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ABSTRACT
Marker-based motion capture systems that stream precise move-
ment data in real-time afford interaction scenarios that can be subtle,
detailed, and immediate. However, challenges to effectively utiliz-
ing this data include having to build bespoke processing systems
which may not scale well, and a need for higher-level representa-
tions of movement and movement qualities. We present modosc, a
set of Max abstractions for computing motion descriptors from raw
motion capture data in real time. Modosc is designed to address the
data handling and synchronization issues that arise when work-
ing with complex marker sets, and to structure data streams in a
meaningful and easily accessible manner. This is achieved by adopt-
ing a multiparadigm programming approach using o.dot and Open
Sound Control. We describe an initial set of motion descriptors, the
addressing system employed, and design decisions and challenges.

CCS CONCEPTS
• Computing methodologies → Motion capture; Motion pro-
cessing; • Human-centered computing → Interaction design; •
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1 MOTION CAPTURE
Methods for recording human and animal movement have relied
on optical “capture” of movement since the work of Muybridge and
Marey in the late 19th century [11]. Marey and Bernstein devel-
oped techniques for tracking the position of specific points or line
segments on the mover’s body through the use of retro-reflective
tape or light bulbs, thereby reducing the complexity of represen-
tation in order to facilitate analysis. Interestingly, marker-based
infra-red motion capture (MoCap) systems, considered the “gold
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standard” for measuring complex movement, still rely on optical
measurement of a small number of points on the body.

Motion tracking technologies are used in a variety of applica-
tions. Researchers study human body movement in the context
of medicine, sports science, dance, robotics, embodied cognition,
music, and more. Animators and game designers frequently use
motion data as source material. Newer MoCap systems that are
capable of streaming data in real-time are used in immersive vir-
tual and augmented reality systems, movement-based interaction
design, and in scientific studies.

1.1 Motion Descriptors
The main feature of marker-based MoCap, i.e. its ability to track the
precise location in 3D space of a number of points on amover’s body,
can also prove to be an impediment or challenge to the effective use
of the data. Depending on the application, the user of the data may
be interested in aspects of the movement that are not easily visible
from 3D position data. For example, body-centric metrics such as
joint angles must be computed from the positions of multiple points.

Many such motion descriptors have been proposed. These are
quantities which can be computed from the displacement data of
single or aggregate markers. So-called “low-level” descriptors might
represent the velocity or acceleration of a single point, whereas“high-
level” descriptors are intended to represent qualities of the body’s
shape or of the history of recent movements. For example, re-
searchers have described algorithms for detecting the affective
state of the mover [7] or for calculating “expressive” aspects of a
movement [8].

Most commercial MoCap systems provide native computation
of some low-level descriptors, such as position derivatives or joint
angles. To compute other descriptors researchers must rely on li-
braries such as the MoCap Toolbox [2], or they must code their
own. For many of these systems motion descriptors are calculated
“off-line”, taking as input the recording of an entire motion. This has
benefits, such as having access to future position values to calculate
movement derivatives for a specific moment in time. However, re-
lying on off-line processing precludes the use of motion descriptors
in situations that require real-time responses or feedback.

1.2 The Need for Real-time Motion Descriptors
In this paper we present modosc (for “MOtion Descriptors OSC”),
a library of Max abstractions for providing easy access to motion
descriptors calculated from MoCap data in real-time.

The creation of modosc is motivated by a number of use cases.
Studies on the perception of sound and movement may require
real-time feedback from a participant’s movement. Real-time feed-
back from a high-fidelity MoCap system can be used to prototype
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movement-based interactions that may then be implemented and
deployed on lower cost systems. Similarly, when designing auditory
displays that sonify motion [1], different sonification models can be
quickly evaluated and synthesis parameters dynamically adjusted.

Real-time motion descriptors are especially useful in the per-
forming arts, where, for example, a performer’s movements can be
used to affect aspects of accompanying sound or visuals. The au-
thors are motivated in particular by wanting to explore interaction
scenarios involving movement and musical sound.

Other programming frameworks address these needs in various
ways. Most notably, Eyesweb [3] offers tools for real-time human
movement analysis, while PiPo [12] is an API that provides tools to
extract descriptors from audio and motion data. Whereas Eyesweb
is standalone and runs on Windows only, Modosc takes advantage
of Max as a popular environment for implementing real-time inter-
actions. Compared to PiPo, the multiparadigm approach of modosc
enables users to more easily create or modify descriptors.

2 THE MODOSC LIBRARY
Modosc is a set of Max abstractions that receives data in real-time
from a marker-based MoCap system, computes various motion
descriptors from this data, and makes the resulting values easily
accessible for use within Max or other platforms for real-time in-
teraction.

2.1 OSC and o.dot
Modosc uses Open Sound Control (OSC) [15] to receive, represent,
and transmit motion data. OSC was chosen due to its flexibility,
cross-platform compatibility, ease of use, and popularity among
media arts researchers and practitioners [6]. Qualisys MoCap sys-
tems can stream OSC data, and other vendors have similar ways of
streaming motion data over IP networks.

The implementation ofmodosc relies heavily on themultiparadigm
programming approach offered by o.dot. O.dot is a framework for
writing dynamic programs using C-like language inside a host en-
vironment such as Max [9]. While Max offers many useful tools
for rapidly prototyping multimedia interactions, standard Max pro-
gramming approaches can become unwieldy or completely ineffec-
tive when dealing with data from multiple data streams (i.e. MoCap
markers) which need to be processed synchronously.

Compared to more conventional Max objects, o.dot allows ad-
vanced formatting and parsing of OSC data bundles. The ability
to process an entire OSC bundle at once, instead of individual
OSC messages, simplifies synchronization. And o.dot allows the
evaluation of functions that would be difficult or cumbersome to
implement using standard Max objects.

Within each modosc abstraction, data that is already in the
stream of OSC bundles is used as input to expressions written
and evaluated inside an o.expr.codebox. The results are bound to
OSC addresses, which are then blended with the rest of the stream
before being sent out of the outlet. Figure 2 shows an example of
this process within the mo.centroid abstraction.

2.2 Data Types
Modosc stores both incoming MoCap data and the output of motion
descriptor calculations as data bound to specific addresses within a

stream of OSC bundles. Since OSC messages consist of an address
and some data bound to that address, data within the modosc library
is structured according to an address hierarchy. The two main data
types used in modosc are points and groups.

2.2.1 Points. Points represent a single entity in space. The most
common use of a point is to store the position of a specific Mo-
Cap marker. Points can also store orientation. Since many MoCap
systems can identify small sets of markers in a unique static config-
uration and transmit both their position and orientation, points are
also used to represent these “6DoF rigid bodies”.

As an example, a 3D point named “handR” is defined as a 3D posi-
tion vector bound to an OSC address and the resulting OSCmessage
would be: /modosc/points/handR/pos:[11,22,33]. Similarly, a
6DoF body named “forearm” has its 3D position data bound as:
/modosc/points/forearm/pos:[11,22,33]. And its orientation
euler angles (roll, pitch, and yaw) are bound to an additional OSC
address as: /modosc/points/forearm/rot:[44,55,66].

New points may also be generated as the output of a motion
descriptor. For example, the descriptor mo.centroid calculates a
new point that represents the 3D position corresponding to the
centroid of a group of points.

Points can also have other data associated with them. For exam-
ple, if the point “handR” is processed by the mo.velocity descriptor,
the magnitude velocity output would be stored in the stream as:
/modosc/points/handR/vel_mag:[1.234]

2.2.2 Groups. A group is a named list of points bound to an
OSC address in the /modosc/groups sub-domain. A group does
not directly contain data for the points in the group. Rather it refers
to the group’s points which are already in the data stream.

A common use for groups is to define a region of the body for
which you wish to calculate some descriptor. For example the group
“hands”, containing “handL” and “handR” would be represented as:
/modosc/groups/hands/points:["/handL","/handR"].

Groups are defined using the mo.group abstraction. The group
name can then be used as the argument for modosc abstractions
that compute descriptors on multiple points, and these results are
stored with the group. For example, if the group “hands” is pro-
cessed by mo.contractionIndex the output would be represented
as: /modosc/groups/hands/ci:[0.34].

Groups also store aweight value for each point in the list.Weights
are used as parameters for some descriptors such as mo.QoM (quan-
tity of motion). When a new group is created all weights are set to
1 by default and can then be changed using mo.setWeights.

2.3 Descriptors
The following motion descriptors are implemented in the initial
release of modosc.

2.3.1 Point Descriptors. The first step in processing data streamed
from a MoCap system is to format it into modosc points. The initial
release of modosc can accept data from the Qualisys Track Manager
(QTM) software. Data from a marker or a rigid body tracked by
QTM can be used to define new modosc points using mo.qtm3D and
mo.qtm6Deuler.

Velocity and acceleration of points are calculated using mo.velocity
and mo.acceleration. These are based on Skogstad’s low-pass
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differentiators, which are designed specifically for dealing with
possibly noisy MoCap position data [13]. Our implementation is
coded in o.dot and can process all three dimensions for multiple
points within a single descriptor object. These descriptors have a
parameter for setting the amount of noise-reduction (i.e. low-pass
filtering).

Jerk, the third derivative, is calculated by mo.jerk using a sim-
ple first-order difference of the already-filtered acceleration data.
For each of these derivative descriptors, both the 3D vector and
magnitudes are calculated. For example, when mo.acceleration
processes the point “handR”, the results will be stored as:
/modosc/points/handR/acc:[1.2,3.4,5.6] and
/modosc/points/handR/acc_mag:[7.89].

Noisy position data can be filtered using mo.positionLPFwhich
is also based on Skogstad’s filters. This descriptor should be placed
downstream of mo.velocity and mo.acceleration since these
use position data as input and perform their own noise-reduction.

Inspired by theoretical work on human motion by Flash and
Hogan [5], Piana et al. proposed fluidity index as a motion descrip-
tor. Our implementation, mo.fluidity, takes a single point as an
argument and outputs fluidity index to
/modosc/points/point_name/fluidity.

2.3.2 Group Descriptors. The initial release of modosc includes
the following descriptors for processing groups of points. The geo-
metric center of the points in the group is calculated by mo.centroid.
The coordinates of the centroid are bound to a new address in the
/modosc/points sub-domain. mo.centerOfMass works in a simi-
lar way, except it takes into account the weight of each point.

Fenza et al. defined quantity of motion (QoM) as the sum of the
speeds of a set of points multiplied by their mass [4]. Glowinski
et al. [7] included a similar measure in their expressive feature set,
denoted as overall motion energy. The modosc implementation,
mo.QoM, computes QoM taking into consideration the weight of
each point.

Contraction index is calculated by summing the Euclidean dis-
tances of each point in a group from the group’s centroid [4]. It is
an indicator of the overall contraction or expansion of a group of
points and it has been used for emotion recognition applications
based on body movements [10]. In modosc, contraction index is
implemented in mo.contractionIndex.

Bounding shapes have been used in the analysis of affective
gestures [7]. mo.boundingBox computes the height, width, and
depth of the rectangular parallelepiped enclosing the points listed
in the input group.

2.4 Using modosc
The modosc library allows clean and simple patches to compute
motion descriptors on large amounts of MoCap data. Rather than
sending many messages in parallel as in a typical Max patch, a
typical modosc data flow consists of abstractions connected in series
as shown in figure 1. This example patch receives data for two points
from a Qualisys system. The data is formatted for modosc, velocity
is calculated for each point, and the position data is smoothed. A
group is created called hands, and then a number of descriptors are
calculated on the group.

Figure 1: A chain of modosc abstractions for processing
a stream of motion data and their outputs shown in an
o.display. Abstractions are connected in series, resulting in
patches that are easy to read and maintain.

The main consideration that a user needs to be aware of is that
some descriptors rely on the output of other descriptors. For exam-
ple mo.qom needs the velocity for each point in the group, and so
mo.velocity for these points must be upstream.

Figure 1 also shows how the outputs of the descriptors are rep-
resented in the o.dot bundle. This data can easily be retrieved from
the bundle for use in Max by using o.route, as shown in the figure.

3 DISCUSSION
3.1 Design Issues
Our design goals were for modosc to provide easy-to-use real-time
motion descriptors, and to use a simple modular design that is
easily extensible. We also chose to avoid repeated computation of
low-level descriptors. For example, mo.qom requires that velocity
already be computed upstream. This allows velocity to be computed
once, and then used by subsequent descriptors. This goal is slightly
at odds with the ease-of-use goal, as it requires the user to be aware
of a descriptor’s input requirements.

One challenge of implementing modosc has to do with missing
data. When using MoCap a marker may become temporarily oc-
cluded, or a 6DoF rigid body may not be recognized, resulting in
points dropping out of the data stream. If some o.dot code attempts
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Figure 2: An example modosc abstraction coded using o.dot
in Max which computes the centroid of a group of points.

to process data at an address that is not present in the bundle or
has no data bound to it, o.dot will stop processing all data in that
stream until it reappears. This would be disastrous for real-time
scenarios, and would also be confusing for users of the library.

To address this, each descriptor checks that its required inputs
are present. If they are not, the data stream is simply routed around
the subsequent code. This is more complicated in the case of group
descriptors, which must first check that the group itself has been
defined, and then check that data for each point in the group is also
present. Figure 2 shows an example of this process in mo.centroid.

3.2 Future Work
The alpha release of modosc1 includes the components described in
this paper. We plan to add new descriptors and are confident that
most prospective descriptors can be implemented using o.dot. The
library includes templates to help users create their own custom
descriptors.

Modosc currently relies on QTM’s native OSC support. Other
MoCap systems can be configured to stream data via OSC by tak-
ing advantage of their respective SDKs, and new abstractions will
format this data to be used in modosc.

Rotations are currently expressed in Euler angles. We plan to
add support for quaternion representation, which would enable the
implementation of descriptors based on rotational data [14] and
also avoid issues such as gimbal lock.

1https://github.com/motiondescriptors/modosc

Modosc makes extracting descriptors from multiple sources rel-
atively easy. The same design principles can be used to include
descriptors for other devices such as IMUs and EMG sensors, since
both technologies are commonly used in movement analysis and
interaction design.
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