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Abstract: Motion-sensing technologies enable musical interfaces where a performer controls sound by moving his
or her body “in the air,” without touching a physical object. These interfaces work well when the movement and
resulting sound are smooth and continuous, but it has proven difficult to design air instruments that trigger discrete
sounds with precision that feels natural to performers and allows them to play rhythmically complex music.

This article presents a study of “air drumming” gestures. Participants performed drumming-like gestures in time
to simple recorded rhythms. These movements were recorded and examined to look for aspects of the movement that
correspond to the timing of the sounds. The goal is to understand what we do with our bodies when we gesture in the
air to trigger a sound. Two movement features of the hand are studied: Hits are the moment where the hand changes
direction at the end of the striking gesture, and acceleration peaks are sharp peaks in magnitude acceleration as the
hand decelerates. Hits and acceleration peaks are also detected for the movement of the wrist. It is found that the
acceleration peaks are more useful than the hits because they occur earlier and with less variability, and their timing
changes less with note speed. It is also shown that timing differences between hand and wrist features can be used to
group performers into different movement styles.

Introduction

Most musical instruments require the musician’s
touch. When we strike a drum, bow or pluck a string,
or blow into a flute, our body, in direct contact with
the instrument, provides the energy that produces
sound. Even in instruments where the acoustic
energy is not provided by the player—such as most
organs or the majority of electronic and digital
instruments—control of the instrument relies on
direct manipulation of a key, slider, rotary knob,
etc.

With the advent of electrical sensing it became
possible to control an instrument with gestures
“in the air,” without manipulating or physically
contacting the instrument. Early examples include
the Theremin in 1919 (Glinsky 1992), which is
controlled by empty-hand movements in space, and
later the Mathews (1990) Radio Baton and Buchla
Lightning (Rich 1991), which sense the movement
of handheld batons.

The recent proliferation of affordable motion-
sensing technologies, such as the Microsoft Kinect
or hand-held devices containing inertial sensors,
has led to a surge in new “air-controlled” musical
interfaces, where performers control sound by
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moving their bodies freely in space. These interfaces
seem to work well when the movement and control
of sound are smooth and continuous. From my
own experience and observations of others’ work,
however, it has proven difficult to heuristically
design a system that will trigger discrete sounds
with a precision allowing for a rhythmically complex
performance. To the performer of such systems the
timing of the resulting sound often feels wrong.

This article describes research into what people
do when they want to trigger a sound with a sharp
onset, such as a percussive sound, using gestures of
their arms in free space. The goal is to understand
the nature and timing of these movements, and to
use this knowledge to design more rhythmically
precise gesture-controlled musical instruments.

Air Gestures

I define instrumental air gestures as purposeful
movements performers make with their bodies in
free space to control an immediately responsive
sound-generating instrument. Discrete air gestures
are meant to trigger a sonic event at a precise time,
and are contrasted with continuous air gestures in
which some movement quality (e.g., the height of
the hand) is continuously mapped to some sonic
variable (e.g., a filter cutoff frequency).
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In popular usage, air drumming refers to miming
the gestures of a percussionist in time to another
musician’s (usually prerecorded) performance. I call
this typical case mimetic air drumming. For the
sake of this research, air drumming can be expanded
to include productive air drumming, i.e., discrete
instrumental air gestures in which a performer
mimics the striking of an imaginary surface to
trigger a sound with a sudden attack. Air drumming
is not the only type of discrete air gesture. For
example, jerky movements such as in the dance
style known as “popping and locking” might also be
used to trigger percussive sounds.

Motivation and Overview

The ultimate aim of this research is to improve the
design of air-controlled instruments so that discrete
air gestures can be used to reliably trigger sounds
with timing that feels natural to the performer.
Most systems that enable discrete air gestures use
some heuristic or arbitrary measure to decide when
to trigger the sound. I contend, however, that when
performers make such a gesture, they have a sense
of when the sound should occur. If we knew when
this moment occurs, and what in the performer’s
gesture it corresponds to, we would design our air
instruments accordingly. In other words, I assume
that when people make discrete air gestures, they
do something with their body to create an internal
sense of a discrete event, and that they intend this
event to correspond to the sonic event of a drum
sound. I want to know what this something is, and
to characterize its timing with respect to the sonic
event.

To this end, I conducted a study of mimetic
air drumming, in which participants gesture in
time to a simple prerecorded rhythm. Participants’
movements were recorded in a motion capture
system, and these data were analyzed to address
the following question: What aspect of the air
drummer’s movement corresponds to the sound?

I examined two candidate movement features and
analyzed their timing with respect to the onset time
of the corresponding drum sound. The hit is the
moment where the hand suddenly changes direction

at the end of a strike gesture. When striking a
real drum the hit would occur when the hand (or
drumstick) contacts and rebounds off the drumhead,
and the hit and the resulting sound would occur
at the same moment. For air drumming, however,
there is no physical object to limit the hand’s travel,
and it is not clear that the moment of the hand’s
direction change, or hit, necessarily corresponds
to the time at which the air drummer intends the
sound to occur.

The second movement feature is an acceleration
peak, which occurs before the hit as the hand
decelerates. Accelerations can be due to muscular
effort, and thus these peaks may better correspond
to the air drummer’s internal sense of when the
sound should occur.

I also detect the hits and acceleration peaks of
the movement of the wrist in space. The timing of
these features with respect to the hand features is
analyzed, and I show how the timing differences
between the hand and wrist features can be used to
group people according to movement style.

The participants in my study mimed in time
to a prerecorded musical performance. They were
asked to move as if they were performing the sounds
they heard. Thus I assume that the correspondence
between gesture and sound would be the same if
they were triggering the sounds themselves, and I
expect the results of my analysis to also reliably
describe productive air drumming and be useful in
improving the timing of air instruments.

Related Work

A number of systems for playing musical sounds
from discrete air gestures have been described
in the literature, as has research on gestures for
drumming (for both real and air instruments) and
conducting. Findings from the field of sensorimotor
synchronization are also relevant.

Discrete Air-Gesture Performance Systems

Real-time air instruments have used a variety of
techniques for triggering sounds from movement.
The Mathews (1990) Radio Baton senses the spatial
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location of two handheld wands. To trigger discrete
sounds, it uses a spatial height threshold that
corresponds to the height at which the baton
contacts the surface of the sensor, giving the user
tactile feedback. So, although the Radio Baton senses
continuous air gestures, the discrete events that it
affords are not air gestures.

Havel and Desainte-Catherine (2004) track sen-
sors on the ends of drumsticks and use a velocity
threshold to trigger sounds. Kanke and colleagues
(2012) use data from acceleration and gyroscopic sen-
sors in drumsticks to differentiate between striking
a real percussion instrument and an air instrument.
Strikes are registered when the acceleration exceeds
a threshold.

In an earlier paper (Dahl and Wang 2010) I describe
Soundbounce, a piece for mobile phone orchestra in
which sound parameters are controlled by virtual
balls that performers bounce upwards with flicking
gestures of their arms and wrists. These “hits”
were detected when low-pass-filtered acceleration
data, which we can think of as approximating
velocity, exceeded a threshold. That this instrument,
although fun to perform and observe, was difficult
to control precisely, was one inspiration for the
research described here.

Studies of Discrete Air Gestures

A few studies of discrete air gestures have been
conducted. Mäki-Patola (2005) studied partici-
pants striking a virtual drum surface in time to
a metronome click. They compared the use of a
physical stick held in the hand with a virtual stick.
Clap sounds were triggered when the tip of the stick
first intersected a horizontal virtual drum surface at
a specific height. Among the findings was that hits
lagged behind metronome clicks by 20 msec, which
Mäki-Patola attributes to the “perceptual attack
time” of the clap sound that was used.

Collicutt, Casciato, and Wanderley (2009) com-
pared four cases of drumming: on a real drum, on an
electronic drum pad, with the Radio Baton, and with
the Buchla Lightning II. In all cases they tracked the
height of the hand (even though their participants
held sticks), and used vertical minima to determine
when strikes occurred. They note that this did not

work for one participant whose strikes corresponded
to smaller minima before the actual minimum,
however. They found that the Lightning, the only
true air instrument, had the second best timing
variability. They attribute this to the different way
in which users control their movements when there
is no tactile feedback.

Studies of Real Drum Gestures

Dahl (2004) made motion-capture recordings of
drummers playing a simple rhythm on a real snare
drum. She found that subjects raised the stick
higher in preparation for accented strikes, and that
preparatory height correlated with higher peak
velocity. Drum strikes were detected as points in
time that satisfy two criteria: The local minima of
stick tip height must pass below a threshold, and
the difference between two subsequent changes in
vertical velocity (proportional to the third derivative
of position, also known as jerk) must surpass a
threshold.

Conducting Gestures

Conducting gestures for keeping time can be consid-
ered noninstrumental, discrete musical air gestures.
Luck and Toiviainen (2006) studied how the beats of
a musical ensemble synchronize to the conductor’s
gestures. They found that musical beats correlate
closely with periods of maximal deceleration along
the path made by the tip of the conductor’s baton,
with the musical beats lagging behind the gesture
by about 30 msec. They also found that the vertical
velocity of the baton also correlated highly with the
musical beat, but at a larger lag of around 77 msec.

Sarasúa and Guaus (2014) wanted to create in-
teractive musical systems controlled by conducting
gestures. Their work, which took place concurrently
with mine, uses a methodology similar to the one
I use. They record mimetic conducting gestures
(i.e., conducting to prerecorded music) to under-
stand productive conducting gestures. They find
that peaks in acceleration, which for their gestures
also correspond to vertical minima, tend to occur
before musical beats, and that participants differ
with respect to the average lag.
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Sensorimotor Synchronization

Air drumming in time to music is a form of
synchronizing movements to sound. Research into
sensorimotor synchronization goes back decades
(see Repp 2005 for a review). One of the primary
findings is that when tapping in time to an audible
beat (usually a metronome click), most people tap
before the beat. This “negative mean asynchrony”
is often a few tens of milliseconds, but may be as
great as 100 msec.

Research in sensorimotor synchronization is
relevant to the current study because I assume
that, like the subjects in tapping experiments, the
air drummers are synchronizing some physically
embodied sensation to the beat. The finding of
negative asynchrony suggests that the physical
event (the tap or the internally sensed movement
event), although seeming to the performer to be
identical to the sonic event (the metronome click or
drum sound), may not necessarily occur at the same
time as the sonic event.

Studying Air Drumming

The goal of this research is to better understand
productive air-drumming gestures, i.e., drum-like
gestures in free space that are used to trigger sounds
in some real-time system. It is difficult, however, to
study this behavior directly in a way that would give
us access to the data needed. We want to know what
aspects of the gesture correspond to the intended
timing of the sound, but we don’t have a way of
knowing the time at which the air drummer intends
the sound to occur.

The Study

To get around this difficulty, I use mimetic air
drumming as a proxy for productive air drumming.
Instead of recording people generating sounds
from gestures, I record people gesturing in time to
predetermined, known drum sounds, and they are
asked to gesture as if they are generating the sounds.
With this methodology the recorded drum sounds,

Figure 1. Mimetic air
drumming recorded
in the lab.

Figure 1

Figure 2. Productive air
drumming in performance.

Figure 2

whose timing I know precisely, become the “ground
truth” against which the gestures can be analyzed.

To illustrate my methodology, Figure 1 shows
mimetic air drumming in which a computer plays
a sound, the participant gestures in time to that
sound, and the gestures are recorded and stored for
later analysis. In my study I record mimetic air
drumming in the lab, but my goal is to improve
real-time productive air-drumming systems, shown
in Figure 2, in which a performer makes a gesture,
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Figure 3. The stimulus
rhythm. Slow notes are
labeled “S” and fast
notes “F.”

which is captured and analyzed in a computer which
detects the correct moment to play a sound.

The Task

I recorded the movements of people performing air-
drumming gestures in time with the simple rhythm
described in Figure 3. They were asked to gesture
as if striking a drum somewhere in front of them
with a closed, empty right hand, and to act as if they
are performing the sounds they hear. Because I am
interested in gestures someone might make while
performing an air instrument in free space, I did not
provide further specification as to the location or
style of the strike.

Air-drumming gestures may differ when per-
formed at different repetition speeds, and so the
rhythm is designed to have an equal number of
“slow” notes (quarter notes with rests in between),
and “fast” notes (quarter notes with no rests). The
rhythm was played by the sound of a synthesized
tom-tom at a tempo of 100 beats per minute (where
a beat is one quarter note.) At this tempo both note
speeds have inter-onset intervals less than 1.8 sec.
According to Paul Fraisse, for intervals longer than
1.8 sec the “perception of time” gives way to the
“estimation of time,” and the negative asynchrony
disappears as people are no longer able to reliably
synchronize their movements to the sound (see the
review by Clarke 1999).

For each trial, participants performed the rhythm
four times in succession without stopping. Two
trials were recorded for each participant, resulting in
a total of eight repetitions of the rhythm. A four-beat
click was used to start each trial.

A video of air-drum stimulus, available on
the CMJ Web site (www.mitpressjournals.org
/doi/suppl/10.1162/COMJ a 00298/AirDrum
-StimulusAnimation.mp4, shows an animation

of Subject 1’s movements, for the first two repeti-
tions of the rhythm along with the stimulus that
she heard.

In addition to this task (i.e., gesture in time to
a prerecorded rhythm), participants were given a
second task, where they were asked to vocalize the
rhythm while gesturing. This task did not provide
meaningfully different results (see Dahl 2014), and
is not discussed further here. Participants also
performed a third task, in which they performed
air drumming to a rhythm with different dynamic
levels. These data will be analyzed in future research.

Participants

Ten participants were recruited with the require-
ment that they have some experience playing a
musical instrument and that they be able to read
notated music. They were five women and five men,
ranging in age from 22 to 57 years, with a median age
of 23.5 years. All were right-handed. They reported
between 13 and 48 years of musical experience, with
a median of 16 years. Four had some formal dance
training (between three and seven years). One (Par-
ticipant 10) was a percussionist. Before recording,
it was verified that each participant could read the
simple rhythm and perform the desired task.

Equipment

Participants were outfitted with 14 reflective
markers on their right arm and upper torso (see
Figure 4), and their movements were recorded at
200 frames per second by a Motion Analysis motion
capture system with twelve cameras mounted
around the participant.

Participants could read the rhythm on a music
stand one meter to their front right. The stimulus
rhythm was played by a MIDI clip in Ableton Live
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Figure 4. A participant
with markers and motion
capture cameras. (The
participant’s identity has
been obscured.) The
markers used for tracking

the location of the hand
(RMCP3 on the right third
metacarpal) and wrist
(RFAradius and RFAulna
on either side of the distal
end of the right forearm)

are labeled. Markers on
the first right metacarpal,
the medial side of the
elbow, and the back of the
neck are not visible.

and presented over a Behringer MS40 studio monitor
placed a meter to the front left of the participant. The
stimulus was initiated at the beginning of each trial
by the experimenter. Stimulus sounds were recorded
into the motion capture system at a sample rate of
20 kHz via an analog input and synchronously with
the motion data, thus simplifying the alignment of
audio and motion capture data for later analysis.

Movement Features

If we want to trigger sounds by tracking a single
body location, it makes sense to start with the hand.
In normal drumming, the hand strikes the drum
or holds the stick that strikes the drum. Because
the hand lies at the end of the kinematic chain, its
movements are the result of movements of the torso
and the shoulder, elbow, and wrist joints.

In this section I describe the calculation of two
movement features: hits and acceleration peaks.
The timing of these movement features will be
compared with the timing of the drum sounds to
which they are intended to correspond. Thus, the
first stage of analysis is to determine the onset times
of the drum sounds for each trial.

Detecting Audio Onsets

To detect audio onsets, the squared audio signal
is passed in parallel through two DC-normalized
one-pole low-pass filters. These are used to estimate
two energy envelopes of the audio. One is “fast,”
with a time constant of 0.5 msec, and the other is
“slow,” with a time constant of 10 msec. When the
ratio of the fast estimate over the slow estimate
exceeds a threshold, a potential onset is registered
(see Figure 5). Similar techniques have been used to
detect the first arrival time of echoes in geophysical
prospecting (Coppens 1985), and have been adapted
for detecting audio onsets by Herrera and Kim
(2014). Potential onsets for which the slow estimate
is very low are removed (these are false events
in the background noise), as are those that occur
within 200 msec of an earlier onset (in order to keep
only the first moment of attack). The times of the
detected onsets are stored for later processing.

Detecting Hits

The first movement feature I examine is the end
of the striking gesture, which I refer to as the hit.
In a real drum strike, the hit would correspond to
the moment when the drumstick hits the head of
the drum, imparting energy to the instrument (thus
initiating the sound), and rebounds in the direction
from which it came.

For a striking gesture in free space, where no
physical contact is made, where is the end of the
strike? As Collicutt, Casciato, and Wanderley (2009)
discovered, and as I found with my own data, the
hit does not necessarily correspond to the moment
when the minimum height is reached. Furthermore,
participants’ movements are not restricted to any
particular plane or direction (they are instructed
to act as if they are striking an invisible drum
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Figure 5. An algorithm for
detecting audio onsets.
The squared audio signal
is passed, in parallel,
through a low-pass filter
(LPF) with a high cutoff
and another low-pass filter

with a low cutoff. An onset
is detected when the ratio
of the resulting fast and
slow estimates of the
audio envelope exceeds a
threshold.

“somewhere in front of them”). Thus I define a
hit as the moment at the end of a striking gesture,
where the hand suddenly changes direction.

To that end, I designed a sudden-direction-change
detector. The design takes inspiration from the onset
detector described earlier, which compares slow and
fast estimates of audio energy. The sudden-direction-
change detector uses a slow and fast estimate of the
hand’s 3-D velocity vector. The intuition is that
during a sudden change of direction, the slow
estimate will lag behind the quickly reacting fast
estimate, and the angle between these two estimate
vectors will be large. Upon inspecting the data I
found that the moment I believed was the hit most
reliably corresponded to a positive peak in the rate
of change of this angle (see Figure 6).

The following is a detailed description of the
sudden-direction-change detector:

1. Extract the position of the hand from the
motion-capture data, using the marker
RMCP3 on the back of the hand at the
base of the middle finger (see Figure 4). The
position is represented as (x, y, z) coordinates
over time, where x is the direction in which
the participant is facing and z is upward.

2. Smooth the position data in each dimension
by approximating each point as a weighted
least-squares quadratic fit of the point and
its seven neighbors on either side.

3. Calculate the 3-D velocity vector of the
hand, vhand, as the first difference of the
smoothed hand position.

4. Create two smoothed versions of the velocity
vector by passing it through two “leaky
integrators” (i.e., DC-normalized one-pole
low-pass filters). One, vslow, has a time
constant of 100 msec, and the other, v f ast
has a time constant of 5 msec. These are

implemented as recursive filters on the 3-D
velocity vector according to the following
difference equations:

v f ast[n] = (1 − af ast)vhand[n] + af astv f ast[n − 1]

vslow[n] = (1 − aslow)vhand[n] + aslowvslow[n − 1],

where aslow and af ast are the pole locations
corresponding to the slow and fast time
constants.

5. At each time point n, calculate the angle θ

between vslow and v f ast:

θ [n] = cos−1

(
〈vslow[n], v f ast[n]〉∥∥vslow[n]

∥∥ · ∥∥v f ast[n]
∥∥
)

6. Calculate θslope as the first difference of θ .
7. Find all peaks of θslope that exceed a threshold.

The times of these peaks are considered as
moments when the hand changed direction,
and they are stored as candidate hit times.

The next step is to find the change of direction
associated with each strike gesture. The following
algorithm is used to find the hit for each audio
onset:

1. Because a hit occurs after a fast movement
of the hand, find all peaks of the magni-
tude hand velocity, ‖vhand‖, that exceed a
threshold.

2. For each of these peaks, find the next
candidate hit time (i.e., a large peak in θslope
as described earlier).

3. To prevent choosing changes of directions
that occur after a preparatory upwards
movement, remove hits for which the
distance between the hand and the shoulder
is less than a threshold.

4. For each audio onset, find the hit candidate
that is closest in time and store this as the
hit time for that onset.

Does this method find the correct moment where
a hit occurs? There is no way to know for sure,
because the hit does not exist in any objective
sense. That is, we have no ground truth. Figure 7
shows the detected hit time for a slow note by one
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Figure 6. An algorithm for
detecting sudden changes
of hand direction. The
velocity vector of the hand
is calculated as the first
time difference of the

hand-position vector.
Parallel low-pass filters
(LPFs) produce fast and
slow estimates of the
velocity vector. The angle
between these estimates is

calculated, and peaks in
the first time difference of
this angle are detected as
changes of direction.

Figure 6

Figure 7. Detecting the hit
for a strike gesture.

Figure 7

participant. The striking gesture happens primarily
in the x and z directions, and we can see that the
hit happens at extrema in both these dimensions.
That the hit coincides with a distinct minimum in
the magnitude velocity of the hand validates this
choice.

The striking gesture of another participant,
shown in Figure 8, is more complex, however. This
participant tended to add a short hook to the end
of her strike. This is detected as multiple direc-
tion changes (large peaks in θslope). The algorithm
chooses the first such peak after a large magnitude
velocity, which corresponds to an extrema in the x
direction and a sudden change of slope in magnitude
velocity.

Detecting Acceleration Peaks

While examining the data, I noticed that large peaks
in the magnitude acceleration often occur close
to the audio onset. For an unimpeded movement,
acceleration of the hand is the result of a muscular
force, and so an acceleration peak may correspond
to the internal movement event that air drummers
create to correspond with the sound. (In fact, these
peaks are decelerations as the participants sharply
brake their strikes.) The following algorithm is
used to pick the highest peak corresponding to each
strike:

1. Calculate the acceleration vector, a, as the
first difference of the hand velocity vector.
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Figure 8. Detecting the hit
for a more complex strike
gesture.

2. Calculate magnitude of the acceleration
vector, ‖a‖.

3. Look for times where ‖a‖ first exceeds a
threshold and call these Tup.

4. For each Tup, find the next point where ‖a‖
passes below a second threshold and call
these Tdown.

5. For each interval [Tup, Tdown], find the time
of the highest peak in ‖a‖ and save this as a
prospective acceleration peak.

6. For each audio onset, find the prospective
acceleration peak that is nearest in time, and
store this as the acceleration peak time for
that onset.

Figure 9 shows the acceleration peak of the strike
gesture for a slow note. We can see that it occurs
much more closely to the audio onset than does the
corresponding hit.

Timing Analysis of Hand Features

The audio onset times, hit times, and accelera-
tion peak times were calculated for each note, as
described earlier. From each hit time and acceler-
ation peak time, the associated audio onset time

is subtracted to get the time offset (or asynchrony)
between the audio event (the onset of the sound) and
the detected movement event (the hit or accelera-
tion peak). A negative offset means the movement
event preceded the audio event, and a positive offset
means it came after. All subsequent analysis is
performed on these offsets.

Computing Timing Statistics

Because there were two trials for each task, the data
from each trial for each participant is aggregated
and then split into the slow note and fast note
conditions. For each participant this leads to a total
of 40 events for each condition (five events per four-
bar rhythm for each condition × four repetitions of
the rhythm × two trials per task).

In order to reject bad data due to detector errors or
participant mistakes, events whose offset is greater
than half the time between notes (600 msec for slow
notes, 300 msec for fast notes) are removed. Events
that lie more than two standard deviations from the
mean for each condition for each participant were
rejected as outliers. This led to the removal of 21
slow hits, 21 fast hits, 18 slow acceleration peaks,
and 23 acceleration peaks (out of 400 total for each
case).
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Figure 9. Detecting the
acceleration peak for a
strike gesture.

For the following results we want to know
whether various conditions differ in the greater
population. Specifically, we want to know wether
the mean and standard deviations differ between
conditions. For a given condition and movement
feature, the mean tells us how much the movement
feature tends to precede or lag behind the audio
onset for that condition. The standard deviation
tells us how much the timing of the performer’s
gestures varies randomly, and we can think of this
as a measure of the “noise” in the mental and
physiological processes that generate his or her
movement.

To infer whether two conditions differ in the
population, the mean (or standard deviation) of
each participant’s offset times for the conditions we
wish to compare are computed. Then a two-sided
paired-sample t-test of the ten participants’ means
(or standard deviations) for the two conditions is
conducted.

For example, to compare whether the standard
deviation of hit times is different between slow notes
and fast notes, I first calculate the standard deviation
of each participant’s slow hits. I then calculate the
standard deviations of each participant’s fast hits.
With these ten sample standard deviations for each

condition I conduct a t-test with nine degrees of
freedom.

Effects of Note Speed

In Figure 10 we see that gestures for slow and
fast notes are qualitatively different. For most
participants, the gestures for slow notes have short
pauses or bounces between them, whereas those for
fast notes were simpler and more sinusoidal. It may
be the case that the tempo of repeated discrete air
gestures also affects the timing of their performance.
If this is true, an air instrument needs to somehow
take into account the tempo and rhythmic level of
the intended notes.

To investigate whether the timing of gestures
changes with note speed, I compared the offset
times between fast notes and slow notes for both
hits and acceleration peaks, to answer the following
questions:

1. For hits, do slow and fast notes have different
mean offsets? Yes, the mean offset times
are significantly different (t(9) = 4.5366,
p = 0.0014), with slow hits occurring 23.6 to
70.5 msec later than fast hits (this is the 95%
confidence interval).
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Figure 10. Position data for
two slow notes and three
fast notes.

2. For acceleration peaks, do slow and fast
notes have different mean offsets? No, the
difference between fast and slow notes that
is seen for hits is not seen for acceleration
peaks.

The mean offset time of hits changes with note
speed, but the mean offset time of acceleration peaks
does not. The implications of this finding will be
discussed later.

These results suggest that, for repeated series
of notes, the hit time may depend on the speed
of repetition. Does this difference remain if we
normalize offset times by the period of repetition
(600 msec for fast notes, 1.2 sec for slow)? For hits
the difference in mean time still exists, but it is only
barely significant (t(9) = 2.5420, p = 0.0316), with
fast hits preceding slow by 0.05 to 8.3 percent of a
period. This normalization also affects acceleration
peaks, which are now also barely significantly
different (t(9) = 2.2883, p = 0.0479), with fast peaks
preceding slow by 0.5 to 8.2 percent of a period.

Timing of Hits and Acceleration Peaks

Acceleration peaks mark sharp decelerations during
the descent of the hand, and hits mark the time at

which the hand changes direction. In order to find
out whether these two movement features differ
with respect to their offset times I use the data to
answer the following questions:

1. Do hits and acceleration peaks have dif-
ferent mean offsets for slow notes? Yes
(t(9) = 4.8440, p = 9.1589 × 10−4), with
peaks preceding hits by 30.9 to 85 msec
(with 95% confidence).

2. Do hits and acceleration peaks have dif-
ferent mean offsets for fast notes? Yes
(t(9) = 4.5294, p = 0.0014), with peaks pre-
ceding hits by 15 to 44.8 msec (with 95%
confidence).

Acceleration peaks do precede hits, and they do
so by much more for slow notes than they do for fast
notes.

Examining Wrist Movements

The instructions given to the participants—to
gesture as if striking a drum somewhere in front
of them—did not specify in detail how the gesture
should be performed. Thus, it was observed that
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subjects differed with respect to the vertical range
of the hand, the orientation of the hand, and the
amount and timing of movement in the wrist joint.

The previous analyses were conducted using the
location of the hand, whose motion is primarily the
result of movements in the shoulder, elbow, and
wrist joints, with possible small contributions from
rotation and twisting of the trunk. To understand
how wrist movements contribute to air-drumming
gestures, hits and acceleration peaks were detected
for the movement of each participant’s wrist, where
wrist location is tracked as the point half-way
between the markers located on the medial and
lateral sides of the wrist (markers RFAulna and
RFAradius in Figure 4). The movement of the wrist
joint can be studied by looking at the time difference
between the hit time (or acceleration peak time) of
the hand and that of the wrist.

Figure 11 shows histograms of all detected events
for both the hand and wrist. A visual inspection
reveals that, for most participants, the histograms
for the hand and wrist tend to overlap for hits,
whereas for acceleration peaks the hand and wrist
histograms overlap less. Tests comparing the means
of the hand and wrist event times across the test
population produced the following results:

1. For slow note hits, the hand and wrist means
have only a slightly significant difference
(t(9) = −3.1125, 0.0125), with hand hits
preceding wrist hits by 1.5 to 8.9 msec (95%
confidence interval).

2. For fast note hits, the hand and wrist have no
significant difference in their means across
the population.

3. For slow note acceleration peaks, the hand
and wrist means are highly significantly
different (t(9) = −7.1416, p = 5.4159 × 10−5)
with hand peaks preceding wrist peaks by
9.8 to 18.9 msec (95% confidence interval).

4. For fast note acceleration peaks, the hand
and wrist means are highly significantly
different (t(9) = −8.2435, p = 1.7406 × 10−5)
with hand peaks preceding wrist peaks by
10.3 to 18.1 msec (95% confidence interval).

These findings confirm what is observed in the
histograms of Figure 11: In general, hand hits and

wrist hits occur at about the same time, whereas
acceleration peaks of the hand occur before the
acceleration peaks of the wrist.

Grouping Participants by Movement Style

It may be that performers of air-drumming ges-
tures tend to fall into one of a small number of
movement styles, in which case case discrete air
instruments might be improved by taking into
account the particular movement style of the
performer.

To explore this hypothesis, I used the k-means
clustering algorithm to group participants. Each
participant is represented as a four-dimensional
vector consisting of the difference between the
mean hand offset and the the mean wrist offset
for the following four events: hits for slow notes,
acceleration peaks for slow notes, hits for fast notes,
and acceleration peaks for fast notes.

When the k-means algorithm was run with
two clusters it returned one cluster with only
Participant 7, and the second cluster with the other
nine participants. Running the algorithm with three
clusters returned a cluster with only Participant 7,
another cluster with Participants 6 and 10, and a
third cluster with the remaining seven participants.
Table 1 shows the centroids for each of these
clusters.

Initially, it was not clear from looking at the
cluster centroids what a meaningful interpretation
of these groupings might be. I then reviewed
animations of the movement data for all ten
participants, and noticed the following:

Participant 7, the sole member of Cluster 2,
allowed movement in her wrist joint to occur only
at the end of the strike, unlike all other participants
whose wrists tended to move throughout the strike.
In Table 1 we see that for slow notes, Participant
7’s wrist hits came more closely after her hand
hits, compared with the other groups. For fast notes
Participant 7’s hand hits came after the wrist hits,
unlike any other group.

Participants 6 and 10, who make up Cluster 3,
tend to gesture as if they are drumming holding a
stick. They orient the palm of their hand almost
vertically, whereas the members of Cluster 1 tend
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Figure 11. Histograms of
offset times of all detected
events for the right hand
and wrist for all ten
participants. The hand
histograms are transparent
with black outlines, and
wrist histograms are

displayed behind them in
gray. Time zero
corresponds to the onset of
the drum sound. For
positive offset times the
movement event came
after the audio onset.

to orient their palms closer to horizontal, almost
as if they were playing a hand drum (though their
hands were closed, as instructed). The participants

in Cluster 3 made wrist movements that had a much
sharper “snap” than those of cluster one. This may
be why Cluster 3 has much smaller delays between
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Table 1. Clustering Participants

Slow Slow Acceleration Fast Fast Acceleration
Cluster Participants Hits Peaks Hits Peaks

1 1, 2, 3, 4, 5, 8, 9 −5.2 −17.7 −1.5 −17.2
2 7 −3.0 −4.7 +26.2 −9.7
3 6, 10 −6.1 −7.5 −6.7 −5.9

Participants are grouped into clusters according to the mean hand offset minus the mean wrist
offset for each movement feature and note speed. The table shows the offset differences for
each cluster’s centroid. All times in milliseconds.

the acceleration peaks of the wrist and those of the
hand than does Cluster 1.

Comparing Hands and Wrists

We now have four movement features: hand hits,
hand acceleration peaks, wrist hits, and wrist
acceleration peaks. Figure 12 shows box plots of the
means for all four features.

Which Comes First?

Visual inspection of Figure 12 shows that for both
the hand and wrist, and for both note speeds, the
acceleration peaks occur, on average, before the hits.
This appears to be true for both slow notes and fast
notes, but the difference seems to be less for fast
notes.

A repeated-measures two-way analysis of variance
(ANOVA) was conducted on all offset means.
The two within-subjects factors were movement
feature, with three degrees of freedom, and note
speed, with one degree of freedom. Significant
effects are found for both movement feature (F =
17.053, p = 2.057 × 10−6) and note speed (F =
10.911, p = 0.0092). There was also a significant
interaction between movement feature and note
speed (F = 15.726, p = 4.112 × 10−6).

We already saw that for the hand, the difference
between acceleration peaks and hits is significant at
both note speeds. For the wrist two more post hoc
t-tests reveal that:

1. For slow notes, wrist acceleration peaks
precede wrist hits (t(9) = 4.1889, p = 0.0023)

by 22.4 to 75 msec (this is the 95% confidence
interval).

2. For fast notes, no significant difference was
found between hits and wrist acceleration
peaks of the wrist.

All three significant results (slow and fast notes
for the hand, and slow notes for the wrist) pass a
Bonferroni correction for four post hoc comparisons.

Effect of Note Speed

Earlier we found that for the hand, the timing of
hits changes with note speed but the timing of
acceleration peaks does not. From Figure 12 this
also appears to be the case for the wrist. The wrist
acceleration peak timing does not seem to change
as much with note speed as does the wrist hit.
These observations are confirmed by the following
findings:

1. Wrist hits for fast notes occur earlier than
those for slow notes (t(9) = 5.2030, p =
5.6181 × 10−4) by 29.6 to 75.2 msec (95%
confidence interval).

2. For wrist acceleration peaks no significant
difference is found in the timing of slow and
fast notes.

These results are visualized in Figure 13, where
we see that for hits there is a large and significant
difference between the mean offset times for slow
and fast notes for both the hand and the wrist. For
acceleration peaks, there is also a difference between
mean offset times for slow and fast notes, but it is
much smaller and not significant. The implications
of these results will be discussed later.
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Figure 12. Box plot of
mean offsets for all
movement features (hits
and acceleration peaks for
hands and wrists). For
each feature, the line is the

median, the dot is the
mean, the edges of the box
are the 25th and 75th
percentiles, and the
whiskers extend to the
most extreme data.

Analysis of Noise

For each participant, the mean and standard de-
viation of timing offsets were calculated for each
movement feature. The earlier discussion focused
on the mean offset, which tells us how much, on
average, the movement features preceded or lagged
behind the audio onset. I will now look at the stan-
dard deviations, which tell us how much variance
there is in people’s timing, or how difficult it is for
people to be consistent in their timing.

One model from the sensorimotor synchroniza-
tion literature suggests that variability in the timing
of tapping is due to two sources, one from a clock
mechanism in the central nervous system that
indicates when to strike next, and the other from
the motor system’s ability to execute the intended
gesture at a the desired time (Wing and Kristofferson
1973). There is another possible source of noise in

my data, which is the amount of inaccuracy in my
movement feature detection algorithms.

The question of interest here is, do some features
have different amounts of noise? Features that can
be executed and detected with less noise will be
more successful at generating the sound at the time
intended by the performer. Figure 14 shows box
plots of the standard deviations for each feature for
both slow and fast notes.

Noise in Acceleration Peaks and Hits

Upon inspecting Figure 14 we notice that for each
body part, the mean standard deviation for the
acceleration peak appears to be lower than the mean
standard deviation for the hit.

A repeated-measures two-way ANOVA was
conducted on the standard deviation for each
participant. As with the calculations on the mean
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Figure 13. Interactions
between movement
feature and note speed.
The data points are the
population mean for offset

time means. Solid lines are
significant differences, and
dashed lines are not
significant.

performed earlier, the two within-subjects factors
were movement feature, with three degrees of
freedom, and note speed, with one degree of freedom.
A significant effect of movement feature was found
(F = 5.226, p = 0.0056), but none was found for note
speed.

Post hoc t-tests were conducted to compare
standard deviations of hits and acceleration peaks,
leading to the following four results:

For slow notes:

1. The noise for hand acceleration peaks is
lower than the noise for hand hits (t(9) =
4.5366, p = 0.0014) by 1.4 to 7.8 msec (95%
confidence interval).

2. The noise for wrist acceleration peaks
is lower than the noise for wrist hits
(t(9) = 3.8552, p = 0.0039) by 3.6 to 13.7
msec (95% confidence interval).

And for fast notes:

3. The noise for hand acceleration peaks is
lower than the noise for hand hits (t(9) =
2.4022, p = 0.0398) by 0.5 to 16.1 msec (95%
confidence interval).

4. The noise for wrist acceleration peaks
is lower than the noise for wrist hits

(t(9) = 2.5487, p = 0.0313) by 0.5 to 8.1
msec (95% confidence interval).

If we apply the conservative Bonferroni correction
for four post hoc tests, requiring p values to be less
than 0.0125, Results 3 and 4 would not be considered
significant. Therefore, although it is not a very strong
result, it does seem that the trend we observed in
Figure 14 is confirmed: Movement features based
on acceleration peaks have less noise than those
based on detecting the sudden change of direction
(i.e., hits), and the difference is more prominent for
slow notes than for fast.

Discussion

How do these findings relate to other work on
discrete musical air gestures? As described earlier,
other real-time discrete air-gesture systems have
used various movement features to trigger sounds,
including thresholds in position (Mäki-Patola 2005;
Collicutt, Casciato, and Wanderley 2009), velocity
(Havel and Desainte-Catherine 2004; Dahl and Wang
2010), and acceleration (Kanke et al. 2012).

In my work I examined the moments where the
hand and wrist change direction, which I call hits,
and peaks in the magnitude acceleration of the hand
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Figure 14. Box plot of offset
standard deviations for all
movement features. For
each feature, the line is the
median, the dot is the
mean, and the edges of the

box are the 25th and 75th
percentiles, and the
whiskers extend to the
most extreme non-outliers.
The crosses are outliers.

and wrist. I found, as did Collicutt, Casciato, and
Wanderley (2009), that the moment of the hit does
not necessarily correspond to a vertical minimum
in the trajectory of the hand. This is why my hit
detector is designed to find sudden changes of
direction, irrespective of the orientation.

Mäki-Patola (2005) found that when striking a
virtual drum surface in time to a metronome, the
end of the strikes occurred after the metronome
click. In my research I also find that hits occur
after the note they are meant to correspond to. I
believe this is because the hit is not the motion
feature that performers are using to synchronize to
the sound, and that acceleration peaks, which occur
earlier, are more appropriate. This may help explain
Mäki-Patola’s finding.

Like Luck and Toiviainen (2006), Sarasúa and
Guaus (2014) use maxima (i.e., peaks) in acceleration
along the trajectory of the hand to detect the beats

in conducting gestures. They find that these peaks
correspond to vertical minima. For air-drumming
gestures, however, I find that acceleration peaks
and vertical minima do not necessarily coincide
(Figure 9 shows an example). This difference may
be what distinguishes conducting gestures from
air-drumming gestures, and further research could
prove illuminating.

Dahl (2004) used a threshold in jerk to detect
drumsticks striking a real drum. These events (when
the slope of acceleration exceeds a threshold) may
occur very close in time to peaks in acceleration.
The sudden acceleration of a drumstick however, is
due, to the spring force of the drum head acting on
the stick, whereas for air gestures, acceleration is
the result of muscular torque exerted on the joints.
The drummer may sense the rebound of the stick,
but the air drummer must enact the muscular effort
at the end of the strike.
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Table 2. Offset Times: Means of Means and Standard Deviations

Offset Mean Offset Standard Deviation

Slow Notes Fast Notes Slow Notes Fast Notes

Hand hits 43.00 −3.03 35.94 33.97
Hand acceleration peaks −13.92 −32.90 31.34 25.69
Wrist hits 49.14 −3.29 40.86 32.33
Wrist acceleration peaks 0.45 −18.70 32.26 28.06

Grand means and mean standard deviations for offsets over all movement features. All
times in milliseconds.

Which Feature Is Best?

If a digital instrument builder wants to design
a system to trigger sounds with air-drumming
gestures that has a timing that feels natural to the
user, which movement feature should they use?
There are a number of reasons why acceleration
peaks are better.

As we saw here, acceleration peaks for the
hand and wrist occur before the hit for the same
body part. This makes acceleration peaks more
useful in real-time systems, which need to predict
when the audio event should occur early enough
to take into account the various latencies in the
system. Such latencies include the time it takes
the motion-capture technology to deliver data to
the detection algorithm, the time needed by the
detection algorithm (e.g., to detect a peak in some
value, some data that occur after the peak are
needed), and the time it takes audio to pass through
the sound hardware’s buffering system.

We also saw that acceleration peaks had less
variability in timing than their associated hits.
Whether this variability is due to people’s inability
to produce gestures at the desired time or whether
it is due to errors made by the movement feature
detection algorithms, for a real-time air-gesture
system it is better to use a feature with less noise.

Table 2 shows the mean, across all participants,
of the offset mean and standard deviation for all four
movement features. The hand acceleration peaks
occur earliest and have the lowest standard deviation
for both slow and fast notes, which suggests that
acceleration peaks of the hand are a good feature to
use for triggering real-time, discrete air gestures.

Effects of Note Repetition Speed

Acceleration peaks also perform better with respect
to notes played at different tempi. The offset of hits
was found to differ for slow and fast notes, whereas
the offset for acceleration peaks did not change
significantly with note speed.

When offset times for the hand are normalized for
note speed, the differences between slow and fast
notes are small (0.05 to 8 percent of a period) and
barely significant. This suggests that the offset time
for hits and acceleration peaks may scale with the
speed of repetition. Gestures recorded at additional
speeds are needed to investigate this hypothesis
further, however.

Internal and External Perspectives on Movement

The hits of the hand and wrist locations are based
on an external frame of reference. We track where
these parts of the body are in space with respect to
an origin and coordinate system that is external to
the body. This makes them easy to observe with
camera-based technologies such as marker-based
motion capture.

I initially assumed that, when we make a discrete
air gesture, we do something with our bodies to
create an internal sense of a discrete moment in
time. The forces we generate within our bodies,
which we may experience as a sense of effort, and
which result in accelerations on joints and body
parts, are closer to our subjective experience of
movement. This is why I find peaks in acceleration
to be likely candidates for this internal sense of a
moment in time. That acceleration peaks have less
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noise and don’t vary as much with note repetition
speed supports this view.

Furthermore, acceleration peaks tend to have a
negative mean offset, like that found in sensorimotor
synchronization experiments. When we tap we
synchronize the tactile sensation of our finger
hitting a surface to the sound, while when we make
discrete air gestures, such as air drumming, it may
be that we synchronize sudden muscular efforts to
the sound.

Sonification of Movement Features

One way to experience these movement features
is to listen to them. I created sonifications of
the hits and acceleration peaks of the hand for
part of the first trial of Participant 1, which
can be heard in a video available on the CMJ
Web site at www.mitpressjournals.org/doi/suppl/
(www.mitpressjournals.org/doi/suppl/10.1162
/COMJ a 00298/AirDrum-HandFeatureSonification
.mp4.

The video begins with an animation of air-
drumming gestures in time to the audio stimulus,
which is heard as a tom-tom sound. This is then
accompanied by a higher-pitched tom-tom sound at
the time of each detected hand hit. You can hear how
the timing offset of hits varies during performance;
that hits, in general, occur after the stimulus sound;
and that they occur closer to the stimulus sound
for fast notes. This is followed by a sonification of
acceleration peak times as an even higher-pitched
tom-tom sound. You may notice that, in general,
acceleration peaks occur much more closely to
the stimulus sounds than the hits did. These are
sonifications of only a small segment of the data, but
they do give a direct experience of the movement
feature timing, and in a sense, hearing is believing.

Wrists and Movement Styles

Across the population of ten participants studied
here, the timing of the hits was not significantly
different between the hand and wrist, and the
acceleration peaks for the wrist came after those
of the hand. Because of real-time constraints, this

suggests that if an air instrument can track only one
point on the body, the hand is a better choice.

I showed how the difference in timing between
movement features of the hand and wrist can be used
to identify different styles of air-drumming gestures.
This could be useful either to help calibrate a system
to a user’s preferred style, or to enable a system to
detect different discrete air gestures from the same
user.

Future Work

The hit and acceleration peak detection algorithms,
as they are currently implemented, are not designed
for real-time use. Both use thresholds that are cali-
brated to the range of the related variable over the
length of a recorded trial, and the algorithm for
choosing peaks relies on future values of acceler-
ation. For real-time applications, these algorithms
would need to be revised to work using only causal
information.

Further analysis of these data may reveal other
movement features, perhaps those based on joint
angles or estimated muscular activation, that would
more reliably indicate the correct time of the player’s
intended sounds. Other types of physiological data,
such as electromyography, could also be studied.

One could also study nonstriking discrete air
gestures, or gestures with other body parts. For
example, bringing some part of one’s body to a
sudden halt is different from the drumming gestures
studied here, which usually have a rebound.

Applications of Discrete Air-Gesture Research

The research described here, and future research
into relationships between music and movement
features, may have applications beyond triggering
sounds from drum gestures. For example, holding
a musical instrument in hand and gesturing in the
air with it can be seen as a type of discrete air ges-
ture. Thus controllers and “hyperinstruments” with
motion sensors may be designed to more precisely
trigger events or sudden changes in audio processing
from air gestures made with the instrument. Simi-
larly, systems that control musical processes from
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the movements of dancers may be made to have
better timing with respect to the dancer’s internally
perceived sense of discrete movement events.

These results may also be helpful in designing
nonmusical air-gesture-based interactions. The
experience of playing gesture-controlled video
games, as well as selecting items or pressing virtual
buttons in generic gesture-based user interfaces, can
all be improved by having timing that more closely
aligns with the user’s movement-generated sense of
when the resulting event should occur.
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