to attempt to learn a relationship between the detection functions and 

subjects’ PAT-pdf results in a supervised machine learning context. 

Another approach bypasses the theoretical (Section 3.5) and practical (Section 4.4.4) difficulties of 

decomposing relative PAT measurements for pairs from pairs of sounds into intrinsic PATs for 

each individual sound.  Instead of trying to predict the absolute PAT of a single sound, we instead 

directly try to predict the relative PAT for a pair of sounds. 

5.1.1 Detection functions 

For each input sound I compute a large number of detection functions, a term from the computa-

tional onset detection (see Section 2.3.3 on page 17 for a review) and beat induction literature that 

means a function derived from the raw audio and whose value tends to show peaks at moments of 

onsets. They are generally low-level descriptors computed from raw audio and sampled at a much 

lower rate (for example, at a rate determined by Short-Term Fourier Transform (STFT) hop 

size124). For example, one of the most trivial detection functions is signal energy in each 1024-

sample audio frame.  

I have implemented many of the detection functions listed in Gouyon’s comprehensive review 

(Gouyon 2005): low frequency energy, spectral centroid, spectral flatness, spectrum energy, 

spectrum energy (normalized and on a db scale), spectrum geometric mean, the four variants of 

“high frequency content,” spectrum maximum magnitude frequency, spectrum mean, spectrum 

rolloff, spectrum slope, and spectrum spread. I also implemented two of the detection functions 

from the QMUL group used in the Aubio library: aubio_complex and aubio_phase (Brossier 

2006) and compute the thirteen mel-frequency cepstral coefficients (MFCC) using the Auditory 

Toolbox (Slaney 1993-1994).  This gives a total of 43 detection functions. 

In addition, also following the lead of (Gouyon 2005), for each “raw” detection function I also 

compute the half-wave rectification of the first-order difference.125 This produces a second set of 

43 detection functions, for a total of 86. Gouyon also suggests using the half-wave rectification of 

the first-order difference of a mulaw-compressed126 version of each detection function, but the 

                                                     

124 http://ccrma.stanford.edu/~jos/sasp/Practical_Computation_STFT.html 
125 “Half-wave rectification” means setting every negative value to zero. “First-order difference” means computing the 
difference between each successive pair of values; it is an approximation to the first derivative for sampled signals. 
126 Gouyon’s formula for mulaw compression (in Matlab notation) is  
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slight difference between the mulaw and non-mulaw versions of the half-wave rectification of the 

first-order difference has been a source of trouble in the regression context. Sometimes the 

resulting vectors are very nearly equal, requiring that one of the two be discarded before 

attempting regression. In other instances, the regression often results in a huge weight for one 

function, and then a nearly equal weight of opposite magnitude for the mulaw version of that 

function, which tends to generalize poorly. Therefore I’m currently eliminating the mulaw 

versions from further processing. 

As most of these functions are based on the STFT127, an outer “main loop” procedure handles all 

details of the STFT, passing either an FFT frame or the magnitudes from an FFT frame as 

appropriate to each detection function.128  Therefore each detection function is only a few lines of 

Matlab code. Before further processing I normalize the output of each detection function to the 

range [0,1] for each sound.129 

All my sounds have a sampling rate Fs=44100. For now I’m using a frame size of M=1024 

samples (23.2 ms), Hamming windows, size Nfft=4096 FFTs (that is, zero padding by a factor of 

four), and a hop size (a.k.a. frame rate) of R=20 samples (0.45 ms). The results of changing some 

of these settings (particularly frame size) could be considered additional detection functions. 

I use the convention that the time of an STFT frame is the time of the center of the window, as in 

the SDIF standard (Wright et al. 1999). The Auditory Toolbox instead uses the convention that the 

time of one sample of the MFCC output is the time of the beginning of the STFT window that 

produced that output, so I insert Nfft/2 zeros at the beginning of each input sound before passing 

                                                                                                                                                            

y = log(1+mu*x) ./ log(1+mu); 

This formula returns an imaginary value when the input is negative, which sometimes happens with, for example, 
spectral slope. Therefore, rather than using always mu=100, when necessary I set mu to guarantee that 1+mu*x is at 
least 0.0001. 
127 http://ccrma.stanford.edu/~jos/sasp/Short_Time_Fourier_Transform.html 
128 The detection function procedures are organized in subdirectories according to what input they expect: functions in 
df-fft take the current complex spectrum as input (and the past 2 complex spectra as optional second and third 
arguments), functions in df-fft-mag take the magnitude spectrum as the first argument and the frequency sampling 
interval (in Hertz) as the optional second argument.  A makefiile automatically generates the Matlab program 
all_df_names.m, which produces cell arrays of the names of all the detection function procedures in each input type 
category.  The outer  STFT loop then iterates through this cell array using FEVAL to invoke each function on each 
STFT frame.  
129 The exception is cases in which the detection function output is completely constant, in which case of course no 
linear remapping can make the function occupy the entire range from 0 to 1. (This sometimes occurs, for example, with 
Spectrum Maximum Magnitude Frequency, which for many of the tones is the frequency of the FFT bin of the 
fundamental frequency in every frame.)  Of course a completely constant detection function isn’t going to contribute 
anything in a regression context (where there’s already a weight for a constant term), so any such detection function will 
soon be discarded anyway. 
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it to the MFCC function.  Also, because I want to sample the detection function at times centered 

all throughout the duration of the sound, I add (Nfft/2)+R zeros at the end as well. 

The following sections describe specific detection functions.  In each case X stands for the current 

STFT frame and Xi stands for the complex value of the ith frequency bin130 of X, with N=Nfft/2 

the number of bins with nonnegative frequencies and 0 ≤ i ≤ N-1. 

F=Fs/Nfft=44100Hz/4096≈10.76 Hertz is the “frequency sampling interval” or “frequency step,” 

in other words, the distance in Hertz between the frequencies of successive STFT bins: iF is the 

center frequency (in Hertz) if the ith STFT bin. 

5.1.1.1 Zero-crossing rate (ZCR) 

The ZCR is the number of waveform time-domain zero-crossings (i.e. sign changes), divided by 

the number of samples minus one.131  It will generally be higher when signals are noisier, brighter, 

or higher in pitch. 

5.1.1.2 Spectrum mean 

The mean magnitude of the spectrum:  

  
mean(X ) = 1

N
X

i
i=0

N !1

"  

5.1.1.3 Spectrum Spread 

The variance of the magnitudes in the spectrum: 

  
spread (X ) = 1

N
X

i
! mean(X )( )

2

i=0

N !1

"  

5.1.1.4 Spectrum Geometric Mean 

The geometric mean is the Nth root of the product of N elements; here we take the geometric 

mean of the amplitudes: 

  
geometricMean(X ) = X

i
i=0

N !1

"#$%
&
'(

1/N

 

                                                     

130 See http://ccrma.stanford.edu/~jos/mdft/Spectral_Bin_Numbers.html for why these are called “bins.” 
131 A sequence of length n can have a maximum of n-1 sign changes, so dividing by n-1 keeps the result in the range 
[0,1]. 
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5.1.1.5 Spectral Flatness 

One measure of the flatness of a spectrum is the ratio between the geometric mean and the mean: 

  SpectrumFlatness(X ) =GeometricMean(X ) / Mean(X )  

Note that if the STFT frame is completely silent (e.g., if it comes in a frame after the end of a 

short click) then this formula causes a division by zero.  

5.1.1.6 Spectrum Slope 

The slope of the straight line that is the best fit to the magnitude spectrum.  I used Matlab’s 

“polyfit” to fit the straight line: 

function s = spectrum_slope(Xm, freqstep) 
freqs = freqstep * [0:length(Xm)-1]; 
p = polyfit(freqs, Xm, 1); 
s = p(1); 

5.1.1.7 Spectrum Energy 

The energy is the sum of the squares of the time-domain samples, which is equal to the sum of the 

squares of the STFT magnitudes:132 

  
energy(X ) =

2
|Xi|

i=0

N !1

"  

We can also normalize to find the energy per sample 

  
NormalizedEnergy(X ) = 1

N

2
|Xi|

i=0

N !1

"  

and also convert to the decibel scale:133 

  
NormalizedEnergyDB(X ) = 20 * log

10

1

N

2
|Xi|

i=0

N !1

"  

5.1.1.8 Low-Frequency Energy 

Low-Frequency Energy is the proportion of the energy below 100 Hz. I approximate this by 

taking the proportion of energy in STFT bins whose bin frequency is ≤ 100 Hz, in other words, I 

                                                     

132 http://ccrma.stanford.edu/~jos/mdft/Rayleigh_Energy_Theorem_Parseval_s.html 
133 http://ccrma.stanford.edu/~jos/mdft/Decibels.html 
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don’t worry about dividing up the energy in the STFT bin whose range of frequencies spans 100 

Hz.134 

Note that, as with Spectral Flatness, the value of this detection function becomes undefined 

(because of a division by zero) when there is no energy at all in the frame.  

5.1.1.9 Chroma Energy 

We can partition the spectrum energy into the twelve pitch classes of equal temperament.  So, for 

example, the Chroma Energy for the pitch class F# is the sum of the squared amplitudes of all 

STFT bins whose (center) frequency is closer to one of the octaves of F# than to any other equal-

tempered note.  As with Low-Frequency Energy, each bin counts all-or-nothing towards exactly 

one chroma. 

5.1.1.10 High Frequency Content Family 

The detection function “High Frequency Content” (“HFC”), working on an STFT magnitude 

spectrum, has been defined by different researchers to be the sum of amplitude or energy 

weighted by frequency or frequency squared. Therefore I propose the following naming 

convention135 for the four possible variants: 

• HFC: sum of amplitude weighted by frequency 

• HFCC: sum of energy (amplitude squared) weighted by frequency 

• HFFC: sum of amplitude weighted by frequency squared 

• HFFCC: sum of energy weighted by frequency squared 

  

HFC (X )= iF X
i

i=0

N !1

"

HFFC (X )= (iF )2
X
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i=0
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134 A better approximation would consider that each STFT bin represents the signal’s energy over a range of 
frequencies (http://ccrma.stanford.edu/~jos/mdft/Spectral_Bin_Numbers.html).  So in the case of fs=44100 and 
Nfft=4096, freqstep is 10.766 Hz, so the ninth STFT bin, with center frequency 9*10.766 =96.8994, actually extends 
from 91.5161 Hz to 102.2827 Hz, so only (100-91.161)/ 10.766 = 0.821 times the energy in the ninth STFT bin would 
be counted as below 100 Hz. A yet more sophisticated approximation would consider the filter response of the window 
function and the DFT (http://ccrma.stanford.edu/~jos/mdft/Frequencies_Cracks.html). 
135 This naming convention is obviously inspired by the algebraic notation for multiplication: since FF means “F times 
F”, the versions that use frequency have “F” in their names while those that use frequency squared have “FF” in their 
names. 
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5.1.1.11 Spectral Centroid 

The spectral centroid is the “center of gravity” of the magnitude frequency spectrum, and is an 

acoustic correlate of the perceptual “brightness” of a signal (Wessel 1979): 

  

centroid (X ) =

iX
i

i=0

N !1

"

X
i

i=0

N !1

"

 

Note that this definition (following Gouyon) is in units of bin number rather than frequency; 

multiply by F to get Hertz. 

5.1.1.12 Spectrum Maximum Magnitude Frequency 

This is the frequency of the STFT bin which has the highest frequency.  For harmonic tones this 

is often but not always the fundamental frequency. 

  
!i, X

SpectrumMaximumMagnitudeFrequency ( X )/F
" X

i
 

5.1.1.13 Spectrum Rolloff 

Spectrum Rolloff is the frequency below which 85% of the signal energy remains.  As with Low-

Frequency Energy and Chroma Energy we don’t worry about dividing the energy in each bin, so 

SpectrumRolloff(X) will always be an integer multiple of F. 
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5.1.1.14 Two Phase/Complex Based Detection Functions from Aubio 

The basic idea is that for a tonal signal in the steady state, the unwrapped phase in each 

frequency bin should advance by approximately 
  
2! fR  during each frame of the STFT. So given 

  
!

n
(i "1) , the phase in the nth frequency bin in STFT frame i-1, we can estimate the phase of that 

bin in STFT frame i: 

 
  
!̂

n
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n
(i "1) + 2# f

n
R,2# )  
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We compare the actual phase in the ith STFT frame to this estimate, and treat the amount of error 

as the detection function. Higher values of the error indicate a greater likelihood of an attack, 

rearticulation, etc. 

For details on this family of detection functions see (Bello et al. 2005; Bello et al. 2004; Bello and 

Sandler 2003; Dixon 2006; Duxbury et al. 2003a, 2003b; Duxbury, Sandler, and Davies 2002); 

my implementation is a Matlab translation of these two detection functions from Paul Brossier’s C 

language Aubio136 library (Brossier 2006). 

5.1.2 Setup for Intrinsic PAT-pdf Regression 

We’re going to be given any arbitrary sound s in the form of a sampled audio signal s(t), and we 

will output a continuous estimate of the relative probability p(t) of PAT being perceived in each 

moment.  The scaling is immaterial, but for consistency let’s say that -1≤s(t) ≤1 and that p(t) is in 

units of probability per millisecond of PAT occurring. 

We will learn a function h (for “hypothesis”) that generates the estimate
  
p̂(t )  given s(t): 

 
  p̂ = h(s)  

Our training data will consist of the estimated PAT-pdf curves for a set of sounds whose PAT-pdf 

we have measured experimentally. Specifically the “inputs” are the detection functions computed 

for each of these sounds, and the “targets” are the measured/estimated PAT-pdf curves. 

If h is causal then 
  
p̂(t

0
) = h(s(t )), t ! t

0
, in other words, h can only “see” the portion of the input 

before the current moment. 

If h has bounded look-ahead then 
  
p̂(t

0
) = h(s(t )), t ! t

0
+ k , in other words, h can only “see” the 

input from the past and up to k seconds into the future. 

If 
  
p̂(t

0
)  is a linear combination of a finite number of 

  
h(s(t )), t ! t

0
then h is a (causal) FIR filter. 

Rather than directly trying to estimate p(t) directly from the sampled waveform s(t), we will instead 

compute all Ndf of our detection functions and use them as the inputs to h: 

 h(s) = h(df1(s), df2(s), df3(s),… dfNdf (s)) 

Now if h is causal, than it can only “see” the values of the detection functions up to the present. 

                                                     

136 http://aubio.org 
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There is good reason to assume that PAT depends on features of the input signal within, say 100 

ms of each moment, taking into account the recent past and what is about to occur in the 

future.137 

 
  
p̂(t

0
) = h(df

1
(t ),df

2
(t ),...df

Ndf
(t )),  t

0
! memory " t " t

0
+ lookahead  

We can begin with the drastically simplifying assumption that h will look only at the current value 

for each detection function, i.e., 

 
  
p̂(t

0
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1
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))  

With this assumption, the goal of our regression model is to find the vector of weights ! such that 

  A! " B  

where A is the matrix of all the inputs and B is the (column) vector of targets. Each column of A is 

a detection function. We must make sure to sample the detection functions and the ground truth 

intrinsic PAT-pdf shapes with the same sampling interval T and aligned with the same time zero. 

We will “stack” all of the sounds vertically in both A and B, so that the rows of A and B are all of 

the times for sound 1, then all of the times for sound 2, etc.: 
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As in Section 3.4.3 (page 42), I stands for “intrinsic PAT-pdf,” and here I’m treating each intrinsic 

PAT-pdf and each detection function as a sampled function of time and indexing it with a time in 

seconds.  The notation 
  
df

i
(s

j
) means the ith detection function computed on the jth sound. (Also 

                                                     

137 Many models of P-Center, for example, look at the audio signal for an entire syllable before estimating the P-center. 
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I’m using the Octave/Matlab convention that “end” is a special index meaning “the final sample 

of the given signal.”) 

Without our simplifying assumption, there are at least three options for considering the influence 

of detection functions from nearby times: 

1. The brute force solution: consider every possible time shift between memory and lookahead to be 

its own valid subset of regression inputs.  So, for example, if R is 0.45 ms, memory is 200 ms and 

lookahead is 100 ms, then consider all (100+200)/0.45= 667 possible time shifts, for a total of 

 667! 86 = 57362 input signals to the regression.  Obviously this is an unwieldy number of 

dimensions, so going this route will require the use of feature selection or other techniques for 

dimensionality reduction. 

2. Time shift each detection function individually.  Rather than considering all possible time shifts 

of each detection function as above, look for the single best time shift for each one.  One 

approach would be to cross-correlate each detection function with the ground truth PAT-pdf 

estimates for our training set, choose the lag that maximizes the absolute value of the cross-

correlation, and then always time-shift that detection function by the resulting lag.138 

3. The system identification solution: consider each detection function separately, and use any of 

a huge variety of FIR system identification techniques139 to produce an FIR filter (possibly 

constrained to be low order) whose output best approximates the intrinsic PAT-pdfs when the 

input is the given detection function. Now we have produced the “best” weighted linear 

combination of time shifts for each detection function, so there is only one input to the full 

regression step for each detection function. 

5.1.3 Setup for Pairwise Relative PAT-pdf Regression 

The previous section describes a setup for predicting (estimated) intrinsic PAT-pdf for each 

individual sound from the acoustic properties of that sound.  This section suggests another setup 

in which we directly estimate the pdf of the difference in PAT between a pair of sounds, thereby 

the theoretical (Section 3.5) and practical (Section 4.4.4) difficulties of recovering each sound’s 

own PAT from measurements of relative PAT for pairs of sounds. 

                                                     

138 In an early phase of this research, before I had carefully thought through the issues discussed in Section 3.4.4 (page 
43), when I naively thought that the distribution of subjects’ delay times could be interpreted directly as the PAT-pdf of 
the test sound, I used this method with some success to predict the shapes of some of the figures in (Gordon 1987) 
directly from the audio.  I have not yet tried this method on estimates of intrinsic PAT-pdf. 
139 http://ccrma.stanford.edu/~jos/mdft/FIR_System_Identification.html 
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Now the target functions are the distributions of the time delay between physical onsets to make a 

pair of sounds be perceived as synchronous; these are the distributions that can actually be 

directly estimated from listening experiments. (In other words, these are the shapes of the 

distributions for the random variable D as described in Section 3.4.4 (page 43).) 

We’re going to be given two arbitrary sounds si and sj in the form of sampled audio signals, and 

we will output an estimate of the relative probability of si and sj being perceived as synchronous as 

a function of the delay time between their physical onsets.   

The inputs to the regression algorithm are the cross-correlation of each detection function as 

computed on si and sj. Let xi,j,n(l) be the cross-correlation between dfn(si) and dfn(sj) as a functin of 

lag time l, where l ranges from lmin to lmax in the usual way depending on the lengths of s1 and s2. 

Again the goal of our regression model is to find the vector of weights ! such that 

  A! = B  

where A is the matrix of all the inputs and B is the (column) vector of targets.  Again each column 

of A corresponds to a single detection function, and we vertically “stack” the signals from our 

training data.  The difference is that now each group of rows is a pair of sounds (that were 

compared to each other in the experiment), rather than an individual sound.  For sake of 

illustration, here’s how A and B would look in a situation where we had experimental PAT 

alignment results for all six unordered pairs of the three sounds s1, s2, and s3 (1-1, 1-2, 1-3, 2-2, 2-

3, and 3-3): 
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Note that the set of possible lag times that is the domain of the function xi,j,n is also the domain of 

the function Di,j.   

By construction this formulation has the property that time-shifting one of the sounds (e.g., by 

inserting some amount of silence at the beginning) will automatically shift every x by the proper 

amount. 

One weakness of this formulation is that it doesn’t provide a mechanism to model the pairwise 

alignment penalty terms described in Section 3.4.4.2 (page 48). 

5.1.4 Orthogonality Checking 

Early attempts at regression failed because my matrix A (whose columns are individual detection 

functions) was rank deficient. In an attempt to gain some insight into the relationship among 

various detection functions on these sounds, I ran the following tests. 
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First I looked for completely constant functions of time and rejected them outright as obviously 

containing no information.140 Then I used the vector cosine to compute the collinearity141 

between each pair of detection functions, rejecting one of the pair whenever the collinearity was 

below 0.001. Finally, I projected142 each remaining detection function onto the space spanned by 

all of the other detection functions; when the mean squared difference between the function and 

its projection is low it means that a linear combination of all the other detection functions can 

closely approximate the given function, so this detection function is redundant in a regression 

context. 

After these two passes (which in early tests tended to eliminate about 10% of the detection 

functions) I was always able to proceed with the regression. 

5.1.4.1 Most and Least Orthogonal Pairs of Detection Functions 

I computed all 86 detection functions for the 17 single-event sounds used in my listening 

experiment. (In effect, I concatenated all 17 sounds in the time domain, with enough zero-

padding between them to ensure that every STFT frame will include energy from only one sound, 

then computed all detection functions on the 17-sound sequence.) 

Low-Frequency Energy, Spectral Flatness, and their halfwave rectified first-order differences all 

had to be removed because some input frames (for the short clicks) are completely silent.  Of the 

remaining detection functions, all had a collinearity of at least  0.025! with every other detection 

function, as shown in Table 25 and Table 26, so the vector cosine test did not discard any 

detection functions.   

On the other hand, the projection test found that two of the detection functions were almost 

linear combinations of the others.  One was Spectrum Energy, which by definition is exactly 

equal to the sum of the twelve Chroma Energy functions described in Section 5.1.1.9.  The other 

is HFCC (the “sum of frequency weighted by energy” flavor of “high frequency content”).  

Examining the weights chosen by the projection algorithm reveals that (for these 17 sounds), 

HFCC is almost equal to 0.62 times Spectrum Energy plus 0.5241 times HFFCC, plus small 

                                                     

140 An example of this is Spectrum Max Magnitude Frequency, which for many of Grey’s tones is always the 
fundamental frequency. 
141 Actually, I computed the collinearity, which ignores the sign of the direction of each vector, so that it goes from 0 
(meaning the two vectors are linearly proportional to each other, i.e., parallel) to π/2 (meaning the two vectors are 
completely orthogonal in the multidimensional space): http://ccrma.stanford.edu/~jos/mdft/Vector_Cosine_I.html 
142 http://ccrma.stanford.edu/~jos/mdft/Projection_I.html 
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weights (absolute value never more than 0.06 and usually under 0.01) times all the other detection 

functions. 

C Detection Function 1 Detection Function 2 
0.5 MFCC 13 halfwave(diff(chroma-G)) 
0.49998 MFCC 13 halfwave(diff(zcr)) 
0.49995 MFCC 7 halfwave(diff(spectrum-hffcc)) 
0.49995 chroma-A halfwave(diff(MFCC 9)) 
0.49995 halfwave(diff(spectrum-energy-norm-db)) halfwave(diff(aubio-complex)) 
0.49994 halfwave(diff(chroma-Bb)) halfwave(diff(spectrum-max-mag-freq)) 
0.49992 halfwave(diff(spectrum-max-mag-freq)) halfwave(diff(MFCC 11)) 
0.49989 MFCC 9 halfwave(diff(zcr)) 
0.49988 MFCC 12 halfwave(diff(chroma-D)) 
0.49986 MFCC 4 halfwave(diff(MFCC 12)) 
0.49985 halfwave(diff(chroma-G)) halfwave(diff(spectrum-max-mag-freq)) 
0.49984 MFCC 7 halfwave(diff(MFCC 2)) 
0.49984 MFCC 5 halfwave(diff(MFCC 9)) 
0.49983 halfwave(diff(chroma-E)) halfwave(diff(MFCC 12)) 
0.49982 spectrum-geometric-mean MFCC 6 
0.49982 halfwave(diff(chroma-E)) halfwave(diff(spectrum-max-mag-freq)) 
0.4998 halfwave(diff(spectral-centroid)) halfwave(diff(MFCC 6)) 
0.49978 MFCC 12 halfwave(diff(spectrum-max-mag-freq)) 
0.49978 halfwave(diff(spectrum-max-mag-freq)) halfwave(diff(aubio-complex)) 
0.49977 halfwave(diff(spectrum-max-mag-freq)) halfwave(diff(aubio-phase)) 

Table 25: The twenty most orthogonal pairs of detection functions for the 17 single-

event sounds used in the listening experiment. 

 “C” is the collinearity between the two vectors, divided by pi. 

C Detection Function 1 Detection Function 2 
0.025459 spectrum-energy spectrum-spread 
0.033428 halfwave(diff(spectrum-energy)) halfwave(diff(spectrum-spread)) 
0.039343 chroma-D spectrum-energy 
0.03992 spectrum-hfcc spectrum-hffcc 
0.03998 chroma-C chroma-Db 
0.04507 chroma-D chroma-Eb 
0.046348 chroma-D spectrum-spread 
0.047311 chroma-Eb spectrum-energy 
0.047533 spectrum-energy spectrum-hfcc 
0.050125 chroma-Db spectrum-energy 
0.054868 chroma-Db spectrum-hfcc 
0.055695 chroma-D chroma-E 
0.056543 chroma-Eb spectrum-spread 
0.057911 spectrum-hfcc spectrum-spread 
0.058094 halfwave(diff(spectrum-energy)) halfwave(diff(spectrum-hfcc)) 
0.05839 chroma-Db spectrum-spread 
0.06266 chroma-Bb chroma-G 
0.063057 chroma-Eb spectrum-hfcc 
0.063814 chroma-E chroma-F 
0.066182 chroma-E chroma-Eb 

Table 26: The twenty least orthogonal pairs of detection functions for the 17 single-

event sounds used in the listening experiment. 



 138 

5.1.5 Regression and Machine Learning Future Work 

It is time-consuming to obtain subjective ground truth PAT-pdf data from listening tests, so the 

amount of training data is quite small by the standards of machine learning.  Therefore models 

with too many degrees of freedom (e.g., linear combinations of many dozens of detection 

functions or thousands of time-shifted detection functions) will tend to overfit. I believe that to get 

good results with predictive modeling of PAT (without an impractically large amount of training 

data) it will be necessary to perform some kind of feature selection to choose a small subset of the 

detection functions. 

The integral of any PAT-pdf will be 1 since it’s a probability density function.143  Since the 

variances of intrinsic PAT-pdfs vary greatly, so then do the maximum values: low-variance PAT-

pdfs will be very narrow and tall, while high-variance PAT-pdfs will be wide and short.  This 

presents a challenge to the regression techniques, since none of the detection functions will have 

such a wide difference in magnitude between impulsive and less impulsive sounds.  Perhaps some 

form of scaling or preprocessing could alleviate this problem. 

In addition to the straightforward linear regression that I have tried so far, more sophisticated 

forms of regression might perform better, including linear regression restricted to positive weights, 

logistic and other forms of nonlinear regression, and kernel ridge regression. 

5.2 Nonparametric Modeling of PAT-pdf 

All five of the intrinsic PAT-pdf estimation algorithms described in Section 3.5.5 (page 56) assume 

that intrinsic PAT-pdf is normal, but Section 0 (page 93) indicates that many of the intrinsic PAT-

pdfs must not be normal.  Getting from PAT measurements to shapes of intrinsic PAT-pdf curves 

in a completely nonparametric way (in other words, without making assumptions about the PAT-

pdfs fitting particular statistical distributions) brings up all the same issues of allocating observed 

variance among the two sounds’ intrinsic PAT-pdf variances and the pairwise alignment 

penalties, plus additional signal processing issues to find the exact shapes of the distributions. 

5.2.1 Nonparametric Model 

Given a set of samples of the random variable D, we can use nonparametric kernel density estimation to 

estimate the shape of D’s pdf without making any assumptions about D fitting a particular 

statistical distribution (Martinez and Martinez 2002, 280-285).  This gives us an estimate of D’s 
                                                     

143 Actually, this is only true for single-event sounds that will be perceived as one discrete event with probability 1.  
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pdf in the form of a sampled table, as illustrated in the top plot of Figure 16 (page 46). Let’s use 

the notation pdf(x) to mean “the (sampled) shape of the estimated probability density function of 

the random variable x.”   

Ignoring the penalty terms for the moment, DT,R=IT-IR, so we know that pdf(DT,R) is the cross-

correlation of the two intrinsic PAT-pdfs pdf(IT) and pdf(IR): 

 pdf(DT,R) = pdf(T)★pdf(R) 

(This follows from the assumption that the random variables T and R are independent.) 

We can use signal-processing methods to estimate the underlying intrinsic PAT-pdfs. The basic 

problem is the following: given pdf(DT,R) in the form of a sampled signal, find signals pdf(T) and 

pdf(R) such that pdf(DT,R) ≈ pdf(T)★pdf(R).   

The penalty terms complicate this so that the problem becomes the following: given an estimate 

of pdf(DT,R) in the form of a sampled signal, find signals pdf(T), pdf(R), and pdf(PenaltyT,R) such that 

pdf(DT,R) ≈ (pdf(T)★pdf(R)) * pdf(PenaltyT,R).  We can assume that PenaltyT,R is zero-mean Gaussian 

noise. 

5.2.2 Deconvolution of x*x with Spectral Square Root 

As in Section 3.5.3 (page 50), we can look at trials aligning two copies of the same sound S to try 

to find the shape of the intrinsic PAT-pdf for that sound. 

If we assume that pdf(IS) is symmetric in time, then we can set the zero point of our time axis to be 

the center of pdf(IS) so that the left/right flip that differentiates cross-correlation from convolution 

does nothing, in which case 

 pdf(DS,S) = pdf(S)★pdf(S) = pdf(S)*pdf(S) 

Since x*x (convolved with itself) is equivalent to XX (with X meaning the spectrum of x), then 

given as input a signal y assumed to be x*x, we first find its spectrum Y with a discrete Fourier 

transform (Smith 2007b).  Now we want to find  X = Y .  What makes this complicated is that Y 

is complex, so every element (in other words, each FFT bin) has two square roots. Therefore there 

are 2Nfft/2 possible spectra X such that XX=Y. The trick is that for each bin we choose the square 

root that results in the least difference in phase between this bin and the previous bin, so that the 
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end result will have a maximally “smooth” spectrum.144  Taking an IFFT of this “smooth” 

spectrum produces x. 

5.2.3 Deconvolution of x*noise in the Frequency Domain 

Since the spectrum of any Gaussian (e.g., a Gaussian noise penalty term) is another Gaussian145, 

we can “sharpen” a signal to remove any given amount of variance by dividing its spectrum by 

the appropriate Gaussian spectrum. 

5.2.4 Spectral Decorrelation of x★x? 

Since x★x (the cross-correlation of x with x) is equivalent to  XX , how can we find x given x★x?  

First of all, note that for any X,  XX will be real, so x★x must be symmetric, which makes sense as 

discussed above. 

Unfortunately, there are too many degrees of freedom.  We’re given y, a symmetric distribution 

for DS,S. We’ll call y’s spectrum Y; Y must be real since y must be symmetric. Now we must find X 

such that  XX = Y . Let each Xi be  a + bj .  

 
  
Y

i
= X

i
X

i
= (a + bj )(a ! bj ) = a2

+ abj ! abj ! b2 j 2
= a2

+ b2  

Each Yi is real, so there are infinitely many choices for a and b such that 
  
Y

i
= a

2
+ b

2 . 

Of the infinitely many x such that x★x matches a given y, one approach is to choose x with 

minimum phase, in which case this is the well-known problem of spectral factorization (Sayed and 

Kailath 2001). 

5.2.5 Generalization of Normal Parameter Estimation Algorithms to 

Nonparametric Case 

Some of the steps of our algorithms for estimating Gaussian model parameters have equivalents in 

the nonparametric case, as Table 27 shows. 

                                                     

144 Thanks to Julius Smith for coming up with this solution. 
145 See http://ccrma.stanford.edu/~jos/sasp/Gaussian_Window_Transform.html 
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Gaussian Model Nonparametric Model 
Estimating 

  
µ̂

S
 Time-shifting pdf(S) so its centroid is 

  
µ̂

S
 

  
!̂

unknown

2
= !

D
unknown ,known

2
" !̂

known

2  Decorrelation to solve pdf(Dunknown.known) =pdf(known) )★pdf(unknown) for 
pdf(unknown) 

var(IS) ! var(DS,S) / 2 Spectral Decorrelation of x★x 

Table 27: Correspondance between steps in estimating parameters of a Gaussian 

model of PAT-pdf and steps in estimating PAT-pdf nonparametrically. 

5.3 Applications 

5.3.1 Scheduling with PAT-pdf 

The main practical use of models of PAT and P-Center is to synthesize music or speech with a 

desired rhythm by concatenating individual sound events. By representing PAT as PAT-pdf we 

gain two additional benefits over accounting for PAT as a single instant.  First, we get a sense of 

the rhythmic tolerance inherent in each sound: a click might sound rhythmically different if 

moved by a few milliseconds, while the rhythmic contribution of another sound might sound 

exactly the same with the same shift. 

More subtly, use of PAT-pdf allows us to adjust the rhythmic feel of a sequence of sounds.  Sound 

example cycle-noPATcorrection plays the sequence of sounds listed in Table 28 with the physical onset 

of the sounds spaced exactly 400 ms apart.  The result sounds somewhat incorrect rhythmically, 

because the PATs are not equally spaced. Sound example cycle-PATmean is the same sequence of 

sounds, but scheduled so that the means of the sounds’ PAT-pdfs (according to the results shown 

in Table 23 of the “Variances from Trials Against Self & Maximum Likelihood Means” algorithm 

described in Section 3.5.5.4) are spaced every 400 ms. The difference between these two sound 

examples indicates that PAT matters at all.  The added expressive power of the PAT-pdf 

formulation comes from considering also the standard deviations of each sound’s PAT-pdf 

(namely, the square root of the variance shown in the “alg. 7” column of Table 24). Sound 

example cycle-PAT+1STD is just like the previous two examples except that it schedules the sounds 

so that the times of the mean plus one standard deviation of the PAT-pdf will be isochronous; 

sound example cycle-PAT+1STD is the same but making the times of the mean minus one standard 

deviation of the PAT-pdf be isochronous. To my ears, although the 400 ms period gives the same 

perceptual tempo in all four examples, cycle-PAT-1STD has a “laid-back,” rhythmically “easy” 

feel, while cycle-PAT+1STD has a more “pushing,” “on top of the beat” feel. 
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Ideal impulse 
Ideal impulse 
Ideal impulse 
Ideal impulse 
Clarinet 
Ideal impulse 
Clarinet SMC23 
Ideal impulse 
Clarinet SMC6 
Ideal impulse 
Snare 
Ideal impulse 
Snare SMC3 
Ideal impulse 
Ideal impulse 
Ideal impulse 
Trumpet 
Ideal impulse 
Trumpet SMC23 
Ideal impulse 
Violin 
Ideal impulse 
Violin SMC23 
Ideal impulse 
Violin SMC6 
Ideal impulse 

Table 28: Sequence of sounds in the "cycle" sound examples. 

Sound examples samba-noPAT, samba-PATmeans, samba-PAT-1STD, and samba-PAT+1STD have 

the same relationship to each other as the previous four sound examples, but this time following 

the “score” shown in Figure 63.  Again the noPAT version sounds wrong, the PATmeans version 

sounds correct, and the plus and minus one standard deviation versions have “forward leaning” 

or “backward leaning” rhythmic feels.  
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Figure 63: Typed-in “expressive” timing and event amplitudes for two of the parts of 

one version of the Samba Batucada rhythm. 

More work is required to create useful and flexible tools for scheduling rhythmic sequences 

according to different points in each sound’s estimated PAT-pdf curves. 

5.3.2 Taking Advantage of Pair-Specific Alignment Difficulty 

Throughout section 3.5 the “penalty term for each pair of sounds” representing the difficulty of 

perceiving the rhythmic alignment of sounds in separate audio streams was a source of complexity 

and difficulty. However, I believe it is possible to take advantage of this aspect of perception in 

compositionally interesting ways.  Sounds A and B might be in one auditory stream with sounds 

C and D in another.  A rhythm between sounds A and B will be perceived more exactly, possibly 

allowing for a larger number of distinct categories, or a clearer ability to hear microtiming 

subtlety.  If sound B gradually morphed to sound C, then it would lose not only its timbral and 

registral similarity to sound A, but also perhaps its “rhythmic affinity” to sound A; details of 

timing might be less apparent, and the rhythm might give the same perceptual impression even if 
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the timing of the rhythm played on C adjusted slightly so as to have a different relationship to the 

rhythm played on D.  

5.3.3 Design of New Interfaces for Musical Expression 

In the NIME field, there is much discussion of latency and jitter between the time of musicians’ 

physical motion and the time of the corresponding sonic effect in the audio output of the 

“interface” (Chafe and Gurevich 2004; Lago and Kon 2004; Wessel and Wright 2002; Wright 

2002; Wright, Cassidy, and Zbyszynski 2004).  Musicians can easily learn and adjust to latency as 

shown in Figure 9 (page 24), but jitter replaces the possibility of expressive microtiming with 

uncontrolled random temporal results.  The engineering question is “how much latency and jitter 

can a device have without compromising the possibility of expressive timing?”; an understanding 

of PAT-pdf could provide a way to quantify the way in which the answer to this question depends 

on the specific sounds that the device will make. 

On a more abstract level, I believe that expert musicians control not only the temporal placement 

of the PAT of each sound event, but also in some case perhaps the entire shape of the PAT-pdf.  

For percussive instruments this may be a bit far-fetched, but for the singing voice and for 

continuously bowed or blown instruments, skilled performers can certainly produce events that 

are rhythmically distinct to varying degrees, and possibly even specifically shaped PAT-pdfs such 

as plateau, bimodal, etc.  Perhaps a truly rhythmically expressive musical interface is one that 

allows the performer not just to control PAT with imperceptibly low jitter, but also allows the 

performer to control these shapes.  

5.3.4 Use of PAT and PAT-pdf in Computer-Assisted Rhythmic Analysis 

Analysis of the timing of recorded music generally considers the times of automatically detected 

note onsets. But as Section 2.5 (page 23) asserts, musicians control the timing of events’ PATs 

rather than onsets.  Incorporating models of PAT into this kind of analysis will allow exploration 

of the perceived rhythm of a given musical recording. 
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Appendix A Software for Administering the Listening 

Experiment 

Prior work with online listening experiments (Cox 2007; Disley 2006; Disley, Howard, and Hunt 

2006; Honing and Ladinig 2008) fits a paradigm in which experimenters create a small set of 

fixed sound files which are downloaded or streamed to subjects’ computers, and then the subjects 

listen to these sounds and enter some form of multiple-choice response via simple graphical user 

interfaces.  This level of interactivity would be enough to answer yes/no questions such as “do 

these two sounds seem like they’re rhythmically together?”146  However, I chose to use the 

standard method of adjustment for measuring PAT (see Section 3.3), which required giving the 

user complete control of the relative timing between two fixed sounds.  It would not be practical 

to pre-record every possible temporal alignment of each pair of sounds, nor to synthesize them on 

the fly from a central server and stream each option back to the user in real time; the only 

efficient network architecture is for the subject to download the individual sounds and then have 

software running locally on each subject’s machine render the sounds in a user-adjustable 

temporal relationship.   

Therefore I had to build custom software for administering this software in an environment with 

the following features: 

• High quality audio output 

• Fully general playback of sound samples with sample-accurate control of timing 

• Ability to design a graphical user interface to control sound synthesis interactively 

• Ability to send results back to me via the Internet 

• Cross-platform 

• Ability for subjects to run the software without having to pay for it 

                                                     

146 In retrospect, it might have been better to design the experiment around that kind of question.  In addition to being 
easier to implement software to administer such a test, that kind of task and its associated simpler interface would have 
been easier for subjects to understand.  On the other hand, having a more challenging and potentially more interesting 
task could be considered a form of the “high-hurdle technique”(Reips 2002, 7) for biasing data collection towards more 
dedicated and serious volunteer subjects. 
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I chose Max/MSP (Zicarelli 1998). 

This appendix describes the software in some detail with two overlapping goals.  The first is to 

provide a more complete picture of what exactly happened as subjects took this experiment. The 

second is based on the idea that this software and some of its components are generally useful 

beyond their use in this one experiment.  The software itself is freely available online under the 

GNU Public License; this appendix serves as documentation of the software.  At the time of 

publication of this dissertation, at least two other researchers have already used elements of this 

software for their own related experiments. I have also used the signal-based sample-accurate tap 

time input (described in section A.2.2) for other research involving the exact microtiming of the 

notes of Afro-Cuban clave patterns. 

A.1 Principles in the Design of the Listening Experiment 

Software 

This section lists the principles that guided the design of the software for this experiment and how 

I applied them. 

A.1.1 Do not hurt the subjects 

Compared to many other forms of research with human subjects, listening experiments are 

relatively safe.  However, I was concerned about two main risks to subjects’ health and well-being.  

To avoid hearing loss from excessive sound loudness (Rossing, Moore, and Wheeler 2002, 717-722) 

there is a volume calibration step in which the volume begins at zero with instructions to the 

subject to adjust it slowly upward until reaching a comfortable listening level.   To avoid repetitive 

strain injury, vision problems, and related computer-use ailments from excessive time spent on the 

computer taking the experiment, there is a feature that enforces a 60-second break every 15 

minutes, during which time audio pauses and the user sees the message “Please stretch and/or 

look far away for the next 53 seconds,” with the number of seconds counting down until the end 

of the break, at which point the message becomes “I hope you enjoyed or are still enjoying your 

break” and the subject is once again able to turn on audio.147 Figure 64 shows the implementation 

of the scheduling of breaks and Figure 65 shows how the breaks themselves were implemented.  

                                                     

147 One subject commented on this feature by email: “The forced pause happened at exactly the right time!!  I totally 
needed a break, but I wasn't aware of it.” 
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Another feature addressing both of these concerns is that the user can pause the experiment at 

any time for as long as desired.  

 

Figure 64: Sub-patch for scheduling breaks 

Figure 65: Sub-patch for enforcing breaks.  
 A “bang” received in the inlet causes a break to begin. 

 

A.1.2 Get subjects’ agreement to participate 

 

Figure 66 Opening "agreement" screen seen when the software begins. 
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The process of downloading and installing this software was a major deterrent for any would-be 

subject who did not actually want to be a part of the experiment.  However, the ethical principle 

of informed consent requires that experimenters disclose relevant information about the experiment 

to subjects, that experimenters make their best attempt to ensure that subjects understand that 

information, and that subjects voluntarily agree to participate in the research (Ryan et al. 1979).  

Therefore the software begins with the screens shown in Figure 66 and Figure 67. Clicking “No 

thanks” in the agreement148 screen (Figure 66) quits the program.  Clicking “Click here to send 

Matt an email” opens the subject’s default email software149 with a blank email message addressed 

to matt@ccrma.stanford.edu with the subject “Let’s discuss your research.”   

Several would-be subjects (all musicians) whom I knew personally raised the unanticipated 

concern that this research would a “test” of their own temporal acuity, that somehow their own 

musicianship would be placed under scrutiny, hence the language “it’s also not a test; there are no 

“correct” answers or any basis for evaluating your responses other than your own self-consistency 

and how your responses match and differ from other people’s.” 

Subjects were allowed to stop the experiment at any time, and I encouraged them to send me 

however many trials they completed even if not the full 75 that I requested. (Figure 18 on page 79 

shows the number of trials that each subject completed.)  Subjects also had to manually email the 

results back to me, providing one final opportunity to withdraw participation in the experiment. 

 

                                                     

148 Many experiments using human subjects begin with a step in which the subject consents to participate.  For this 
experiment, Stanford’s Institutional Review Board ruled that I was in fact exempt from this requirement because of the 
extremely low level of risk to the subject and the fact that the technical difficulties of downloading and running the 
experiment would deter any “potentially vulnerable subjects” such as those with impaired decision making.  Therefore I 
had to be careful not to use the word “consent” anywhere in my software, because I technically was not getting consent.  
149 This works by opening the url “mailto:matt@ccrma.stanford.edu?subject=Let's discuss 
your research.” in the user’s default web browser, by sending the “launchbrowser” message to “max.” 
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Figure 67: Second screen seen by subjects, giving the context of the research and an 

overview of the program's functions. 

A.1.3 Allow anonymous participation 

The software asks each subject for some personal information (as shown in Figure 68), 

emphasizing that the questions are optional. 
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Figure 68: Screen for users to enter (optional) personal information. 

The section “Sending Back Data from Completed Trials” below discusses technical aspects of 

enabling anonymity.  I note that in spite of these allowances none of my subjects chose to 

participate anonymously; each provided his or her full name and email address. (Many, however, 

declined to state age and/or gender.) 

A.1.4 Make it fun to participate 

“Make the experiment challenging and fun to do… Music lovers tend to like listening 

experiments and are usually very motivated, resulting in large numbers of responses” (Honing 

and Ladinig 2008, 5).  Some subjects commented that they were fascinated with being able to 

hear the effect of extremely small temporal adjustments.  One subject, in fact, was completely 

engrossed by this, and took over an hour per trial listening to hundreds of possible responses! 

I attempted to make the experiment more enjoyable by making the text for the subjects to read be 

humorous and light-hearted yet succinct. I also alternated blocks of more musically interesting 

examples (based on looped metric examples from real music) with the dryer, more “scientific” 

examples  (aligning isolated pairs of sounds).   
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A.1.5 Make it obvious what the task is 

Figure 69 shows the main user interface for this software.  The large text field labeled “Your task 

for this trial” contained a string such as “Synchronize two synthetic tones,” “Synchronize two 

clicks,” etc.  (Table 7 on page 77 lists all such tasks.)  The initial training segment of the software 

(described in the next section) gave a more detailed description of the task: “The goal of the 

experiment is to move the click so that it sounds like it's lined up exactly with the tone, i.e., to 

"synchronize" the click with the tone. You could pretend to be a conductor trying to get two 

musicians to play at the same time.”  The analogy to conducting was inspired by Gordon’s 

instructions that subjects “pretend to be a conductor, trying to get the two "players" to perform 

exactly together on the beat” (Gordon 1987, 91). 

 

Figure 69: Main user interface for the experiment 

A.1.6 Train subjects how to do the task 

Because this experiment is administered entirely by computer, the training takes place in the form 

of two “example” trials.  Each of these trials put the software into the same state as for a real trial 

and guided the user step-by-step through the software features needed to perform the experiment.  
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The first example used the Clarinet and Ideal impulse sounds, starting from an initial alignment in 

which the impulse occurs 136 ms (6000 samples) after the physical onset of the clarinet.  The 

clarinet sound has over 400 times as much energy as the single-sample impulse, so it’s much 

louder than the impulse (so much so, in fact, that for some subjects the clarinet completely masked 

the impulse when presented at equal volumes); this motivates the teaching of the user interface for 

controlling volumes individually. 

 

Figure 70: Instructions for the first example trial, demonstrating how to synchronize 

two isolated sounds. 

After the subject clicks “Click here to continue,” the window shown in Figure 71 appears. 
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Figure 71: Instructions for finishing a trial. 

 After the subject clicks “Go to the next example,” the screen shown in Figure 72 appears, 

explaining how to enter multiple clicks, select and move each individually, and renumber them if 

necessary. 
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Figure 72: Instructions for the second example trial, explaining how to perform trials 

with multiple clicks. 

All in all the interface uses 34 keys to select clicks individually or all together, to move the selected 

click in time, to hear only the loop, only the click, or both, to pause and resume the experiment, 

to adjust the relative and overall volume, to enter new clicks, and to finish each trial.  Although 

these were laid out spatially in a relatively logical fashion150 it would have been easy to forget 

details of the interface, so at any time the user pressed the question mark key, the window shown 

in Figure 73 would appear. 

                                                     

150 At least the physical layout made sense on the American-style keyboard I used to design the user interface.  Thanks 
to Laurent Daudet for reminding me that this layout becomes scrambled on various international keyboards. 
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Figure 73: Screen documenting the keyboard-based user interface for the software. 

A.1.7 Test only what should be tested 

I wanted to measure only subjects’ auditory perception of sound, so there was no visual feedback 

such as a waveform display or numeric readout of the amount of time between the onsets of the 

two sounds.  Figure 69 shows a slider labeled “How much you have moved the current “click” 

sound from its original time,” but the “zero” point of this slider is the (randomly assigned) initial 

temporal relationship between the two sounds, not, for example, a delay of zero between the 

acoustic beginnings of the two sounds. 

For trials in which the subject enters click times by tapping, I did not want to consider latency or 

jitter in the measurement of subjects’ taps, or variance from subjects’ motor noise, or the tendency 

to anticipate when tapping.  (See Section 3.3.1 on page 35.) Therefore tap times entered in this 

way were then verified sonically by playing the reference sound at the measured time of each tap, 

with a subsequent phase for the subject to fine-tune the timing until it sounded correct. 

A.1.8 Arrange trials in blocks 

The software presented blocks of trials with the same task before moving to each new task, as 

shown in Table 7 (p. 77).  A global counter kept track of the current trial number, which was the 

input to the trivial “num-trials-per-block” subpatcher shown in Figure 74. 
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Figure 74: Subpatcher to determine the type of task for each trial, implementing the 

arrangement of trials into blocks and the option to continue after completing 75 tri-

als. 

After the end of the 75th trial (as well as the 85th, 95th, etc.) the software invokes the “want to keep 

going?” patcher, shown in Figure 75.  

 

Figure 75: Screen informing the user that 75 trials were completed and offering the 

choice to stop or continue with extra trials. 

A.1.9 Randomize initial conditions 

The software randomly selected reference and test sounds for each trial from the options for the 

appropriate block.  Most importantly, for trials in which there is only a single sound to adjust, the 
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initial time relationship between the test and reference sounds was random.  For the first block of 

trials, which had two full-length instrumental tones, the initial offset was chosen uniformly from 

the range ± 340 ms. For blocks in which one of the sounds was a short click, the initial offset was 

chosen uniformly from the range ± 113 ms. 

A.2 Challenges in the Implementation of Listening Experiment 

Software 

This section details some of the technical issues I faced in building the software for these listening 

tests. 

A.2.1 Sample-Accurate Playback Scheduling 

 

Figure 76: Subpatcher for playing the looped "reference" sound and outputting a syn-

chronization signal. 

This software provides the subject with control of the relative timing of sounds down to a single 

digital audio sample (approximately 0.02 ms).  Achieving this kind of temporal accuracy in 
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Max/MSP requires bypassing the normal event-domain scheduling features and controlling 

timing completely in the audio domain.151 

The “master clock” for the software comes from the “play loop” subpatcher (shown in Figure 76). 

The “count~” object outputs a signal consisting of consecutive integers from zero up to the 

specified maximum (in this case, the period, in samples, of the repeating sound).  This signal goes 

out the left outlet to control the scheduling of the test sounds (described below) and also goes to a 

pair of index~ objects (for the two channels of the potentially stereo reference sound).  Note that 

MSP’s “index~” object outputs the last sample of the audio buffer for any input value greater 

than the duration of the buffer (in other words, it outputs a DC offset after it finishes playing a 

sound), hence the construction with the “<~” object and the two multipliers to force the output 

signal to zero after exceeding the duration of the buffer. 

The main data structure for the scheduling of click sounds is the collection “click-times”, which 

simply lists the time (in samples) that each click sound should begin with respect to the repeating 

reference loop.  Here’s an example collection that defines the times for four clicks: 

1, 12485; 

2, 41861; 

3, 68677; 

4, 96901; 

The software allows the user to enter up to nine clicks (because it uses the keys 1-9 to select each 

click individually).  For trials involving only a single test sound the multiple-click features are 

disabled.   

A poly~ object containing nine instances of the “clicker voice” patch shown in Figure 77 

synthesizes the click sounds.  This patch is important enough to warrant describing in detail: 

1. The “r click-times-changed” outputs whenever the contents of the “click-times” collection 

change. 

2. The “thispoly~” object outputs the voice number (1-9) of the “clicker voice” patch; each 

voice is responsible for producing only one click. 

3. The construction with “t b i -987654321”, the collection and the “int” provides a default 

value of -987654321 in case this voice’s click number does not appear in the “click-times” 

                                                     

151 See (Puckette 1991) for a discussion of the distinction between the event scheduler and the signal scheduler.  The 
modern version of Max/MSP inherits this architecture. 
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collection.  When the “sel” object receives this default value it disables the voice so no click is 

produced. 

4. Otherwise, the time that this voice should play its click has changed.  In order to avoid audio 

discontinuities when the subject changes the time of a click while it’s playing, there’s a 

ducking mechanism (implemented with the line~ object) that brings the gain of this click 

down to zero over 5 ms, holds it there for 20 ms (during which time the new click time passes 

through the “pipe 10” and to the “-~” object, changing the time the click will play), and then 

brings the gain back up to full volume over another 10ms. 

5. The signal input to this poly~ object (and hence all 9 instances of “clicker voice”) is the 

synchronization signal produced by the count~ object in Figure 76.  This signal comes in 

through the “in~ 1” object. 

6. Subtracting the offset for this voice’s click from the global synchronization signal produces a 

new signal whose value is zero at precisely the sample when this voice’s click should play.  

The pong~ object wraps this signal to be between zero and the loop length of the reference 

sound. 

7. The index~ object actually plays the click sound. 

8. The construction with the info~, <~, and *~ objects is a workaround for the problem 

mentioned above about index~ outputting a DC offset after finishing the buffer. 

9. The control inlet to this patch (which comes through the “in 1” object) determines whether 

this voice should sound (based on the user’s selection of whether to listen to all clicks or just a 

single click). 

10. The control outlet of this patch (which goes out via the “out 1” object) outputs the current 

click number whenever this voice plays. 
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Figure 77: Abstraction (to be used inside poly~) for sample-accurate playback of click 

sounds. 

A.2.2 Sample-Accurate Tap Time Input 

The software supports two methods of entering tap times for multiple-click trials: via the 

QWERTY keyboard or via the audio input.  The advantage of using the QWERTY keyboard is 

that it requires no configuration or calibration and the implementation is extremely simple (see 

Figure 78); the disadvantage is that the latency between physical key-press and the moment the 

software registers the key may be both long and variable (Wright, Cassidy, and Zbyszynski 2004).  

The audio input has the opposite properties: audio input latency is constant and potentially very 

small, but it is more difficult to configure. 
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Figure 78: Sub-patch for finding times when the subject taps on the period key.  

The inlet of this patch is connected to the synchronization signal produced by the 

count~ object in Figure 76 

 

 

Figure 79: Step one of audio tap input calibration: find the level of the background 

noise. 

A calibration phase in the opening sequence of screens offers the subject a choice of methods for 

inputting tap times.  If the user chooses to use an audio input then a calibration process attempts 

to set an amplitude threshold to distinguish subjects’ taps from the background noise.  (The 

software suggests that the subject insert a male-to-male audio cable into the computer’s sound 

input and tap directly on the cable, inspired by (Dixon and Goebl 2002).  Otherwise the subject 

taps on the computer’s built-in microphone, and sees the message “this method might not work 

very well if you're listening through a laptop's built-in speakers.”)  First the subject is instructed 

not to tap for two seconds, during which time the software finds the maximum instantaneous 

amplitude of the background noise, as shown in Figure 79.  Then the subject is instructed to tap, 
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as shown in Figure 80.  If the maximum amplitude of the tapping is less than twice the maximum 

amplitude of the background noise, the “instructions” become “Sorry, I couldn't tell the 

difference. Try again?”  Otherwise, the arithmetic mean of the noise level and the tapping level 

becomes the amplitude threshold at which the software registers the subject’s audio taps.  This 

window also contains some settings that subjects can adjust in case Max/MSP does not register 

audio input at all. 

 

Figure 80: Step two of audio tap input calibration: find the level of tap inputs and 

hence the signal-to-noise ratio. 

Once the software has determined an amplitude threshold that discriminates the subject’s taps 

from the background noise, the process of detecting audio tap input is conceptually simple:  

Whenever the audio input first crosses the threshold, sample and output the current value of the 

synchronization signal, then wait 100 milliseconds before allowing the next tap to occur.152  

Figure 81 shows the sub-patch implementing this idea; it is somewhat tricky because of the desire 

to sample the synchronization signal with sample accuracy, i.e., in the signal domain, but needing 

to output a Max event to the rest of the program.  The “>~” object implements the check against 

the amplitude threshold and outputs a signal each of whose samples is 0 or 1 depending on 

whether or not the corresponding audio input is above the threshold.  This goes into a minmax~ 

                                                     

152 A simple, obvious, and incorrect implementation of this idea would be a >~ connected to an edge~ connected to a 
snapshot~.  The problem is that by the time the bang from edge~ were transmitted, the synchronization signal input to 
the snapshot~ object would probably have advanced past the correct value.  (Also, the snapshot~ object is not sample 
accurate; it returns the first entry of the signal vector.) 
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object, whose second output is a signal giving the maximum value seen on the input since it was 

reset.  In other words, the output of minmax~ is zero for as long as the audio input is below the 

threshold, then changes to one at the instant the audio input crosses the threshold and stays there 

until reset.  This single transition from zero to one is used as the control signal for a sample-and-

hold (“sah~”) object, which samples the synchronization signal at the proper instant.  Everything 

described so far takes place in the signal domain on a per-sample basis.  Now we must cross into 

Max’s event domain, incurring a scheduling delay on the order of milliseconds.  The “edge~” 

object outputs a bang when the tap occurs, and this bang comes out after the aforementioned 

scheduling delay.  There’s a chance that the bang from the edge~ object may actually occur 

before the sah~ object starts outputting the proper new value, so the bang passes through an 

additional 10 milliseconds’ delay. The bang finally reaches the snapshot~ object well after the tap 

occurred, but the sah~ object continues to output the proper value of the sync signal, so the 

proper value is output.  After 100 milliseconds the minmax~ object is reset and the process may 

begin again. 

 

Figure 81: Sub-patch for finding times when the subject taps on the audio input. The 

left inlet of this patch (“Sync signal”) is connected to the synchronization signal pro-

duced by the count~ object in Figure 76.  The middle input (“Threshold”) comes from 

the threshold set by the patch shown in Figure 80. The patch outputs a Max event (an 

integer) containing the value of the sync signal sampled at the instant the audio input 

crosses the threshold.  See the text for a more detailed explanation. 
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A.2.3 Logging the Subject’s Actions in Each Trial 

 

Figure 82: "Finish trial" screen, for collecting information at the completion of each trial. 

The most important result from each trial is simply the final time for each click sound relative to 

the loop.  To provide data for further analysis in the future, and to allow me to investigate and 

discard certain kinds of bogus trials, I also collected a time-stamped log of the subject’s actions 

during each trial: 

• Any adjustment of the time of a click (whether via the keyboard, the on-screen slider, or 

tapping).  The log records which click was moved, which key was pressed, the amount of 

time (in samples) by which the click was moved, the resulting new time for that click, and the 

time (in milliseconds since the beginning of the trial) that the adjustment occurred. 

• Switching between listening to just the loop, just the click(s), or both.  

• The time (in milliseconds since the beginning of the trial) that user completed the trial. 
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The trial log also contains the date and time that the trial began (according to the clock on the 

subject’s computer), the version number of the software used to run the experiment, the trial 

number, the names of the two sound files used for the trial, the period of the loop, the randomly 

chosen initial physical offset, the string displayed as the task for this trial (as shown in Figure 69), 

as well as the personal information gathered from the screen shown in Figure 68.  Finally, at the 

end of each trial the software brought up the “finish trial” screen (shown in Figure 82); all of these 

responses also appeared in the trial log. 

/time 2007 12 9 9 8 39  
/looplen_samps 26459  
/click-offset 1 -881  
/software/version 1.4.1  
/subject/gender M  
/subject/age 36  
/subject/name Matt Wright  
/listening/thru good speakers  
/rating 8  
/trial-number 4  
/select-click 1  
/allow-click-selection 0  
/loop-length 600  
/task Synchronize two synthetic tones  
/click vcq526.seg.wav  
/loop tpq642.seg.wav  
/init-offset -1524  
/slider -681 1 2342  
/slider -553 1 2376  
/slider -1390 1 3365.81103515625  
/adjustment 1 1 5 439 -2475 5112.81103515625  
/adjustment 2 1 5 460 -2015 5716.81103515625  
/adjustment 3 1 5 429 -1586 6324.81103515625  
/adjustment 4 1 5 429 -1157 6932.81103515625  
/adjustment 5 1 4 227 -930 8228.810546875  
/adjustment 6 1 3 49 -881 9252.810546875  
/completed 14600.1396484375  

Figure 83: Example trial log. This was trial number four for a 36-year-old male named Matt Wright, 

and it took place at 9:08:39 am on December 9, 2007 using version 1.4.1 of the software, with sound 

coming through “good speakers.”  The task was “synchronize two synthetic tones.” The tones were 

tpq642.seg.wav (the trumpet, which was the fixed “loop”) and vcq526.seg.wav (the violin, which 

was the moveable “click”).  The trumpet repeated every 600 ms (26459 samples).  Initially the 

violin began 1524 samples (about 35 ms) before the trumpet.  After 2.3 seconds the subject used the 

slider to move the violin earlier by an additional 681 samples (about 15 ms) and then 553 samples 

(about 12.5 ms) with respect to the trumpet (these numbers are in addition to the initial 1524 

samples of offset). About a second later the subject used the slider to move the violin earlier.  

Around five seconds into the trial the subject used the QWERTY keyboard to move the violin later, 

first in four large increments of about 10 ms each, then in a smaller increment of about 5 ms, then 

a yet smaller increment of about 1 ms. The subject finished the trial in a total of 14.6 seconds, 

ending up with a final offset amount of -881 samples, i.e., the violin preceding the trumpet by about 

20ms.  
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Figure 83 shows an example log for a trial I performed; note the format inspired by Open Sound 

Control (Wright and Freed 1997) in which each line is an individual message with a symbolic 

address followed by arguments. 

A.2.4 Sending Back Data from Completed Trials 

The most challenging implementation issue for this program was the method for sending data 

from completed trials back to me. At first I wanted to use Open Sound Control (Wright 2005; 

Wright and Freed 1997).  This would have required setting up a server that would constantly 

listen for Open Sound Control messages sent by subjects, and write them to files. CCRMA’s 

system administration team was appropriately concerned about the possibility of exploiting this 

kind of server via a denial-of-service attack, by which a malicious party could waste unlimited disk 

space by sending bogus “trial data” messages, so we abandoned this idea. 

Max has the ability to open URLs using the user’s default web browser.  For “mailto” URLs 

(Hoffman, Masinter, and Zawinski 1998) this opens the user’s default mail program (which might 

be a standalone mail client application or the “compose message” screen of a web-based email 

client).  This method works perfectly for short messages (such as the “Let’s discuss your research” 

email created by the screen shown in Figure 66), but unfortunately both Max and various 

operating systems impose limits on the size of email messages that can be opened with this 

mechanism, and these limits are too small for the trial logs I needed to send. 

So I had to use a more roundabout solution.  I wrote a Javascript program, running within Max’s 

“js” object, to take in each line of the trial log and store it in an internal data structure.  When the 

user was ready to send the data back to me, this Javascript program wrote an HTML file 

(Berners-Lee 1995) containing an enormous “mailto” link around the text “Click here to email 

results to Matt.”  Even this method was not completely reliable, because of a Windows limit to the 

amount of text that can be in the body of a mailto link, so the html file also contained a form with 

a text area containing the trial log and with a “mailto” action invoked when the subject hits the 

“submit” button.153  Figure 84 shows the html file that allows the user to email me the trial log 

shown in Figure 83. 

<HTML><BODY><H1><A HREF="mailto:matt@ccrma.stanford.edu?subject=listening test 
data&body=/time%202007%2012%209%209%208%2039%20%0A 
/looplen_samps%2026459%20%0A 
/click-offset%201%20-881%20%0A 
/software/version%201.4.1%20%0A 
/subject/gender%20M%20%0A 

                                                     

153 Thanks to Andrew Schmeder for suggesting this method and helping me implement it. 
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/subject/age%2036%20%0A 
/subject/name%20Matt%20Wright%20%0A 
/listening/thru%20good%20speakers%0A 
/rating%208%20%0A 
/trial-number%204%20%0A 
/select-click%201%20%0A 
/allow-click-selection%200%20%0A 
/loop-length%20600%20%0A 
/task%20Synchronize%20two%20synthetic%20tones%20%0A 
/click%20vcq526.seg.wav%20%0A 
/loop%20tpq642.seg.wav%20%0A 
/init-offset%20-1524%20%0A 
/slider%20-681%201%202342%20%0A 
/slider%20-553%201%202376%20%0A 
/slider%20-1390%201%203365.81103515625%20%0A 
/adjustment%201%201%205%20439%20-2475%205112.81103515625%20%0A 
/adjustment%202%201%205%20460%20-2015%205716.81103515625%20%0A 
/adjustment%203%201%205%20429%20-1586%206324.81103515625%20%0A 
/adjustment%204%201%205%20429%20-1157%206932.81103515625%20%0A 
/adjustment%205%201%204%20227%20-930%208228.810546875%20%0A 
/adjustment%206%201%203%2049%20-881%209252.810546875%20%0A 
/completed%2014600.1396484375%20%0A 
--------------------------------------------------%20%0A"> Click here to email results to Matt </a></H1><hr> 
If that doesn't work (which is likely on Windows), try this instead: 
<form action="mailto:matt@ccrma.stanford.edu?subject=listening test data" method="post" 
<textarea name=" 
/time 2007 12 9 9 8 39  
/looplen_samps 26459  
/click-offset 1 -881  
/software/version 1.4.1  
/subject/gender M  
/subject/age 36  
/subject/name Matt Wright  
/listening/thru good speakers  
/rating 8  
/trial-number 4  
/select-click 1  
/allow-click-selection 0  
/loop-length 600  
/task Synchronize two synthetic tones  
/click vcq526.seg.wav  
/loop tpq642.seg.wav  
/init-offset -1524  
/slider -681 1 2342  
/slider -553 1 2376  
/slider -1390 1 3365.81103515625  
/adjustment 1 1 5 439 -2475 5112.81103515625  
/adjustment 2 1 5 460 -2015 5716.81103515625  
/adjustment 3 1 5 429 -1586 6324.81103515625  
/adjustment 4 1 5 429 -1157 6932.81103515625  
/adjustment 5 1 4 227 -930 8228.810546875  
/adjustment 6 1 3 49 -881 9252.810546875  
/completed 14600.1396484375  
-------------------------------------------------- "> 
</textarea> <input type="submit"></form> 
<hr> 
<p>If neither of the above work, your last resort is to open your 
usual mail program manually and send this HTML file as an attachment. 
This file is named sendemail-2.html 
It's located in the same folder as the application for running this experiment. 
If you're reading this in a web browser, it should be telling you  
where on your computer's disk this file is located.</p> 
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<p>Use whichever of these three methods works best for you.</p> 
</BODY></HTML> 

Figure 84: Example html file used for emailing a trial log 

As a backup, the software also wrote individual text files containing the log for each completed 

trial, so that users could manually attach the logs to an email to me in case the other methods 

failed.  The software included a link to the anonymous email service anonymousspeech.com, 

where I had created an account that subjects could use if they wished to submit data anony-

mously.  (No subjects used this method to submit their results.) 

Because of all the complication and potential problems with the sending of this email, the third 

screen of the software (shown in Figure 85) tests the full process of creating an email inside an 

html file.  Clicking on “See how to send an email manually” brings up a screen (shown in Figure 

86) of instructions for doing so. 

 

Figure 85: Email configuration test screen. 
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Figure 86: Screen of instructions for manually emailing trial results. 

An unforeseen complication was the liberties that various email transmission software took in 

modifying the text in the bodies of these emails.  Some trial emails arrived with extra line breaks, 

or different text encodings or other corruptions.  In retrospect it would probably have been better 

to send trial results as email attachments, or with a transmission medium other than email.  At 

least the consistent use of the email subject line “listening test data” made it easy to gather all such 

messages and separate them from spam and other messages. 
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Appendix B Maximum Likelihood Solution for Intrinsic 

PAT-pdfs? 

Let’s try to use a maximum likelihood method to solve for all of the parameters of a model of 

Gaussian intrinsic PAT-pdfs plus a zero-mean Gaussian penalty term for each pair of sounds.  

What we see is samples of a random variable 
  
D

T ,R
 (as explained in Section 3.4.4 on page 43).  We 

assume that it has three components (the random variables IT and IR for the intrinsic PATs of the 

test and reference sounds, and the penalty term 
  
!

T ,R
 expressing the alignment difficulty penalty 

for aligning sounds T and R): 
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We assume all three terms are independent Gaussian random variables and that the alignment 

penalty 
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 has mean zero: 
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Since the sum of Gaussian random variables is itself a Gaussian random variable, we know 

  
D

T ,R
~ N (µ

D
T ,R

= µ
T
! µ

R
,"

D
T ,R

2
= "

T

2
+"

R

2
+"

T ,R

2 )  

The probability density function for 
  
D

T ,R
is therefore 

  

1

!
T

2
+!

R

2
+!

T ,R

2

1

2"
exp #

x # µ
T
# µ

R
( )( )

2

2 !
T

2
+!

R

2
+!

T ,R

2( )

$

%

&
&

'

(

)
)

. 
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We take the log to find the log-likelihood of each observed value 
  
d

T ,R
(k ) : 
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There are Ni,,j trials aligning test sound i with reference sound j, with no particular relationship 

between 
  
N

i , j
and 

  
N

j ,i
. We pay attention to trials comparing a sound to itself, so 
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The total log likelihood of all of the results of an entire experiment involving n sounds is 
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We’ll take the partial derivative of J with respect to each parameter of our model, setting each to 

zero.   

B.1 Solving for the Means 

First we consider 
 
µ

S
, the intrinsic mean of each sound S: 
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To get from the third line to the fourth we used the fact that of all terms of the expansion of the 

double summation, only those for i=s or j=s will contain 
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S
. At this point we need to assume 

  
!

i , j

2
= !

j ,i

2 :  

  

0 =
1

!
s

2
+!

i

2
+!

i ,s

2
" N

s ,i
+ N

i ,s( )µs
+ N

s ,i
+ N

i ,s( )µi
+ d

s ,i
(k ) " d

i ,s
(k )

k=1

N
i ,s

#
k=1

Ns ,i

#
$

%
&

'

(
)

i=1

n

#  

This is a system of n nonlinear equations in 3n unknowns. 

B.1.1 Solving for the Means if Variances are Known Constants 

By treating the variances as constants we can set up n linear equations in the n unknown means: 
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Setting 
  

!

!µ
s

J (" ) = 0 for all s produces the following system of n linear equations in the n unknown 

values of 
 
µ

S
: 



 174 

   

2N
1,1

2!
1

2
+!

1,1

2
"

N
1,i
+ N

i ,1

!
i

2
+!

1

2
+!

i ,1

2
i=1

n

#

$

%

&
&
&
&
&

'

(

)
)
)
)
)

N
2,1
+ N

1,2

!
2

2
+!

1

2
+!

2,1

2
…

N
n,1
+ N

1,n

!
n

2
+!

1

2
+!

n,1

2

N
1,2
+ N

2,1

!
1

2
+!

2

2
+!

1,2

2

2N
2,2

2!
2

2
+!

2,2

2
"

N
i ,2
+ N

2,i

!
i

2
+!

2

2
+!

i ,2

2
i=1

n

#

$

%

&
&
&
&
&

'

(

)
)
)
)
)

…

N
n,2
+ N

2,n

!
n

2
+!

2

2
+!

n,2

2

! ! " !

N
1,n
+ N

n,1

!
1

2
+!

n

2
+!

1,n

2

N
2,n
+ N

n,2

!
2

2
+!

n

2
+!

2,n

2
…

2N
n,n

2!
n

2
+!

n,n

2
"

N
i ,n
+ N

n,i

!
i

2
+!

n

2
+!

i ,n

2
i=1

n

#

$

%

&
&
&
&
&

'

(

)
)
)
)
)

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

µ
1

µ
2

!

µ
n

$

%

&
&
&
&

'

(

)
)
)
)

=

d
1,i

(k ) " d
i ,1

(k )
k=1

N
i ,1

#
k=1

N1,i

#
!

i

2
+!

1

2
+!

i ,1

2
i=1

n

#

d
2,i

(k )
k=1

N
2,i

# " d
i ,2

(k )
k=1

N
i ,2

#
!

i

2
+!

2

2
+!

i ,2

2
i=1

n

#

!

d
n,i

(k )
k=1

N
n ,i

# " d
i ,n

(k )
k=1

N
i ,n

#
!

i

2
+!

n

2
+!

i ,n

2
i=1

n

#

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
))

 

Since 
  
!

i , j

2
= !

j ,i

2 , the matrix of coefficients is symmetric. By construction this matrix of coefficients 

is also singular, because we can add any constant to every 
 
µ

S
 and still equally explain the 

observed experimental results, as described in section 3.5.4.2 (page 53). As before, we can solve 

this system of equations except for the constant either by computing the pseudo-inverse or by 

arbitrarily removing one of the columns of the matrix and the corresponding 
 
µ

i
. 

It is also instructive to compare this system of linear equations with the one on page 55; they are 

essentially identical except for the variances in the denominators of all the fractions. An intuitive 

explanation for this difference is that this method scales the data from each pair of sounds by the 

inverse of its variance. For example, if subjects were more consistent overall in their alignment of 

sounds A and B than in their alignment of sounds A and C, then 
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2 and so the trials comparing A and B will “count more” in the 

overall solution than the trials comparing A and C.  Section 3.6 (page 61) motivates the benefit of 

this down-weighting by variance. 

B.2 Solving for the Intrinsic Variances 

Next we consider the intrinsic variance of each sound: 
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Again we have n nonlinear equations in 3n unknowns.  (This time the equations are nonlinear in 

the variances we’re trying to optimize, so even if we treat the means as constants the equations are 

still nonlinear.) 

B.3 Solving for the Pairwise Alignment Penalty Variances 

Finally we attempt to solve for the variance of the alignment penalty for each pair of sounds: 
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Once again the resulting equations are nonlinear, but only in the unknown means. 

All in all we have 
  

2n +
n

2

2
nonlinear equations in 

  

2n +
n

2

2
unknowns. 

B.4 Future Work 

It still may be possible to find the !  that minimizes 
  
J (! ) . A nonlinear equation solver might be 

able to solve the combined system of all n(n-3)/2 equations that result from setting each partial 

derivative of 
  
J (! )  to zero.  Alternately, based on the work so far, it seems straightforward to find 

every second derivative of 
  
J (! ) , (in other words, the Hessian matrix) analytically; this could be 

the basis of a gradient descent optimization algorithm. 

Another approach would be an iterative “relaxation” algorithm that starts with initial guesses for 

all parameters then alternately treats the variances as constants and uses their values to optimize 

the means (according to Section B.1.1) and then treats the means as constants and uses their 

values to optimize the variances.  This process could continue back and forth until convergence. 

Note that every variance always appears only as part of the sum 
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2
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2
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2 , so it might be a 

good idea to define a new variable 
  
x

i , j
 equal to this sum, and use the iterative relaxation 

algorithm to find all 
 
µ

i
 and all 
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.  Then the “partitioning” of the variance 
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among 
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and 
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2  could be a separate step. 
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