
Harmonic Neural Networks: Adapting Text

Generation Techniques to Generating Harmonic

Sequences Using Recurrent Neural Networks

Marina Cottrell - Music 258

December 12, 2018

Abstract

Both Markov chains and Recurrent Neural Networks (RNNs) have
been shown to be a useful tool in generating musical sequences. This
paper will look at two tasks–generating harmonic sequences and generat-
ing harmonic accompaniment given a melody–using both Markov chains
and RNNs with Long short-term memory (LSTM) units. The differences
between these implementations will show the usefulness of RNNs in un-
derstanding larger-scale structure and repeated patterns. Finally, ways of
improving the models will be introduced, including suggestions for chord
simplification and data enhancement.

1 Introduction

Harmony and harmonic patterns play a key role in how we understand and
define musical style and structure. Many music theorists and musicologists
use harmony to make broader statements about a musical work or a composer
or even an entire genre. As music students, we learn to identify chords and
harmonic functions and how they are used in different styles of music. This
focus on harmony is indicative of its importance in our experience of music.

If we can come to a clear definition of what harmonic structure is, then we
can start to automatically extract this underlying structure from encoded music
files, such as midi files. Automatically extracting this structure can be used for
a variety of different tasks, including the identification and imitation of specific
composers or musical styles.

Techniques for generating text, such as character-based text generation or
automatic translation of text, have already been shown to be particular effective
when translated into the realm of generating melodic sequences. Both Choi et
al. and Eck have shown how LSTMs can be used in music composition [1][2].
Some previous literature also exists on generating chord sequences[3][4], but so
far not much has been researched on understanding or generating larger-scale
harmonic structure.

1



Figure 1: Example of ”chordify” function input and output.

In this paper, I investigate some of the techniques for generating harmony,
both independently and as accompaniment to a given melody. The purpose of
this will be to understand what techniques are available and necessary for this
task, and to see how moving from the surface-layer chords to an underlying
harmonic structure can be achieved.

2 Methods

2.1 Data

For this project, I used all 370 Bach Chorales, available from the KernScores
website, in the midi format as training data. Chords were parsed from the
midi files using the music21 python framework and specifically the ”chordify”
function.

”Chordify” collapses all simultaneously sounding notes into single chords
(See Figure 1). Notes that are being held over from a previous time step will
be re-articulated, which, though somewhat inaccurate compared to what the
composer wrote, preserves what we actually hear in its notation.

Once the pieces are processed by ”chordify,” the resulting chords were then
translated into strings of different formats, depending on the use case. Gener-
ally, all chords were represented as a string of numbers, separated by spaces.
These notes could either represent the midi value or the scale degree number of
each of the notes in the chord. For a C major chord, for example, the string
representation could look something like this: ”48 52 55 60” in midi numbers,
or ”0 4 7” in scale degrees. Depending on the purpose, these strings can some-
times also contain tempo information added on to the end, represented as the

2

http://kern.ccarh.org/
http://web.mit.edu/music21/


number of quarter notes in length (e.g. an eighth note would be represented as
0.5, because it is half the length of a quarter note). The C major chord with
tempo information could then look something like this: ”48 52 55 60 0.5” for
an eighth note in length.

The final method I used to represent chords was using repeated sixteenth
notes. Sixteenth notes are the smallest note length in any of the Bach chorales,
so dividing notes into repeating sixteenth notes ensures that all the parts of the
piece have the equal number of notes, allowing them to be lined up perfectly.
The repeated sixteenth note chords were then given additional values to identify
if they were the beginning of a chord (the onset), a continuation, or the end
(the offset). These were represented with the strings ”b” for beginning, ”c” for
continuation, and ”e” for ending. A quarter note long C major chord would
then be represented like this: ”48 52 55 60 b”, ”48 52 55 60 c”, ”48 52 55 60
c”, ”48 52 55 60 e”. This technique was especially useful in generating chordal
accompaniment to a melody, because it meant that the chords could change at
different times than the melody notes, while retaining the 1-to-1 mapping.

2.2 Generating Harmonic Sequences

2.2.1 Markov Chains

Using Markov chains is an easy way to probabilistically generate sequences, with
each element depending on the n preceding elements. In this case, I decided
to use 2nd-order Markov chains, which means each element depends on the 2
preceding elements. This was implemented in python, using dictionaries, where
each key in the dictionary was a string that contained both chord elements,
separated by a forward slash, and the value was a list of all the possible next
chords, repeated depending on how likely they are to occur. Although a list
makes more sense for storing two chords, lists cannot be used as keys in a
python dictionary. One entry in the dictionary could look something like this:
{”48 52 55 60 / 48 53 57 60”: [”48 52 55 60”, ”48 52 55 60”]}.

For using Markov chains, I decided to represent my data as midi numbers
without duration information, as in the example above. I also parsed the Bach
chorales to exclude any chords on the offbeats. This meant I was only looking at
chords on each quarter note beat of the chorale. This was done because Markov
chains are generally not very good and would be able to learn sequences better
if there is less information involved. Being too precise with timing information
could lead to very strange and bad metrical decisions, and potentially even
completely remove any kind of meter from the output.

As well as this particular representation of chords, I also included special
begin and end tokens to show the generator where to start and stop. This
meant that I always started a sequence by randomly picking among the possible
keys with the word ”begin” in them, and then looped to pick a next chord until
the next picked chord was ”end”.

3



Figure 2: Plot of LSTM Generative Model.

2.2.2 RNN

LSTMs (Long short-term memory) are type of unit found in RNNs (Recurrent
Neural Networks). RNNs are a structure primarily used in the prediction and
classification of time series data, such as text and speech recognition. Although
they do retain memory of past events, LSTMs were specifically designed to have
a longer-term memory, and are therefore ideal for sequence generation in which
there are longer lasting structures and patterns.

I based my RNN model on a couple of different models originally used for text
generation. Brownlee’s blog post[5] originally used a similar model to generate
text character by character, trained on ”Alice in Wonderland” and Campion’s
model generated text word by word, trained on his own book, a French fantasy
novel. Both character-based and word-based approaches are common for text
generation, and in my case I used chord-based generation.

Figure 2 shows a plot of the model’s architecture. Each larger rectangle
represents one layer in the neural network and the numbers represent the input
and output shapes (how many features are being looked at in each layer). I
use two LSTM layers, as each added layer adds further abstraction of the input
over time. This simply means that larger-scale structures will be learned better.
After each LSTM layer, I used a dropout layer. Dropout layers are ways of
improving your accuracy by randomly removing training data. This makes the
neural network more generalizable because it doesn’t learn to rely on specific
information.

For consistency between the LSTM and the Markov implementations, I also

4



trained this model on downbeat chords without including duration informa-
tion. However, because I wanted to be able to control the length of the output
sequences manually, I did not include ”begin” and ”end” tokens this time. Al-
though this meant that I could output anywhere from 4 to 100 chords, it also
meant that I had to generate one chord at a time. The model still retains a
memory of what it has generated thus far, but because I had to control when
to stop, I was unable to judge whether or not the model had learned how and
when to end a chord sequence.

2.3 Generating Chordal Accompaniment to a Melody

2.3.1 Markov Chains

For the Markov chain implementation of accompaniment generation, I will re-
fer to a project that I did two years ago. In this implementation, I used a
Markov chain that encompassed the time-step preceding the chord I was trying
to predict, which included three musical elements: the previous melody note,
the previous chord, and the current melody, for which I was trying to predict a
chord.

This implementation assumes a strict one-to-one relationship between melody
note and accompanying chord, which means that for every new melody note, the
chord will also change. Since this isn’t how music generally works, I also filtered
the input melody to look at only the downbeats, before passing it through the
Markov chain generator. This made the output a little bit more natural, but
it was unfortunate that it took so much preprocessing, and shows one of the
Markov chain’s huge disadvantages in this situation.

I also included a ”begin” token, which meant the very first entry into the
Markov dictionary contained two begin tokens, one for the previous note and
one for the previous chord: ”begin / begin / 72”:[”48 52 55 60”]. Unlike in the
chord generation task above, starting a new sequence wasn’t done by randomly
choosing a key, but by creating one with the first note in the input melody.
Although this makes the output accompaniment less random, it also means
that every note in the given melody has to have existed in one of the training
pieces. More specifically, any sequence of two notes in the input melody have
to also exist somewhere in the training melodies. With 370 pieces to train on,
the chances of this happening are fairly high, but it does mean that styles of
melodies that are too different from Bach (e.g. 12-tone or atonal melodies) have
a worse chance of working at all. Because the Markov chain’s output depends
so strongly on the melodic input, I didn’t need to include an ”end” token in
this implementation, because the output would naturally end when it ran out
of melody notes to use.

2.3.2 RNN

For this RNN model, I implemented a simple sequence tagging model, in which
the input melody notes are considered the sequence, and the chords are the

5



Figure 3: Plot of LSTM Labelling Model.

labels. Sequence tagging is often used in text as well, especially for labelling
parts of the sentence (such as ”noun”, ”verb” or even ”location” or ”person”).
Some words always have the same label, but most of the time, labels depend on
the overall context of the word in sentence. Although calling chords a ”label”
to a note is not very intuitive, the overall architecture does make sense. Just as
with text, in music, although some chords go better with some notes, you can’t
accompany a note in isolation and need to be aware of the preceding harmonies.

To avoid the amount of pre-processing I needed to make the Markov chain
implementation work, especially with regards to rhythm, I decided to train
the RNN model on repeated 16th-note chords. This chord formatting meant
that there was a one-to-one mapping of note to chord–required for sequence
tagging. However, since both notes and chords contained timing information
in the form of ”beginning”, ”continuation”, and ”end” tokens, they could act
completely independently of each other. While in the Markov implementation I
opted to only look at the melody downbeats, using repeated 16th-notes meant
that I could retain the full original melody, while still training it to learn the
accompaniment correctly.

3 Results

3.1 Generating Harmonic Sequences

The differences between the Markov-generated harmonic sequences and those
generated by the Neural Network are surprisingly subtle. For the most part, the

6



Figure 4: Example of a Markov chain-generated chord sequence.

Markov-generated sequences sounded pretty good. They seemed to make a lot
of sense, especially on the local scale. Part of their success, however, stemmed
from the fact that they were very simple–they tended to alternate between
the tonic and another chord, but rarely stray much farther. As a whole, the
sequences sounded more like ear-training examples taught to a beginner theory
class, rather than musical pieces. However, when they did move away from their
original tonic, they almost invariably modulated completely away and ended in
a completely different key.

Figure 41 is one of the most successful of the Markov-chain generated chord
sequences. While this one managed to begin and end in the same key, most of
the others didn’t do that. I chose this one however, because it demonstrates very
clearly how tonic-focused the sequence is; aside from in measure 3, almost every
third chord is the tonic chord. I think this highly uniform harmonic motion
comes from the fact that motion to and from the tonic chord is statistically
the most likely, even though within a piece as a whole, there tends to be more
variation. It could also be that of the Bach chorales, the ones in D major tend to
have less variation, meaning the Markov generator has fewer options to choose
from and a higher chance of picking the simpler chord progressions.

The LSTM-generated sequences on the other hand generally contained more
variation in harmonic motion away from the tonic, but without actually mod-
ulating out of the key. Figure 52 shows this really well in measures 9-12: the
harmonic sequence in measures 9 and 10 repeats almost exactly down a half-step
in measures 11 and 12. This is indicative of the Neural Network being able to
learn larger-scale patterns like 2-bar repeating patterns, while still being able
to stay in the tonic key.

3.2 Generating Chordal Accompaniment to a Melody

When it came to accompanying melodies, RNNs far out performed the Markov
chain. It was much clearer here that the Markov chain-generated accompani-
ments did not have any understanding of longer harmonic patterns or key. Gen-
erally, each chord was consonant with the melody note it was accompanying,

1Listen: https://ccrma.stanford.edu/~marina/audio_files/markov_generated_

chords.wav
2Listen: https://ccrma.stanford.edu/~marina/audio_files/rnn_generated_chords.

wav

7

https://ccrma.stanford.edu/~marina/audio_files/markov_generated_chords.wav
https://ccrma.stanford.edu/~marina/audio_files/markov_generated_chords.wav
https://ccrma.stanford.edu/~marina/audio_files/rnn_generated_chords.wav
https://ccrma.stanford.edu/~marina/audio_files/rnn_generated_chords.wav


Figure 5: Example of an RNN-generated chord sequence.

Figure 6: Example of an Markov chain-generated accompaniment.

and most pairs of chords made sense together, there was clearly no over-arching
tonal structure. For the most part, it was also unable to find the correct key
of the melody, meaning although the chords were ”correct” in that they were
consonant with their notes, it generally didn’t feel correct.

In Figure 63, this melody was supposed to be in A minor, but the Markov
chain harmonized the first chord with an A major chord, meaning it had to
course-correct on the C natural at the end of the first bar. These problems all
make sense, since this Markov chain had especially little context–it was only
looking back one time-step.

The RNN implementation, on the other hand, always harmonized in the
correct key, from beginning to end. Although there were strange modulations
in some of the accompaniments, they never drifted too far and always ended back
on the tonic. It also seemed to understand other cadential points in the melodies,
signalling that it was beginning to understand larger structural elements to the
music, rather than just the chord-to-chord relationships.

Figure 74 is the first two measures of ”Ode to Joy” with RNN-generated
accompaniment. The accompaniment manages to hit the key moments of the

3Listen: https://ccrma.stanford.edu/~marina/audio_files/markov_generated_

accompaniment.wav
4Listen: https://ccrma.stanford.edu/~marina/audio_files/rnn_generated_

accompaniment.wav

8

https://ccrma.stanford.edu/~marina/audio_files/markov_generated_accompaniment.wav
https://ccrma.stanford.edu/~marina/audio_files/markov_generated_accompaniment.wav
https://ccrma.stanford.edu/~marina/audio_files/rnn_generated_accompaniment.wav
https://ccrma.stanford.edu/~marina/audio_files/rnn_generated_accompaniment.wav


Figure 7: Beginning of ”Ode to Joy” with RNN-generated accompaniment.

Figure 8: Middle of ”Ode to Joy” with RNN-generated accompaniment.

original harmonization: the I chord at the beginning, the V chord at the begin-
ning of the second measure, and the V-I motion into the third measure. The
rest of the accompaniment varies somewhat in accuracy, but there are still key
structural moments that the Neural Network manages to correctly identify.

Figure 8 shows measures 9-12 of the ”Ode to Joy” harmonization. As you
can see, there is a lot more variation going on in this part of the piece, and it
strays a lot farther from the original key. Despite this, the upbeat to and the
first beat of measure 11 are harmonized as expected with a V-I in the tonic.
The last note in measure 12 also shows that the accompaniment managed to
land on the correct harmony. This seems to indicate that, although there is
room for improvement in some of the middle parts of the accompaniment, the
Neural Network is starting to understand the over-arching structure of pieces
and how to integrate harmony into that structure.

4 Discussion

The Neural Network far out-performed the Markov chains when it came to gen-
erating accompaniments. Although the difference between the two was not as
big when it came to generating chord sequences, the larger-scale repetitions that
the RNN managed to create are a sign that it had a deeper understanding of the

9



music than the Markov chain. While both RNNs seemed to have a good under-
standing of how to generate large-scale structure, they both struggled somewhat
with the details of the chords in between those structural moments. Because I
am interested in understanding and extracting the underlying harmonic struc-
ture of music, there are steps I could take here to ensure that the networks
recognize more of the structural harmonies and don’t worry as much about the
chords in between.

Because I used one-hot encoding to encode the chords, the full output of
my Neural networks was actually vectors of the probabilities of each chord at
each point in time. The resulting chord chosen was always the chord with
the highest probability. However, in non-structural moments (off-beats, non-
cadential points, etc), the predicted probabilities were a lot lower than in key
structural moments (beginning and end of the piece, cadences, etc). The fact
that the RNN’s accompaniment of ”Ode to Joy” seemed to recognize cadential
points and accurately harmonize them shows that those points probably had
higher probabilities associated with them. Especially when compared to–a lot
of them seem like strange and unusual choices, which signals some amount of
randomness.

This could be used to our advantage: if you only output chords that have a
predicted probability of over a certain threshold, it’s likely that the output will
be only the structural moments. In between, if none of the output probabilities
are high enough, the output chords could be rests or ”undefined” as placeholders.

Another option is to simplify the chords before training the Neural nets.
Simple techniques, such as removing passing tones or other non-chord tones,
choosing just one chord per beat (but not necessarily always the first chord in
each beat), and writing all chords in the same way (e.g. root position) could
help to reduce the number of unique chords the Neural net is trying to learn.
This would lead to better results with less training, but also a more bare-bones
harmonic sequence, more representative of the underlying harmonic structure.

For either of these options (probability threshold or simplifying chords), the
output would be more sparse than the output above. The resulting sequences
would have to act as a structural placeholder and probably be run through a
second Neural net to get any kind of meaningful music out of it. Splitting up the
work in this way means more training of Networks and more data processing,
but would probably result in cleaner musical outputs, and would allow us to
train different Networks on different kinds of music. For example, the bare-
bones harmonic structure could be trained on Bach chorales, while the fleshed
out melodic Neural network could be trained on Chopin. This would result in
being able to combine different elements of different composers or styles of music
in new ways.

While the Markov chain implementations probably can’t be improved on
very much, there are a number of things that can be done to improve the RNN
implementations. One of the key aspects that makes Neural Networks perform
well is having a lot of data. Although I am somewhat limited in that aspect
because there are only so many Bach chorales, and I used all of them already,
there are some techniques I can use to artificially increase my data set. One

10



option is to transpose all the Bach chorales into all 12 keys. This would allow
me to have 4440 pieces to train on, rather than just 370. It would also balance
out the learning across all keys. Right now, it is very likely that my Neural
Network has learned certain keys better than others. If, hypothetically, 80%
of Bach’s chorales are in D major, then the RNN would have been trained on
296 pieces, while all the other keys would have been trained on only 6 pieces
each. Transposing all pieces would allow all keys to be equally represented and
improve the output.

Training the RNNs for longer would also allow for better results. All the
Neural Nets here have been trained for 300 epochs, which in most cases took
my computer all night. Because I needed a functioning computer the rest of the
day, I couldn’t run them longer. Similarly, I was not able to transpose all of my
pieces because my computer couldn’t run the networks with that much data.
Moving forward with developing these networks, I will set up a GPU instance on
AWS so that I can run everything faster and with all the data I need. This will
also allow me to iterate more quickly and adjust and improve the architecture
of the model as I work.

5 Conclusion

Both generating harmonic sequences as well as generating harmonic accom-
paniment had interesting results and showed a lot of promise. Although the
Markov chain output was sometimes pretty good, there was a clear difference
in the larger-scale structural understanding between the Markov chain and the
RNN implementations for the same task. Using LSTMs seemed to be the right
approach for both tasks, as they were able to not only stay in the right key
throughout each generated sequence, but also generate large-scale repetitions
over multiple bars.

Moving forward, I would like to experiment with using simplified chords as
training data as well as looking at only predicted chords above a given proba-
bility threshold. Some combination of these approaches should give us a more
skeletal harmonic structure to work with. Using this structure, new Neural
networks can then be trained to re-introduce melodic and rhythmic patterns in
various styles to create completely new pieces of music or even classify composers
or styles of music.

References

[1] K. Choi, G. Fazekas, M. Sandler. “Text-based LSTM networks for
Automatic Music Composition,” Conference on Computer Simula-
tion of Musical Creativity, 2016.

[2] D. Eck. “A First Look at Music Composition using LSTM Recurrent
Neural Networks,” 2007.

11



[3] G. Brunner, Y. Wang, R. Wattenhofer, J. Wiesendanger. “JamBot:
Music Theory Aware Chord Based Generation of Polyphonic Music
with LSTMs,” IEEE 29th International Conference on Tools with
Artificial Intelligence, 2017.

[4] H. Lim, S. Rhyu, K. Lee. “Chord Generation from Symbolic Melody
Using BLSTM Networks,” International Society of Music Informa-
tion Retrieval, 2017.

[5] J. Brownlee. “Text Generation With LSTM Recurrent Neural Net-
works in Python with Keras,” Machine Learning Mastery, 2016.

[6] D. Campion. “Text Generation using Bidirectional LSTM and
Doc2Vec models 1/3,” Medium, 2018.

[7] I. Sutskever, J. Martens, G. E. Hinton. “Generating Text with Recur-
rent Neural Networks,” International Conference on Machine Learn-
ing, 2011.

[8] T. OBrien, I. Roman “A Recurrent Neural Network for Musical
Structure Processing and Expectation”.

[9] C. A. Huang, T. Cooijmans, A. Roberts, A. Courville, D. Eck.
“Counterpoint by Convolution,” International Society of Music In-
formation Retrieval, 2017.

12


	Introduction
	Methods
	Data
	Generating Harmonic Sequences
	Markov Chains
	RNN

	Generating Chordal Accompaniment to a Melody
	Markov Chains
	RNN


	Results
	Generating Harmonic Sequences
	Generating Chordal Accompaniment to a Melody

	Discussion
	Conclusion

