
A STRUCTURED AUDIO SYSTEM BASED ON JAVAOL

Yi-Song Siao, Alvin W.Y. Su, Jia-Lin Yah and Jian-Lung Wu

Studio of the Computer Research on the Music & Media (SCREAM)
National Cheng Kung University, Tainan, Taiwan, R.O.C.

ABSTRACT

Structure Audio (SA) is an algorithmic based
coding technology designed for low bit-rate
high quality audio. With this technology, the
desired sound can be identical on both the
encoder side and the decoder side. However,
the SAOL defined in the MPEG-4 standard is
not as powerful as Java language. Therefore,
in this paper, we present a new way of
implementing synthesis algorithms, named
JavaOL to replace the original SAOL
language. In this paper, we present a
client-server SA system based on JavaOL,
too.

1. INTRODUCTION

Structured Audio contains several parts for
different functions described as follows. The
first part is the synthesis algorithms for sound
generation and processing. The second part is the
score data. MPEG defines a SA standard called
MPEG-4 Structured Audio (MPEG-4 SA) [1].
The synthesis language defined in MPEG-4 is
called the Structured Audio Orchestra Language
(SAOL) [2]. SAOL is a C like language, but it
has lots of special syntax to obtain a little bit of
convenience. Therefore, it’s difficult to
implement the SAOL compiler. Based on our
previous experience with Java, it is currently one
of the suitable ways to fulfill the promise made
by SA because Java is general enough to
implement almost any synthesis algorithms and
close to SAOL, too. In this paper, we discuss the
JavaOL and propose such a Java based decoder.
To demonstrate the power of SA, we also
propose a SA framework. This framework is an
open architecture and anyone can write decoders
on it. The current JavaOL decoder presented in
this paper is such an example. With the JavaOL
decoder, the system performance is greatly
improved. However, Java is still not as efficient

as the applications implemented by C language.
Therefore, we provide another decoder: a
Wavetable decoder [3][4]. It’s implemented with
C++ and ASM for better performance.
The rest of the paper is organized as follows.
The brief introduction of the SA system is given
in section 2. In section 3, we discuss how the
Java is applied on media processing. In section 4,
the concepts and roles of JavaOL are described.
In section 5, we talk about the proposed system
and the performance comparison with sfront and
SAOLC is provided. Future works are in section
6.

2. SA ARCHITECTURE

Since the limitation of the bandwidth of physical
networks, the data size of multimedia data is
always restricted if the real-time requirement has
to be met. The ways commonly seen for
decreasing data size are compressing and/or
describing the sound data as follows.

2.1.Compression-Type Technologies

MP3[5][6] and MPEG-2/4 Advanced Audio
Coding (AAC) [7] are among the most popular
techniques. The compression ratio of 11:1 or
even higher can be achieved though sound
quality is compromised with higher compression
rate.

2.2.Description-type Technologies

In MIDI [8], data such as pitch, volume, and
other description information are stored. One
disadvantage is that the discrepancies among
different MIDI synthesis devices exist. To
eliminate the difference among synthesis devices
is much desired.

2.3.The SA Approach

The Machine Listening Group [9] proposed a
description-type approach called Structured
Audio. In SA, not only note and control

information, but also the sound synthesis
algorithms are described. Each note in the score
needs to be calculated into raw PCM data
through the algorithm specified to it (Fig 1). The

streams of raw data from all tracks are summed
and the result is passed into the wave output
device.

Fig 1.A SA Synthesis Example.
There are 3 tracks containing score data, and 3 synthesis algorithms in a data stream. The score data is translated into raw PCM

data with the corresponding synthesis algorithm.

3. JAVA BASED MACHINE FOR MEDIA
PROCESSING

JavaOL is a Java based media processing
language. Basics, merits, demerits and some
possible refinements for Java based media
processing are discussed in the following
context.

3.1.Basics of Java

Java code is compiled to intermediate binary
code rather than a machine dependent code.
When the code is to be executed, it is loaded by

Java Virtual Machine (JVM) [10]. Java Platform
contains two parts: JVM and Java Application
Programming Interface (Java API). Java API is a
well-designed library includes many useful and
optimized packages, such as math, I/O, GUI,
Network etc… A Java programmer can use these
packages to save much programming time.

3.2.Java to Apply Media Processing

Quite a few media processing libraries are
developed for Java. For example, audio codec,
and video libraries are well developed by many
companies and institutions. Java Media
Framework (JMF) [11]-[13] is one well-known

library developed and maintained by Sun and
IBM Haifa.

3.3.Advantages and Disadvantages

Java is free and has many free tools available on
the internet. Second, new ideas and bug-fix
come out more quickly. Third, Java is platform
independent and portable. Fourth, the Java code
can be compressed as Jar files, and Jar files are
executable without uncompressing by user.
Finally, Java code enjoys high reusability and
this saves time for system development.
The major disadvantage of using Java is about
its efficiency. In many cases, programmers
would rather write native code
(platform-dependent) than Java code for higher
performance. In addition, Java codes need Java
VM to execute. Though there are many
operation systems providing Java VM, the Java
VM is sometimes an optional component and
portability becomes a problem. Finally,
documents of Java libraries are sometimes hard
to find.

3.4.Possible Improvement of Java Based
Media Processing System

To improve the efficiency, microprocessor for
efficient Java Computing (MAJC) is provided by
Sun. Hot-Spot [14] optimization technology in
the compiler will further improve run-time
performance. Furthermore, MAJC can run
applications compiled into its native instruction
set from other languages, such as C or C++. To
solve the portability problem, Microsoft has
released his own JVM (Microsoft Java Virtual
Machine) and Sun provides Windows version
Java VM [15]-[17]. The Java Media Framework
is a powerful library for media processing and
saves much time for programmer. Win32, Solaris,
AIX and Linux versions are now available
though the Macintosh version is still absent.

4. J AVA AS AN ORCHESTRA LANGUAGE

4.1.Java as a Signal Processing Language

The quintessence of SA is that the synthesis
methods are contained in the transmitted data.
Therefore describing the synthesis methods
becomes an important issue when implementing
SA. Because JAVA has many virtues, we choose
Java as the solution in this project.
Implementation of instrument synthesis
algorithms in Java is possible by following a set
of rules defined in this paper (JavaOL), and
compile these Java codes into Java binary files

(usually the so-called “class” file). Therefore,
these binary files can be transmitted to the client
sides for real-time synthesis and playback.

Fig.2 Class Diagrams of 3 JavaOL basic classes.

4.2.JavaOL opcode

JavaOL is a set of classes for implementing the
synthesis algorithms. Fig.2 shows the UML class
diagrams of 3 basic classes defined in JavaOL.

class SAVM

The SAVM (Structured Audio Virtual Machine)
class is an interface to access the system
information. The SA system creates one SAVM
object before the synthesis process begins, and
releases it when the process is done. The public
methods are listed as follows:

 getArate Retrieves the system
a-rate.

 getKrate Retrieves the system
k-rate.

 getBusLength Retrieves the length of
system bus.
(We will discuss the
concept of bus latter.)

 getTempo Retrieves the system
tempo in beats per
minutes.

 setTempo Sets the tempo of
system.

 getActiveSAVM Retrieves the active
SAVM object.

Here is an example to get the system a-rate.
int systemArate=getActiveSAVM().getArate();

class Instr

The Instr class is the base class for all JavaOL
instrument classes. An Instr object is created in
a k-cycle of SA system. To initialize the object
specific variables, one needs to write codes in
the class constructor method. The public
methods are listed as follows:

 getDur Retrieves the duration in
beat.

 render When the Instr object is
active, the SA system calls
the Instr render method to
fill the output buffer.
A user defined instrument
synthesis class should
override this virtual function
to fill the output buffer.

 finalize Called by the SA system
when the Instr object is to
be released .

Here is an example of implementing a Piano
instrument class:
class Piano extends Instr
{
 public Piano(int p1,float p2)
 {
 // initialize Instr variables here
 }
 public void render(Bus inputBus, Bus outputBus)
 {
 // fill the outputBus here
 }
}

class Bus

The Bus class is used for data transmission
between an Instr object and the SA system. It

contains a 32-bits floating number array in order
to store audio signal. When the SA system calls
the render method of Instr objects, it passes two
parameters (input bus and the output bus) into
the render method. In Fig 3, we illustrate the
concept of these buses. Fig 3(A) is the concept
of accessing a buffer of a 2 dimensional array.
The bus width corresponds to the number of
channels, and the bus length is a constant for a
session. To calculate the bus length, the
following formula is used: bus_length=
a-rate/k-rate. Instrument programmers can obtain
this value by calling the “getBusLength” method
of SAVM. Fig 3(B) shows the allocation of data
in memory. All channel data is arranged in an
interleaving manner. The render method of an
Instr object has to fill the whole buffer during
each call.

Fig 3. Bus buffer concept in JavaOL.

The fields are listed as follows:
 buffer A float point number array

to store synthesis data.
 cursor Store the read/write

position.
 width Store the width of the bus.

The methods are listed as follows:

 advanceCursor Increase the read/write
position.

reachEndOfBuffer

Retrieves a Boolean value
indicates whether the
read/write cursor reaches the
end of buffer.

 getBuffer Retrieves the buffer field.
Usually the user should not
directly access the buffer
array by getting it with this
method; the only reason is for
efficiency.

 getWidth Retrieves the bus width
(channels).

 input Read data from the buffer.
The return value is a float
array.

 output (2 overrides) Output data to
the buffer.

Here is an example of filling a bus buffer for
data of 3 channels:

class Piano extends Instr
{
 public void render(Bus inputBus, Bus outputBus)
 {
 // fill the outputBus
 while(!reachEndOfBuffer)
 {
 float v[3];

 //calculate the value of v
 :
 :
 :

 //output data to the buffer
 output(v);
 //advance the cursor
 advanceCursor();
 }
 }
}

5. IMPLEMENTATION OF JAVAOL

The programs implemented in the proposed
system include 3 main components: Player,
Server and Score Editor. This system works
under the client-server architecture. The
SSA-Player in a client site links to the
SSA-Server online and receives streamed data to
calculate the sounds for further playing back the
music. We will discuss these 3 elements and the
data transmitting protocol in the following
context.

Fig 4. The SSA-Player screenshot.

5.1.The SSAPlayer

The “SSA-Player” is the player for SSASBS
(Scream Structured Audio Bitstream). When a
user clicks the SSASBS link, this program starts
automatically and opens the SSASBS link file to
get the connection information. Then the player
opens a connection to the specific SSA-Server,
sends request , gets the streamed data, and plays
the song.

Fig 5 The SSA-Player architecture.

The architecture of the SSA-Player is shown in
Fig 5. The player is presented with a friendly
user interface shown in Fig 4 as well as the
internal synthesis engine. The internal synthesis
engine is the core of this SA system. It is also
called the “Scream SA Engine” or SSAE. We’ll
discuss it below.

Fig 6 Screenshot of the test song page of the
project.[http://140.116.82.181/SSA/TestSong.html]

Each decoder is packed into a DLL file and it
should export some specific functions to
communicate with the proposed SSAE. We
currently provide Wavetable and JavaOL
decoders in the project. In the SSA test page (Fig
6), we provide 7 test songs. The decoders used
by each song are listed at the second column.

5.2.The Scream SA Engine (SSAE)

The SSAE includes the following parts:
Demuxer

Since every track event is sliced according to
the unit time, different track events of the
same time slice are packed altogether. If we
are going to play the song, we need to
de-multiplex the packs and put the events into
the right tracks.

Scheduler
Scheduler is a time based note processing
system. Its job is to pick the events from the
tracks according to the execution time tags
marked for the events.

Mixer
A note is rendered into PCM raw data in
floating point format. To combine the sound
of notes at the same slice, a Mixer is required.

Wave-output
The Mixer exports the data through the
Wave-output to a sound card.

5.3.Interactions between SA-Engine and
Decoders

In the SSASBS bitstream, there is a table
indicates which decoder should be used. The
SA-Engine loads these decoders from the
respective DLL files and sends initialization
messages to them. At each k-pass cycle, the
engine renders each note in the active event
buffer by sending render messages to the
respective decoders. Upon receiving the render
message, the specific decoder renders the note
into raw data for one time slice. When the
SSASBS bitstream is fully decoded, the
decoders will receive finalization messages and
release the allocated resources.

5.4.The JavaOL Decoder

The JavaOL decoder is like a bridge between the
SSAE and the JVM (see Fig 7). All Java
instructions are executed on the JVM. When the
SSAE needs to execute score commands, these
commands are sent and handled by the JavaOL
decoder, and the JavaOL decoder has to
determine which Java Instructions is to be

executed. For example, if the score indicates that
a piano note should be played at time T0, the
scheduler of the SSAE will generate a command
to create a piano note instance at T0. The JavaOL
decoder receives the command and then
executes the “create instance” method of the
Java VM to create a piano note instance.

Fig 7 The threading mechanism of JavaOL decoder

5.5.The Wavetable Decoder

The default Wavetable decoder supports the
DLS1 [18] file format. Some test songs in the
SSA test page (Fig 6) use the Wavetable/DLS1
decoder.

5.6.Client-Server Architecture and Protocol

The SSAS reported in this paper uses the TCP to
transmit data rather than UDP. The reasons to
use TCP are: the data size is small compared to
today’s internet bandwidth; the data used to
synthesize the musical sound shouldn’t be lost.
Otherwise, it is difficult to recover or even
conceal the error. When a client connects to an
available port on the server, it creates a session
for the user. The communication protocol
between the server and clients is relatively easy.
Each message sent from clients has a message
ID field. The ID is used to identify which
command should be executed upon receiving
this message.

5.7.Performance Analysis

Currently, the most popular tools have been the
standard SAOLC [19] and sfront [20]. In order
to compare the performance among these
implementations, we use a simple algorithm to

test their performances. The Karplus-Strong
plucked string model is used in this paper [21].
The SASL part and the SAOL part are shown in
Appendix 1 and Appendix 2, respectively. Both
SAOLC and sfront are used for comparison. The
third program is generated from converting the
SAOL program to a JAVA program
automatically using the proposed tools. This
program is shown in Appendix 3. The fourth
program is modified from the third program by
adding a JAVA class called “Queue” which
greatly improves the speed. This is shown in
Appendix 4. For all the programs, srate is set as
44100 and krate is set as 100. The duration is 4
seconds. These programs are executed on a
Pentium 4 2.0G/1024MB personal computer
running Window XP. The execution times of the
four cases are shown in Fig 8.

Fig 8 Performance comparison

6. CONCLUSION AND FUTURE WORKS

A SA based client server system, SSAS, with
JavaOL is presented. Without the disadvantages
of conventional MPEG-4 SAOL, real time
internet SA based audio applications becomes
possible with the proposed SSAS. Because
SSAS is implemented with Java, it can be widely
supported by many computer systems. Through
its open framework, users can write their own
synthesis programs as well as their own decoders

which can work flawlessly with our SSAS if
they follow some JavaOL rules. The proposed
system does fulfill the promise made by the SA.
Currently, the system software can be
downloaded at [22]. The documentation about
SSAS will be improved shortly. However, to
make SSAS more powerful and convenient to
use, the following works are expected. They are
discussed as follows.

6.1.SSA-Server

In the future, we should provide the real-time
broadcasting support in the server. Score
information (SASL) recorded from live
performance will be imported and packed into
data packages at SSA-Server.

6.2.Accommodation of various audio formats

To accommodate more data formats as MP3 and
put data in various formats into a single data
stream, one needs to define a data format.
Furthermore, we need to prepare corresponding
decoders for sound data of different audio
formats in the SSA-Player.

6.3.The SSASBS protocol

The network data transmission should use the
UDP to achieve the real-time broadcasting
purpose in a more efficient way. By specifying
which datagram is important, servers can discard
unimportant datagram when the network is
congetsed.

6.4.Porting JavaOL Decoder into other Media
Platforms

Though the proposed system is currently only
available under Microsoft Window environment,
it is not operated under Microsoft Media player.
It is our goal to allow it to function under
multimedia players of different operating
systems so that JavaOL can be more popular.

7. APPENDIXES

APPENDIX 1

SASL testing program
0 tempo 60
0 tone 1
1 tone 1
2 tone 0.5
2.5 tone 0.25
2.75 tone 0.25
3 tone 0.5
3.5 tone 0.5
4 end

APPENDIX 2

SAOL testing program
global {
 srate 44100;
 krate 100;
}
instr tone () {

 asig param[127],paramrun[127];
 asig fil, buf;
 asig counter, i;
 param[0]=7346.000000;
 :
 :
 param[126]=6582.000000;
 if (counter == 0) {
 i=0;
 while (i < 127)
 {
 paramrun[i]=param[i];
 i=i+1;
 }
 }
 if (counter < 600000) {
 buf=fil;
 fil=paramrun[126];
 i=126;
 while (i > 0) {
 paramrun[i]=paramrun[i-1];
 i=i-1;
 }
 paramrun[0]=0.5*fil+0.496*buf;
 output(0.00008*paramrun[0]);
 }
 counter = counter +1;

APPENDIX 3

JAVA program converted from SAOL
program

import SSA.*;
public class KS extends SSA.Instr
{

static float[]param;
float[]paramrun;
float fil, buf;
int counter, i=0;
public KS(){
paramrun=(float[])param.clone();
}
public void arate(Bus inputBus,Bus outputBus)
{

 int length=SAVM.activeSAVM.busLength;
 for(int x=0;x<length;x++)
 {
 if (counter < 600000)
 {
 buf=fil;
 fil=paramrun[126];
 i=126;
 while (i > 0)
 {
 paramrun[i]=paramrun[i-1];
 i=i-1;
 }
 paramrun[0]=0.5f*fil+0.496f*buf;

 outputBus.output(0.00008f*paramrun[0]);
 }
 counter=counter+1;
 outputBus.advanceCursor();
 }

}
static
{

param=new float[127];
param[0]=7346.0f;

 :
 :

param[126]=6582.0f;
}

}

APPENDIX 4

Fast JAVA program
import SSA.*;
public class KSFast extends SSA.Instr
{

static float[]param;
float currentSample=0;
Queue queue;
public KSFast(){

 queue=new Queue();
 queue.setBuffer((float[])param.clone());
 }

public void arate(Bus inputBus,Bus outputBus)
 {

int length=SAVM.activeSAVM.busLength;
for(int x=0;x<length;x++)

 {
 float last=currentSample;
 currentSample=queue.getItem(126);
 currentSample*=0.496f;
 currentSample+=0.5f*last;
 outputBus.output(0.00008f*currentSample);
 queue.push(currentSample);
 outputBus.advanceCursor();
 }
 }

static
 {
 param=new float[127];
 param[0]=7346.0f;
 :
 :
 param[126]=6582.0f;
 }
}
final class Queue
{
 public int bufferLength;
 private float[]buffer;
 private int topIndex;
 public Queue()
 {
 topIndex=0;
 }
 public Queue(int size)
 {
 topIndex=0;
 setBuffer(new float[size]);
 }
 public void setBuffer(float[]nb)
 {

 buffer=nb;
 bufferLength=nb.length;
 }
 public float getItem(int index)
 {
 int i=index+topIndex+1;
 if(i<0){
 i+=bufferLength;
 }else if(i>=bufferLength){
 i-=bufferLength;
 }
 return buffer[i];
 }
 public void push(float v)
 {
 buffer[topIndex++]=v;
 if(topIndex==bufferLength)topIndex=0;
 }
}

8. REFERENCE

[1] Eric D. Scheirer, “The MPEG-4 Structured Audio
standard,” in Proc. IEEE International Conference on
Acoustics,Speech and Signal Processing (ICASSP-98),
1998

[2] Scheirer, E. D. & Vercoe, B. L. (1999). SAOL: The
MPEG-4 Structured Audio Orchestra Language.
ComputerMusic Journal 23(2), 31-51

[3] R. Bristow-Johnson. “Wavetable synthesis 101:
afundamental perspective”, Proc AES 101st, 1996
(AESReprint #4400).

[4] Scheirer, E. D. & Ray, L. (1998). “Algorithmic and
wavetable synthesis in the MPEG-4 multimedia
standard.” InProceedings of the 1998 105th Convention
of the Audio Engineering Society (reprint #4811). San
Francisco.

[5] Mp3’ Tech - Mp3Pro/SBR,
[http://www.mp3-tech.org/sbr.html]

[6] Robert F. Easley, John G. Michel, Sarv Devaraj, The
MP3 open standard and the music industry's response
to Internet piracy.

[7] MPEG AAC (Advanced Audio Coding)
[http://www.iis.fraunhofer.de/amm/download/mpeg_aa
c.pdf]

[8] The MIDI MANUFACTURES ASSOCIATION
[http://www.midi.org]

[9] MIT Media Lab Machine Listening Group
[http://bop.media.mit.edu/]

[10] T. Lindholm and F. Yellin. The Java Virtual Ma-chine
Specification. Addison-Wesley, 1997

[11] Java Media Framework
[http://java.sun.com/products/java-media/jmf/index.ht
ml]

[12] IBM HotMedia
[http://www.software.ibm.com/net.media/]

[13] IBM MediaBeans
[http://www.software.ibm.com/net.media/solutions/me
diabeans/]

[14] White Paper-The Java HotSpot Performance Engine
Architecture
[http://java.sun.com/products/hotspot/whitepaper.html
]

[15] Microsoft Java Virtual Machine downloads
[http://www.itnet.org/ms/msjavx86.exe]

[16] Microsoft Java Virtual Machine technical information
[http://www.microsoft.com/mscorp/java/]

[17] Microsoft SDK for Java v4.0 downloads
[http://www.bumpersoft.com/Programming/Java/D_97
8_index.htm]

[18] DLS level 1 Specification from www.midi.org
[http://www.midi.org/about-midi/dls/dlsspec.shtml]

[19] SAOLC
[http://www.cs.berkeley.edu/~lazzaro/sa/sfman/]

[20] sfront [http://web.media.mit.edu/~eds/mpeg4-old/]

[21] Karplus,K., and Strong ,A.(1989)”Digital synthesis of
plucked-string considered as an electrical transmission
line,” J.Acoust. Soc. Am. 8,227-233.

[22] Scream Structured Audio Player
[http://140.116.82.181/SSA/SSAPlayer.html]

http://bop.media.mit.edu/

	A STRUCTURED AUDIO SYSTEM BASED ON JAVAOL
	1. INTRODUCTION
	class SAVM
	class Instr
	class Bus

