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ABSTRACT
Since people communicate intentions and inner states through
movement, robots can be�er interact with humans if they too can
modify their movements to communicate changing state. �ese
movements, which may be seen as supplementary to those required
for workspace tasks, may be termed “expressive.” However, robot
hardware, which cannot recreate the same range of dynamics as
human limbs, o�en limit expressive capacity. One solution is to
augment expressive robotic movement with expressive sound. To
that end, this paper presents a study to �nd a qualitative map-
ping between movement and sound. Musicians were asked to
vocalize sounds in response to animations of a simple simulated
upper body movement performed with di�erent movement quali-
ties, parametrized according to Laban’s E�ort System. �alitative
labelling and quantitative signal analysis of these sounds suggests
a number of correspondences between movement qualities and
sound qualities. �ese correspondences are presented and analyzed
here to set up future work that will test user perceptions when
expressive movements and sounds are used in conjunction.
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1 INTRODUCTION
We typically think of robotic movement as e�cient, inexpressive,
and purely functional. Humans, however, o�en communicate inten-
tions and a�ective states through qualitative aspects of their body
movement. �e same gesture can express conviviality, as when
one waves to a friend on the street, or urgency, as when waving to
get the a�ention of a cab. �e di�erence is in how the gesture is
executed.

Robots in human-facing roles could more e�ectively interact
with humans if they too could express various intentions through
their movement. Consider a robot that guides someone from one
place to another. If this robot works in a kindergarten it would
move gently, and if it worked in a police station it might move
authoritatively. Ongoing research is being conducted with the goal
of endowing robots with the ability to express di�erent qualities
in their movement [9, 13]. However, the physical limitations of a
speci�c platform can reduce a robot’s ability to su�ciently express
di�erences in movement qualities [1].

Humans also communicate intentions and a�ective states son-
ically through non-verbal aspects of their vocalizations. �ese
include non-verbal u�erances as well as the varying rhythm and
intonation of speech (i.e. prosody). For example, an enthusiastic or
agitated person might sharply modulate the pitch and loudness of
their voice in a way that mirrors sharp accelerations in the move-
ments of their hands as they speak. �us, by endowing robots with
expressive sound we may improve people’s perception of di�ering
qualities in robotic movement. �e question then is, what is the
right sound to accompany a particular expressive movement?

�is paper describes a study conducted in order to �nd corre-
spondences between movement qualities and sound qualities. We
start with animations of a simple movement performed with the
qualities of each of the eight Basic E�ort Actions (BEAs) proposed
by movement theorist Rudolf Laban (described below). Musicians
were presented with these animations, along with the E�ort Action
label, and were asked to vocalize a sound that matched the qual-
ities of the movement and label. We then analyzed these sounds
in order to �nd how sonic qualities vary with respect to changes
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in movement quality (speci�ed using the Laban E�ort Factors de-
scribed below). �is paper extends preliminary results presented at
a robotics workshop [1].

2 BACKGROUND
A number of studies have been conducted on relationships between
body movement and musical sounds. One common paradigm is to
study movement responses to music or sound. For example, peo-
ple’s spontaneous dance movements when listening to samba and
chacarera music was analyzed in [16], and soundtracing, a more
constrained movement response to music, has been studied in [17].
Another paradigm is to ask people to mime the performance of
musical instruments while listening to the sound of drums [2] or
violin [23]. Similar work involved recording people making con-
ducting gestures in time to prerecorded music [18]. �e gestural
and vocal imitation of preexisting sounds was analyzed to study the
communication of sound information in [20]. Imagined movement
responses to sound were studied in [4]. A discussion of various
sound-related gestures and their correspondence to dynamic en-
velopes in sound, and an analysis of movement response to music
is presented in [6]

Our study moves the other way by asking participants to gener-
ate sounds for preexisting movements and associated descriptive
terms. By controlling the qualities in the movement stimuli, we
hope to isolate the sound characteristics that correspond to a given
movement quality. �e description of movement we used in our
study is the codi�ed body of knowledge in dance and choreography
known as Laban/Bartenie� Movement Studies (LBMS). Individu-
als with certi�cations in this work are called Certi�ed Movement
Analysts (CMAs). �is approach is similar to work in [5] in that
they use the Laban E�ort Factors to organize movement, however
their participants perform both movement and sound simultane-
ously. �eir data is used to train a system that generates sound
from dancers’ movements in real time, whereas our work aims to
generate sound from movement quality parameters.

Sonifying movement data according to user-chosen parameters
is described in [3], and [10] created a game-like interaction for
validating soni�cations of movement.

Previous work has investigated the e�ect of varying robotic
movement on humans’ feelings. Flying robots can use their locomo-
tion paths to communicate a�ective information [21]. And LBMS
was used to study the impressions produced by robotic motion in
[15]. Our work generating robotic movement by mapping from the
components of Laban’s E�ort system to weighted parameters in an
optimal control problem builds on [14].

2.1 Describing Movement�ality
�e notion that the same ‘movement’ can be expressed in di�erent
ways is apparent in our language. We separate actions (verbs) and
modi�ers (adverbs) into distinct descriptors. We can, for example,
‘walk’ or ‘paint’ in many di�erent ways, with di�erent functional
and expressive objectives achieved in each. A teacher will walk
into the classroom in a very di�erent way than a student who
is late for the class. In this example the variation is expressive.
On the other hand, the brush stroke required to paint an object
is very di�erent depending on the viscosity of the paint. In this

Table 1: Laban’s Eight Basic E�ort Actions

Movement Time Space Weight
Gliding Sustained Direct Light
Pressing Sustained Direct Strong
Floating Sustained Indirect Light

Wringing Sustained Indirect Strong
Dabbing Sudden Direct Light

�rusting Sudden Direct Strong
Flicking Sudden Indirect Light
Slashing Sudden Indirect Strong

example movement variation in movement is functional – yet relies
on expressive quality to be achieved.

We use the E�ort system de�ned by Rudolf Laban [11, 22] to
qualitatively specify the ways a movement’s “tone” may vary. In
this system, movements are characterized using the four E�ort
Factors: Space E�ort, Time E�ort, Weight E�ort, and Flow E�ort.
We capitalize these terms to avoid possible confusion with other
notions of these terms.

Space E�ort describes the a�ention a movement pays to the
environment. A movement can be Direct (as in dabbing paint
onto a canvas), or Indirect (as in releasing a balloon). Time E�ort
describes the a�itude towards initiation and �nish of a movement; it
can be Sudden (as in fencing) or Sustained (when moving something
heavy). Weight E�ort describes the a�itude towards the mover’s
mass; it may be Strong (as in punching) or Light (when tapping an
icon on a touch screen). Flow E�ort describes the progression of a
series of movements. We do not use Flow E�ort in this study, since
the movements we use can be considered a single movement.

Laban proposed the eight BEAs which are formed by the extreme
values of three of the E�ort Factors: Space E�ort, Weight E�ort,
and Time E�ort [11], as shown in Table 1. In our study we employ
these eight BEAs – Dabbing, Flicking, Floating, Gliding, Pressing,
Slashing, �rusting, and Wringing – as a prototypical set of move-
ments with di�erent qualities with which people have preexisting
experience to draw from.

3 METHODOLOGY
�e goal of our study is to search for qualitative correspondences
between movement and sound, so that we can endow expressive
robotic movement with expressively coherent sound. To prepare
for this study, the authors participated in movement-based training
on the E�ort Factors with a CMA.

We start with animations of a simple movement performed with
the qualities of each of the eight BEAs. We presented musicians
with these animations, along with the BEA label, and asked them
to vocalize a sound that matched the qualities of the movement and
label. We recorded these sounds and subjected them to analyses
described in Section 4. �e labels were necessary because the
animations, though generated with di�erent movement qualities,
were not di�erent enough for the participants to be able to easily
distinguish the di�erences. Indeed, this is part of the motivation
for conducting this study.
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Next we describe the process for generating movement with
varying qualities, followed by the details of gathering the data.

3.1 Generating Movement
We created animations of a stick �gure moving from a pose where
the hands are near the center line, to a pose where the arms are
extended to the sides, and then returning to the �rst pose. Each
movement lasted four seconds. �e animation trajectories were
calculated in MATLAB™as solutions to an optimal control problem
leveraged from [14].

min
u

J (1)

s .t .

ẋ = Ax + Bu (2)
y = Cx (3)

where A ∈ Rn×n , B ∈ Rn×m , and C ∈ Rl×n . �e cost function is

J =
1
2

∫ Tf

0
[(y − r )TQ (y − r ) + uT Ru + ẋT Pẋ]dt

+
1
2 (y − r )

T S (y − r )
����Tf

(4)

We extended the design of the stick �gure in [14] by making it
have shoulders, elbows and wrists (Figure 1). �us, we consider a
6-dimensional system described in Equations (2) and (3) with the
state x = [θ1, θ̇1,θ2, θ̇2,θ3, θ̇3] and the input u = [uθ1 ,uθ2 ,uθ3 ]. We
can generate trajectories with di�erent qualities by varying the
Q, R, P, and S parameters in the cost function (4) according to the
desired Laban E�ort Factors.

Figure 1: A still frame of the animation presented to partic-
ipants.

3.2 Recording Sounds
Five graduate students and two music professionals in music com-
position from the University of Virginia participated in the study.
�ey were recruited due to their signi�cant experience performing
and improvising music. �e participants ranged in age from 24 to
46, with a median age of 32.

Participants were shown each of the eight animations, as well as
the label of the Basic E�ort Action for the animation (i.e. Gliding,
Pressing, etc.) Participants were asked to vocalize a sound for
each animation, such that their vocalization began at the start of

the movement and lasted the duration of the movement. A three-
second countdown was given before each animation to help with
timing. Participants were allowed to practice before recording and
to record up to three takes. A�er recording, we removed any takes
with problems (e.g. clipping distortion). We then kept the last take,
unless the participant indicated that a di�erent take was best.

We built a custom so�ware interface with Max/MSPTM to dis-
play the animation and record the participants vocalizations. All
participants were recorded in an isolated studio environment using
a Neumann TLM103 microphone with pop �lter, and a Focusrite
Scarle� 2i2 audio interface for microphone pre-ampli�cation and
analog-to-digital conversion.

4 ANALYSIS
Our goal in analyzing the recorded vocalizations is to discern
whether there are general trends in how the sounds di�er as move-
ment quality varies. Our stimuli, the animations, were organized
according to the Basic E�ort Actions. However, what we would like
to understand is how characteristics of sound change according
to di�erent values of the Laban E�ort Factors: Time E�ort, Space
E�ort, and Weight E�ort. �us, in the analyses that follow, we
reorganize the data according to E�ort Factors, which is a two step
process. �e �rst step is to apply qualitative labels to or calculate
various quantities for the individual recordings. We then organize
the data according to the E�ort Factors. For example, when con-
sidering Time E�ort we collect the data for the Gliding, Pressing,
Floating, and Wringing movements into a group for Sustained Time
E�ort. �e remaining movements (Dabbing, �rusting, Flicking,
and Slashing) are placed into a group for Sudden Time E�ort. (It
may help to review Table 1.) �e groups allow us to compare how a
given sonic quality di�ers between the Sustained and Sudden Time
E�orts.

We performed two di�erent analyses of the recordings. In the
�rst analysis, we manually applied qualitative labels to each record-
ing. In the second analysis, we performed signal analysis of the
recordings in order to quantify various sonic qualities.

4.1 �alitative Analysis
Our �rst analysis consisted of applying qualitative labels to the
recordings. A�er listening to a sample of the recordings we chose
to focus on the fundamental sonic a�ributes of pitch, amplitude (or
loudness), and timbre, and a�er some discussion converged on the
following labels.

�e overall pitch of each sound is described using the labels low,
medium, high, none. For the overall amplitude of each sound we
use the labels very so�, so�, medium, loud, very loud. �e labels for
the overall timbre of each sound are dark tone, dark noise, medium
tone, medium noise, bright tone, bright noise. ‘Tone’ refers to pitched
sound, and ‘noise’ to non-pitched noisy sound, and ‘dark’, ‘medium’,
and ‘bright’ refer in general to the relative distribution of energy
across the spectrum (a preponderance of energy at low frequen-
cies sounds dark whereas high frequencies sound bright). �ese
categories are similar to those used in [17].

We also apply labels to the shape of how the pitch, amplitude, and
timbre vary over the duration of each sound. �ese three a�ributes,
which we call pitch shape, amplitude shape, and timbre shape,



MOCO’17, 28-30 June 2017, London, United Kingdom Luke Dahl, Jon Bellona, Lin Bai, and Amy LaViers

Table 2: Sound categories and labels for qualitative analysis.

Pitch Amplitude Timbre Shapes
None Very So� Dark Tone Sustained
Low So� Dark Noise Start Emphasis

Medium Medium Medium Tone Middle Emphasis
High Loud Medium Noise End Emphasis

Very Loud Bright Tone Oscillating
Bright Noise Linear Increase

Linear Decrease

are all described using the labels start emphasis, middle emphasis,
end emphasis, linear increase, linear decrease, sustained, oscillating.
‘Emphasis’ refers to a sense of sudden intensi�cation of the given
quality, and ‘start’, ‘middle’, and ‘end’ refer to when an emphasis
occurs.

Each of the four authors manually listened to and applied labels
to each of the 56 recordings (7 musicians × 8 BEAs). For each
a�ribute, a listener was allowed to apply only one label.

To facilitate our search for meaningful correspondences between
movement and sound qualities we organized the label data ac-
cording to the E�ort Factors (as described above), and created his-
tograms to compare the two values of each Factor for each quality
label. By examining these histograms (see Figures 2,3,4) we notice
the following.

4.1.1 �alitative Encoding: Weight. In Figure 2 we see interest-
ing relationships between the movement quality of Weight E�ort
(Light vs. Strong), and the sonic qualities of amplitude and timbre.
For example, sounds that corresponded to BEAs with Light Weight
E�ort were more o�en labeled with so� amplitude, whereas sounds
corresponding to BEAs with Strong Weight E�ort were more o�en
labeled medium or loud, suggesting a Weight E�ort to amplitude
correlation.

For timbre, Strong Weight sounds contained more dark tone
and dark noise labels, whereas Light Weight E�ort sounds had
more mid and bright tone labels. In addition, from the three shape
qualities we see that Strong Weight E�ort sounds seems to have
more end-emphasis, while Light Weight E�ort sounds seemed to
have more sustained and middle emphasis labels.

4.1.2 �alitative Encoding: Time. For the Time E�ort Factor
(Sudden vs. Sustained), a few qualitative correlations appeared
(see Figure 3). Vocalizations for Sustained movements were more
o�en labeled with low and medium pitch, whereas for Sudden
movements vocalizations pitch was more o�en labeled as ‘none’.
�is suggests that Sustained movements may be more likely to
have pitched sounds, and Sudden movements may be more noisy.
�e Timbre label counts support this �nding, as sounds for Sudden
Time E�ort were more o�en labelled ‘bright noise’, and sounds for
Sustained Time E�ort were more o�en ‘mid tone’.

When we look at amplitude we see that Sudden movement vo-
calizations were more o�en labelled ‘loud’, and that Sustained Time
E�ort had slightly more labels of ‘medium’ and ‘so�’. In addition,
from the three shape categories we see that in general Sudden
movement vocalizations had more end- or middle-emphasis labels,
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Figure 2: �alitative label counts for Weight E�ort compar-
ing Light vs. Strong

whereas Sustained movement vocalizations were more o�en sus-
tained.

4.1.3 �alitative Encoding: Space. We did not notice any ob-
vious di�erences between direct and indirect sound groups. �e
qualitative label histograms for space are shown in Figure 4.

4.2 �antitative Analysis
�e qualitative analysis described above suggests a number of re-
lationships between movement qualities and sonic characteristics.
However, it relies on a subjective labelling performed by the au-
thors, and may be vulnerable to subtle biases. �us, we sought
to verify and possibly extend these �ndings by performing signal
analyses of the recorded vocalizations.

Using the MIRtoolbox [12] library, we extracted the following
audio features from each recording : amplitude envelope, spectral
brightness, spectral centroid, spectral rollo�, spectral �atness, and
zero-crossing rate. For each feature, the value was calculated for
a series of time frames spanning the duration of the recording
using MIRtoolbox’s default frame length of 50 ms with 50% percent
overlap between frames. �en for each recording, the mean value
of the feature across all frames was calculated. It is these means
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Figure 3: �alitative label counts for the E�ort Factor Time
comparing Sudden vs. Sustained

(which we call the recording mean) which are subject to further
analyses.

In order to remove possible e�ects due to the di�erent vocal range
or musical styles of the participants – for example a female vocalist
might have a higher pitched voice than a male – we subtracted
from each recording mean the mean of that feature taken across
all recording means for that participant. We can then compare
these adjusted recording means for all participants, and we can also
compare all participants’ recording means between di�erent BEAs.
For example, the top of Figure 5 shows that the mean spectral rollo�
for Dabbing is higher than the mean for Flicking.

As with the qualitative analysis, the recordings, each of which is
associated with one of the BEAs, can be reorganized into the E�ort
Factors: Space E�ort, Weight E�ort, and Time E�ort. For example,
Figure 6 shows that the mean spectral rollo� for movements whose
Time E�ort is Sudden is higher than for movements whose Time
E�ort is Sustained.

In order to test whether these di�erences are meaningful we
conducted T-tests between the two values of each E�ort Factor (i.e.
between Direct and Indirect Space E�ort, between Strong and Light
Weight E�ort, and between Sudden and Sustained Time E�ort). In
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Figure 4: �alitative label counts for the E�ort Factor Space
comparing Direct vs. Indirect
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Figure 5: Spectral Roll-o� for the eight Basic E�ort Actions.

the following sections we will discuss the signi�cant di�erences
we found.

4.2.1 Spectral Brightness, Roll-o�, and Centroid . Spectral roll-
o�, spectral brightness, and spectral centroid are features which
tell us about the distribution of energy in the spectrum of a sound.
Roll-o� calculates the frequency below which 85% of the energy
lies, brightness calculates the percentage of energy above 1500 Hz,
and centroid calculates the centroid of the magnitude spectrum.
We converted the roll-o� and centroid recording means from Hz
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Figure 6: Spectral Rollo� for the Space, Weight, and Time
E�ort Factors.

into semitones to match the logarithmic scaling of frequency in
human perception.

For these features, a higher result corresponds to a “brighter”
sound with more energy in the high frequencies. We found that for
these features, Sudden movements had sounds with higher spectral
brightness, roll-o�, and centroid than did sounds for Sustained
movements. In other words, Sudden movements led to brighter
sounds, and Sustained movements led to darker sounds. (Brightness:
t (54) = 3.2204,p = 0.0022; Roll-o�: t (54) = 2.74995,p = 0.0081;
Centroid t (54) = 3.1439,p = 0.0027.) Figure 6 shows this e�ect for
spectral roll-o�.

4.2.2 Zero-Crossing Rate and Spectral Flatness. �e time-domain
zero-crossing rate is used in speech processing to distinguish voiced
from unvoiced sound, and is considered a measurement of the
“noisiness” of a signal [19]. For a periodic sound the zero-crossing
rate is proportional to frequency, so we convert it to logarithmic
spacing (semitones) to match human perception. Spectral �atness
is also a measure of the amount of noise in a signal, since the
magnitude spectrum of white noise is �at. For both of these fea-
tures we found that sounds for Sudden movements had higher
values (i.e. more noise) than did sounds for Sustained movements.
(Zero-crossing rate: t (54) = 2.4024,p = 0.0198; Spectral �atness:
t (54) = 2.7636,p = 0.0078.) Figure 7 shows this e�ect for zero-
crossing rate.
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Figure 7: Zero-crossing rate for the Space, Weight, and Time
E�ort Factors.

4.2.3 Amplitude Envelope and Peak. �e amplitude envelope is
roughly analogous to the changing loudness of a sound. When we
compared the recording means for amplitude envelopes we did not
�nd any signi�cant results. However, when we compared the peak
values (in dB) of the amplitude envelopes we found a relationship
with Weight E�ort. Movements with Strong Weight led to sounds

with higher envelope peaks than did movements with Light Weight
(t (54) = 2.2876,p = 0.0261).

4.2.4 Entropy of Envelope and Flux Envelopes. We plo�ed the
average of all amplitude envelopes for each E�ort Factor and noticed
that the average amplitude envelopes for Direct, Strong, and Sudden
movements seemed to have sharp peaks near the end, whereas their
complements had smoother envelopes (see Figure 8). In order to
quantify this “peakiness”, we calculated the entropy of all amplitude
envelopes. A smoother envelope will have higher entropy, whereas
an envelope that has strong peaks will have lower entropy. T-
tests �nd an e�ect for Time E�ort, where Sudden movements have
lower entropy (more peaky) than Sustained movements (t (54) =
−4.0025,p = 1.9253e − 4). Figure 9 shows this e�ect for amplitude
envelope entropy.

Spectral �ux is a measure of the amount of change between
successive spectra in a sound, and is related to how much the
timbre changes. Plots of average spectral �ux over time showed a
similar “peakiness”, and calculating the entropy of spectral �ux also
found that Sudden movements led to stronger peaks in spectral �ux
than did Sustained movements (t (54) = −3.7444,p = 4.4045e − 4).

Figure 8: Average Amplitude Envelopes for each E�ort Fac-
tor).
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responds to stronger “peak” envelopes).
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Table 3: P values for signi�cant �ndings comparing E�ort Factors to sound qualities

Feature E�ort Factor P value Result Summary
Amp. Envelope Entropy Time < 0.001 Sudden sounds tend to contain strong peaks
Spectral Flux Entropy Time < 0.001 Sudden sounds tend to contain peaks of intense change

Brightness Time < 0.01 Sudden sounds tend to be brighter
Spectral Centroid (Log Hz) Time < 0.01 Sudden sounds tend to contain higher frequencies

Spectral Flatness Time < 0.01 Sudden sounds tend to be noisier
Spectral Roll-o� (Log Hz) Time < 0.01 Sudden sounds tend to contain more high frequencies

Zero-crossing Rate (Log Hz) Time 0.0198 Sudden sounds may be noisier
Envelope Peak (dB) Weight 0.0261 Strong sounds may have louder peak values

5 DISCUSSION
�e signi�cant �ndings from the quantitative analysis (which are
summarized in Table 3) support some of the relationships we found
in the qualitative analysis.

For Time E�ort, both qualitative and quantitative analyses �nd
that:

• Sudden movements are associated with brighter sounds,
whereas sounds for Sustained have darker timbres.

• Sudden movements are associated with noisier sounds,
whereas sounds for Sustained movements are more pitched.

• �e sounds for Sustained movements have smooth ampli-
tude envelopes and smoothly varying timbre, whereas the
sounds for Sudden movements tend to have moments of
strong emphasis both in amplitude and timbre.

�e qualitative �nding that sounds for Sudden movements are
louder than sounds for Sustained movements was not con�rmed by
our quantitative analysis, which looked for signi�cant di�erences
between the mean amplitude envelopes. Neither was it contra-
dicted.

For Weight E�ort, both qualitative and quantitative analyses �nd
that:

• Strong movements are associated with sounds that are
louder and have higher peak amplitudes, whereas sounds
for Light movements are quieter and with smaller peak
amplitudes.

�e qualitative analysis suggested that sounds for Light move-
ments tend to be brighter and more pitched, compared to those for
Strong movements which are darker and more noisy. �e qualita-
tive comparisons of brightness (via spectral brightness, roll-o�, and
centroid) and noisiness (via zero-crossing rate and spectral slope)
neither con�rmed nor contradicted this.

�alitative analyses also suggested that Strong movements have
more end-emphasis, while Light movements have more sustained
amplitude envelopes and more middle-emphasis. We did not con-
duct a quantitative analysis that would test this �nding.

It is interesting to note that none of these �ndings contradict
what we might expect. For example, our common sense would agree
that a Sudden movement should correspond to a sound with strong
peaks in loudness, while a Sustained movements have smoothly
varying sounds. A�er all, our experience is that in many acoustic
instruments (e.g. bowed strings) Sudden movements, characterized
by sharp accelerations, cause sudden changes in sound.

Regarding Weight E�ort, the one qualitative �nding which was
con�rmed by the quantitative analysis, i.e. that sounds for move-
ment with Strong Weight have higher peak amplitude, also agrees
with common experience. If we strike a drum lightly, it will not be
as loud as if we strike it “strongly”, transferring greater energy into
the vibrating instrument.

�ese sound-producing gestures (bowing a violin, and striking a
drum) and others can be categorized according to Godøy’s three
basic motion-e�ort types: Impulsive, Sustained, and Iterative. He
claims that these correspond to three basic dynamical categories
of sound, and that this correspondence is part of the basis for our
cross-modal perception of movement and sound [6][7]. Our �ndings
could be described using Godøy’s terms. For example, movements
with Sudden Time E�ort are Impulsive, as are the sounds that ac-
company them, while Sustained Time E�ort movements and their
sounds are Sustained (both in motion-e�ort and in dynamic topo-
logical sound category). Our participants did make some sounds
that might be considered Iterative, which were labeled as ‘oscillat-
ing’ for pitch, amplitude, and timbre shapes. But there did not seem
to be distinctive di�erences between E�ort Factors in the number
of sounds labelled ‘oscillating’.

We did not �nd any results with respect to Space E�ort. Perhaps
this is because the concept of space does not map very precisely
onto the qualities of sounds we studied. Spatial placement of sound
is a creative dimension of music composition, however our study fo-
cused on monophonic and spatially static sound. Spatial metaphors
are o�en used in describing music and our experience of listening
to music [8]. For example, we might say that one melody ascends a
scale to land on the tonic (a direct movement), while another “mean-
ders” up and down (an indirect motion). �e qualitative labelling of
pitch shape (see Figure 4) seems inconclusive on this point, and our
quantitative analysis did not measure the shape of pitch variations.

�e height metaphor commonly used to describe pitch may be
one reason that sound and motion studies frequently �nd corre-
spondences between vertical position and pitch. We designed our
stimulus to be a primarily horizontal movement to avoid tempt-
ing our participants to focus on height and pitch, so that we might
evince other relationships. Eitan and Granot found that in imagined
movement responses to sound, pitch contour correlated to both
vertical motion and asymmetrically to horizontal movement [4].
(In our stimulus the horizontal movement is symmetrical.) In the
LBMS framework, so-called “spatial a�nities” explicate relation-
ships between E�ort and another part of the system “Space”. �ese
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indicate that a stimulus with movements that cross over the body
midline (the vertical line of symmetry in humans) might be�er
probe perceptions of Space E�ort. More focused investigation into
how Space E�ort maps onto sound could be fruitful.

6 CONCLUSION AND FUTUREWORK
In this study we investigated correspondences between qualities of
movement and features of sound, through qualitative and quantita-
tive analyses of vocalizations performed by trained musicians in
response to animations of simulated robotic movement. We found
evidence of a number of speci�c relationships between movement
quality – as described by the Time E�ort, Weight E�ort, and Space
E�ort of the Basic E�ort Actions (BEAs) in the Laban E�ort system
– and the amplitude, timbre, and pitch of the resulting sounds.

We can use these �ndings to synthesize new sounds according
to the values of parameters for Time, Weight, and Space E�orts. For
example, based on our results, a sound to accompany a Wringing
movement should be noisy (Indirect Space E�ort), louder in ampli-
tude (Strong Weight E�ort), and have sustained amplitude envelope
(Sustained Time E�ort). A sound for a Dabbing movement will be
more tonal (Direct Space E�ort), quieter (Light Weight E�ort), and
contain a fast a�ack and short amplitude envelope (Sudden Time
E�ort).

Sounds generated in this way will be used in a second study
to investigate people’s ability to distinguish di�erent movement
qualities in robotic movement, and to determine whether adding
sounds created according to the relationships found here can im-
prove people’s perception of movement quality in platforms whose
dynamic capacity is more limited than human bodies.

Our study used a simple out-then-in movement of the arms in the
coronal plane as stimuli. �is movement lasted four seconds (corre-
sponding to Godøy’s meso timescale). Generating longer and more
complicated multi-stage movements with controllable movement
qualities is an area of ongoing research. And further investiga-
tion into qualitative movement-to-sound correspondences may be
needed to consider how sounds can be varied to accompany longer
and more complicated movements with distinct spatial features
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