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ABSTRACT 

A novel method of producing artificial reverberation in the frequency domain, using spectral magnitude decay, is 
presented. The method involves accumulating the magnitudes of the short-time Fourier transform, based on the 
desired decay time as a function of frequency. Compared to time domain methods such as feedback delay networks, 
the current method requires less memory and provides independent control of the reverb energy and decay time in 
each frequency bin. Compared to convolution reverbs, the current approach offers flexible parametric control over 
the decay spectra and a computational cost that is independent of decay time. 

 

1. INTRODUCTION 

This paper presents a method for producing artificial 
late reverberation in the frequency domain using 
spectral magnitude decay. This method offers a different 
set of tradeoffs compared to previous reverberation 
methods such as time domain feedback loops and 
convolution reverbs. 

 
 
Late reverberation refers to the diffuse portion of the 
room response (typically starting around 100 ms.), 
characterized by a very large number of echoes and an 
intensity that is relatively independent of the position 
within the room [1]. Late reverberation lends itself to a 
statistical description. 
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Time domain reverb algorithms, such as feedback delay 
networks [2], simulate late reverberation at a low 
computational cost while providing independent control 
over a number of perceptually relevant parameters. The 
reverb decay envelope can be made frequency 
dependent; however, due to the expense of placing 
multi-band equalizers in each feedback path, usually 
only two or three bands of decay time control are 
provided. 

Convolution reverbs, typically implemented in the 
frequency domain, convolve a source signal with a 
desired impulse response. Convolution produces an 
excellent simulation of the acoustics of a particular 
physical space, but it lacks some of the flexibility of the 
time domain algorithms; also, the computational cost is 
greater, especially for long decay times. 

The current approach is inspired partly by the 
observation that frequency domain time-scaling based 
on the phase vocoder often suffers from an unwanted 
“phasiness,” reverberation, or “loss of presence” [3]. 
Given that we are trying to produce reverberation, this 
side effect of the phase vocoder might prove to be an 
advantage, or at least not a liability. Our approach is 
also inspired by Moorer’s observation that “the 
responses in the finest concert halls sounded remarkably 
similar to white noise with an exponential amplitude 
envelope” [4]. 

Our algorithm, performed in the short-time Fourier 
transform (STFT) domain, attenuates and accumulates 
the spectral magnitudes, which are combined with a 
computed phase signal. This method yields an impulse 
response with a smooth, exponentially decaying 
envelope and independent control over room energy and 
decay time at each frequency.  

The current method requires less memory than feedback 
delay networks, and, unlike convolution reverbs, it can 
produce extremely long reverb decay times at no 
additional computational cost.  

We will discuss reverberation in the context of a 
number of related topics: time-scaling, time-freezing, 
magnitude accumulation and phase coherence. We will 
also discuss possible directions for future research. 

2. THE STFT AND THE PHASE VOCODER 

Given that we wish to extend the temporal evolution of 
a signal while retaining independent control over its 

spectral content, our basic tool will be the phase 
vocoder [5], which allows a signal to be analyzed into a 
time-frequency grid, optionally modified in various 
ways, and resynthesized, as shown in Figure 1. 

 

Figure 1: Phase Vocoder. 

The phase vocoder can be efficiently implemented using 
the STFT [6]. An overview of two complementary 
views of the phase vocoder, the filter bank interpretation 
and the Fourier transform interpretation, are given in 
[7]. Some practical implementation details are provided 
in [8] and [9]. 

A common application of the phase vocoder is to 
implement time-scaling while preserving the pitch and 
spectra. To review, this is done as follows [10]: 

1. Compute the STFT of the input signal. 

 
X ta

u
,!k( ) = h n( )x ta

u + n( )e" j!k n
n="#

#

$ , where  

x  is the input signal,  
X  is the input’s STFT representation,  

 h n( )  is the analysis window,  
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N
 is the center frequency of the kth  vocoder 

channel (or bin),  
N  is the size of the discrete Fourier transform,  
R
a

 is the analysis hop size in samples,  
u  is a set of successive integers starting at 0, and 

 
t
a
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a
 is the time of the uth  analysis frame. 

2. For each channel k  and analysis time-instant t
a

u , 

(a) Obtain the phase 
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(b) Calculate the heterodyned phase increment 
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(c) Take its principal determination (between 
π± ), denoted by u

kpΦ∆ , which can be 
regarded as the amount of frequency deviation 
from 

k
Ω , 

(d) Estimate the instantaneous frequency, 
u

kp

a

k

u
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R

t Φ∆+Ω= 1
)(ω̂ , 

(e) Set the phase of the time-stretched STFT at 
synthesis time uRt

s

u

s
= , where 

s
R  is the 

synthesis hop size, according to the phase-
propagation formula, 
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(f) Set the magnitude ),(),(
k

u

ak

u

s
tXtY Ω=Ω , 

(g) Obtain the output signal by overlap-adding the 
IDFTs of the synthesis frames ),(

k

u

s
tY Ω , as 

follows: 
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3. TIME-FREEZE, TIME-SCALING, LOOPING 
AND REVERBERATION 

“In Babylonian mythology there are hints of a 
specially constructed room in one of the ziggurats 
where whispers stayed forever.” [11] 

Our language suggests that there is something about 
reverberation that echoes, resonates and reverberates 
deep within the human psyche. One motivation for the 
current research is to find ways to produce long or 
infinite reverberant decays [12] that sound extremely 
smooth, as if the original sound were “frozen in mid-
air.”  

To begin with, we will consider modifying techniques 
used for time-scaling, time-freezing, and the creation of 
perceptually smooth loops for extending the sustain 
portion of musical notes, as used in sampling keyboards 
and software programs [13]. 

3.1. Time-Freeze 

If we temporarily ignore certain time domain effects of 
reverberation, such as the diffusion of individual 
echoes, the spectral effects of reverberation are similar 
to what might be achieved by ‘freezing’ each STFT 
input frame and imposing a frequency-dependent decay 
on the spectral magnitudes.  

Time-freezing, or infinite time-scaling, involves 
extending the magnitude spectrum of an STFT frame 
indefinitely while propagating the phases based on 
instantaneous frequency estimates. A number of papers 
have described phase-vocoder-based time-scaling [7, 
14] and various improvements intended to reduce the 
aforementioned phasiness artifacts [10, 15]. Some 
techniques for freezing time are mentioned in [15] and 
[16], including the idea of alternating between input 
hops of  +1 and -1 samples in consecutive frames.  

A simple time-freeze algorithm is shown in Figure 2. 
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Figure 2: Time-Freeze algorithm. 

Immediately prior to freezing the sound, we capture the 
phase deltas for each frequency channel k , 

  
!!k t f( ) = !k t f( )"!k t f"1( ) , where t f denotes the 

time of the frame immediately preceding the time 
freeze.  

Then, at each time t
u

, we apply a frequency-dependent 

gain, 

€ 

g Ωk( ) , to the magnitudes: 

 
Y tu ,!k( ) = g !k( ) Y tu"1,!k( ) , 

increment the phases: 

  
!Y tu ,"k( ) =!Y tu#1,"k( )+$!k t f( ) , 

and convert the magnitude-phase representation back 
into a rectangular representation: 

 
Y t

u
,!

k
( ) = Y t

u
,!

k
( ) ei"Y tu ,!k( )  

Then we perform inverse Fourier transforms and 
overlap-add as before. The resulting time-frozen signal 
has a frequency-dependent decay time (which can be 
infinite if the feedback gains are initialized to unity).  

The output sounds smooth and ‘frozen.’ However, the 
result is perceived as artificial and mechanical, largely 
because the phase increment is exactly the same from 
one frame to the next, without the frequency 
modulations typical of musical sounds, and with none of 
the random phase fluctuations expected from true 
reverberation. The output from unvoiced or other noise-
like signals can sound especially unnatural because 
coherent periodicities are imposed upon the entire 
duration of the time-freeze, resulting in ‘tonal noise.’ 

3.2. Ongoing Parallel Time-Freeze 

The above process simulates the application of a reverb-
like decay to a single audio frame. To apply this effect 
to an ongoing audio signal, one might imagine the 
following procedure: begin a new time-freeze process in 
parallel for each successive input frame (applying a 
frequency-dependent decay to the spectral magnitudes), 
and sum the time-aligned outputs. (See Figure 3.) The 
resulting structure is somewhat analogous in form to a 
multi-tapped delay line, i.e., the canonical reverb 
structure. 
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Figure 3: Reverb-like effect using parallel time-freeze. 

Clearly, such an implementation would result in a data 
storage and computational explosion, but a simulation 
of the process yields a very pleasant, reverb-like Vega 
response [17]. The impulse response, however, consists 
of a decaying series of impulses repeated every N 
samples (see Figure 4), due to the lack of phase 
randomization. This issue will be addressed in sections 
5 and 6. 

 

Figure 4: Impulse response of the parallel time-freeze. 

3.3. Optimizing the Parallel Time-Freeze 

Assuming we can find ways to address the unwanted 
periodicity of the impulse response, we can imagine a 
number of ways to optimize the parallel time-freeze. 

First, we can consider discarding frozen frames once 
their magnitude has decayed to a sufficiently low level; 
e.g., -60 dB. This would greatly improve the efficiency 
when implementing short reverb decay times. The 
number of frozen frames we need to compute is given 
by 

 

m =
Tr fs

R
, where  

m  is the number of frozen frames to retain,  
T
r

 is the -60 dB reverberation time (in seconds),  
fs  is the sample rate (in Hz), and  
R  is the hop size (in samples).  

For example, a 1 second decay time with a 2048 sample 
hop size at 44,100 Hz would require us to keep track of 
about 22 frozen frames at any given time.  

At each hop time, for each frozen frame, we need to 
scale the magnitudes of each frequency channel, 
increment the corresponding phases, convert the 
magnitudes and phases to a rectangular representation 
and accumulate the results. Even with the above 
optimization, this could still be computationally 
burdensome for longer reverb decay times, such as 
infinity. 

For a given frequency bin k , the magnitude of each 
frozen frame is attenuated by the same factor 

€ 

g Ωk( )  at 
each hop, resulting in a smooth exponential decay, as 
depicted in the top part of Figure 5 for four frozen 
frames (overlapping dashed lines). However, the sum of 
the four magnitudes (solid curve) does not have a 
smooth exponential decay, due to phase incoherence 
because each frozen frame has a slightly different 
instantaneous frequency.  

Likewise, in the bottom half of Figure 5, even though 
each of the four frozen frames has a constant phase 
increment (instantaneous frequency), as shown by the 
horizontal dashed lines, the instantaneous frequency of 
the sum of the four frames (solid curve) is non-linear. 

Unfortunately, there does not appear to be a simple 
mathematical identity that will let us increment the 
phase of the sum of a number of frozen frames, without 
having to keep track of each one separately. 
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Figure 5: Magnitude (top) and instantaneous frequency 
(bottom) of frequency bin 13 for four adjacent frozen 
frames (dashed lines) and the sum of the four frozen 

frames (curved solid lines). Note that the instantaneous 
frequency values tend to become extreme when the 

corresponding magnitudes reach minima. 

However, the idea of applying magnitude attenuation 
and phase increments to each frozen frame 
independently is an artificial construct to begin with, so 
it may be no more arbitrary to apply them to the sum of 
the frozen frames, if we can find a way to calculate a 
suitable phase increment (possibly based on a 
magnitude-weighted average of the instantaneous 
frequencies of the individual frozen frames). 
Alternatively, we may be able to consolidate groups of 
frames having similar instantaneous frequencies. 

More work needs to be done in this area. In the 
meantime, we may be able to approximate our running 
time-freeze (or, perhaps, just the evolution of the older 
frames) using a recursive implementation. 

4.  RECURSIVE SPECTRAL MAGNITUDE 
DECAY 

Just as time domain late reverberators typically use 
infinite impulse response (IIR) feedback loops instead 
of brute force finite impulse response (FIR) 
convolution, we would like to find a more efficient, 
recursive method of spectral decay. Instead of starting a 
separate time-freeze process beginning with each new 
frame of input data, it would be more efficient, though 
perhaps not identical in result, to perform a single leaky 

accumulation of the spectral magnitudes of the 
incoming frames. 

The desired structure can be viewed as a frequency 
domain analogue of Moorer’s improved comb filter 
(Figure 6), which had a frequency-dependent gain in the 
feedback loop [4] and was a precursor of the feedback 
delay network (FDN) reverberator [2]. 

 

Figure 6: Comb filter with frequency-dependent 
feedback gain (after Moorer, 1979). 

 

 

Figure 7: Spectral Magnitude Decay with 
frequency-dependent feedback gain. 
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Our recursive Spectral Magnitude Decay algorithm is 
shown in Figure 7. (Note the similarity to the structure 
of the comb filter.) At each hop time (or frame), a 
Fourier transform is calculated over the windowed input 
signal, resulting in an STFT representation [10, 18], 

 
X tu ,!k( ) = h n( )x tu + n( )e" j!k n

n="#

#

$ . 

The Fourier transform is added to a feedback Fourier 
transform; the sum is delayed by one frame and its 
magnitude is attenuated as a function of the desired 
frequency-dependent decay time. The attenuated 
magnitude is combined with an artificial phase signal to 
produce the feedback Fourier transform. The delayed 
sum STFT,  Y t

u
,!

k
( ) , is converted back to the time 

domain, windowed and overlap-added to produce the 
output, as shown previously. 

At each frame, the accumulated magnitude in each 
frequency bin is given by the equation: 

 
Y tu ,!k( ) = X tu"1,!k( ) + Y tu"1,!k( ) #g !k( )  

To determine the  g !k( )  attenuation values, we begin 
by specifying 

€ 

T
r
(Ω

k
) , the reverberation time (in 

seconds) required for the sound pressure to decay 60 dB 
at each frequency 

 
!

k
. Assuming the decay rate is 

linear in dB, the rate at which the sound pressure decays 
during one STFT hop should equal the rate implied by 

€ 

T
r
(Ω

k
) , as follows: 

 

20 log10 g(!k )( )
R / fs

=
"60

Tr !k( )
  . 

Therefore, the attenuation for the kth  bin is given by  

 g !k( ) =10

"3R

Tr !k( ) fs  

[1, 2]. 

If we want the reverb’s impulse response to have an 
exponential decay, the individual windowed STFT 
frames should overlap-add to produce a smoothly 
decaying exponential. Summing a series of overlapping 

Hanning windows, given sufficient overlap and 
applying an additional gain factor of g  to each 
successive window, yields a close (though not perfect) 
approximation of an exponential decay, as shown in 
Figure 8. (Dividing the resulting decay by a true 
decaying exponential reveals a slight ripple, which 
appears to be insignificant for an overlap of 
 R= N / 4 .) 

Figure 8: Smooth quasi-exponential decay (top curve) 
produced by overlap-adding scaled Hanning windows 

(lower curves). 

The ‘fade-in’ time at the beginning of the impulse 
response might be a desirable feature, to enable a 
smooth cross-fading between early reflections and late 
reverb, but the fade-in time and fixed window length 
could be problems when attempting to produce very 
short reverb decay times. In such cases, we may want to 
use shorter windows, FFT lengths and hop sizes. 

An Energy Decay Curve (EDC) can be obtained by 
integrating the energy remaining in the impulse 
response after time t: 

  

EDC(t)= h
2
!( )

t

!

" d! , 

where  h t( )  is the room’s impulse response [19, 1]. 
Figure 9 illustrate the algorithm’s impulse response 
(using a random phase calculation) and the 
corresponding EDC. 
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Figure 9: Spectral Magnitude Decay impulse response, 
above; and Energy Decay Curve (in dB), below. 

A 3D Energy Decay Relief (EDR) of the Spectral 
Magnitude Decay’s impulse response would reveal 
different decay rates at different frequencies, due to the 
frequency-dependent feedback gains. 

5. THE PHASE PROBLEM 

The Spectral Magnitude Decay method of Section 4 
requires the generation of an artificial phase signal to be 
combined with the accumulated magnitude response. 
The phase generation is somewhat more complicated 
than for the traditional phase vocoder, as used in time-
stretching or pitch-shifting, because the reverb’s output 
phase is not a simple function of the input phase, due to 
the feedback loop. For example, we can’t simply mimic 
the phase of the input signal, because the input may 
have gone silent while the reverberant decay continues. 
We will characterize the desired phase signal and 
explore some phase generation methods. 

5.1. Desired Phase Signal Characteristics 

The desired phase signal has a number of, possibly ill-
defined, properties: 

5.1.1. Impulse response resembles decaying 
noise 

In the time domain, the reverb’s impulse response 
should resemble noise with an exponential decay 
envelope. The impulse response should not be overly 
sparse or obviously repetitive; for example, it should not 
consist of a single impulse repeated every N samples. If 
possible, there should be parametric control over the 
echo density.  

5.1.2. Sub-channel frequency resolution 

Ideally, the phase increments from one frame to the next 
should provide additional frequency resolution beyond 
that given by the center frequencies of the spectral bins. 
For example, we would prefer the reverb from a piano 
note to be at the same pitch as the original note (even 
though, owing to modal peculiarities, certain real rooms 
are said to exhibit the contrary behavior). If our phase 
algorithm fails this test, we may be forced to use 
excessively long FFT sizes in an attempt to provide 
sufficient frequency resolution. 

5.1.3. Frequency weighting according to signal 
history 

We would like the instantaneous frequency information, 
as supplied by the phase deltas, to be based on the input 
signal’s entire recent past, not just the last couple of 
input frames. This could be problematic considering 
that, given a long reverb decay time, each frequency bin 
may be accumulating data from many seconds’ worth of 
fundamental frequencies, harmonics, frequency sweeps, 
vibrato, splatter from adjacent bins, notes of 
questionable pitch, transients, noise, and who knows 
what.  

The phase vocoder’s assumption of one partial per 
frequency bin may not be overly restrictive when 
applied to a simple input signal, but it could prove 
troublesome in the case of a reverb, where each STFT 
bin is soaking up the past like a sponge. (On the other 
hand, the traditional phase vocoder does not fall apart 
and refuse to process audio to which reverb has already 
been applied; it sets an example by making the best of a 
difficult situation.)  

If the decaying remains of several different partials are 
all competing for representation within a single STFT 
bin, greater representation should be afforded to those 
partials having greater magnitude and longer duration, 
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with more recent contributions being weighted more 
heavily, in accordance with that bin’s decay rate. Ideally 
this weighting should happen as if by magic, with no 
ugly ad hoc procedures. 

5.1.4. No unwanted periodicities 

The response to sustained input signals such as musical 
notes should not have obvious STFT-related 
periodicities, either at the hop period or at the FFT size 
N.  

5.1.5. Control of phase coherence and 
roughness 

At times we may desire an artificially smooth effect like 
of the time-freeze. However, if we want a natural 
sounding reverb, the phase evolution should avoid being 
too “rigid,” “mechanical,” or unnaturally smooth. 
Therefore, it may be useful to have parametric control 
over the amount of phase coherence vs. phase 
randomization. Also, the output should not have an 
unpleasant amount of roughness or excessive beating, as 
discussed in sections 5.2 and 5.3.  

 
In short, the phases should be such that the reverb 
sounds “good” for a wide variety of input signals. Many 
phase generation methods fail to meet one or more of 
the above criteria. 

5.2. Phase Coherence 

We will examine two types of phase incoherence as 
they apply to the current algorithm: horizontal and 
vertical incoherence. 

Horizontal (or interframe) incoherence is caused by 
unwanted phase changes within a single bin from one 
STFT frame to the next. This can result if a phase 
vocoder fails to propagate the phase correctly when 
performing time scaling. 

Vertical (or intraframe) incoherence is a loss of the 
original phase relationship between adjacent STFT 
channels. The resulting amplitude modulation (or 
beating) is said to be a cause of the phase vocoder’s 
characteristic “reverberant” sound. 

As mentioned previously, it is not clear to what extent 
phase incoherence may be a problem in the case of a 
reverb. 

5.3. Roughness, Beating and Related 
Unpleasantries 

The auditory sensation of roughness is familiar from the 
sound of an out-of-tune piano, in which rapid beating 
results from nearby strings whose vibrations go in and 
out of phase with each other. Many perceptual 
experiments have been done regarding the auditory 
sensation of roughness.  

Roughness is characterized as a rapid series of brief 
auditory events, where the time interval is short enough 
(i.e., less than about 30 ms.) that the events are not 
perceived as individual events. Auditory roughness is 
most pronounced when the sound includes spectrally 
coherent fluctuations, in which case the roughness can 
be minimized by randomizing the Fourier magnitudes 
and phases. This type of randomization happens 
automatically in reverberant environments. Indeed, a 
reduction in roughness may be one of the perceptual 
benefits of adding reverberation [20, 21].  

High-quality reverb algorithms, and even actual room 
responses, can still exhibit some flutter, beating, 
roughness or unevenness, despite high echo and modal 
densities. Even though reverberation blurs and smoothes 
transients and complex signals, it makes sine-like 
signals less smooth, because the lack of phase 
coherence causes amplitude fluctuations (see Figure 11 
in the next section). However, these fluctuations may be 
too slow to fit the above definition of roughness. 

5.4. Reverse-Engineering Reverb 

In the wild, reverberation is created by a summation of 
delayed echoes, a process that can be viewed as a 
convolution or tapped FIR delay, as shown in Figure 10.  

Figure 10: Tapped delay line. 

It is typical to examine a reverb in terms of its time 
domain impulse response, but since we are working in 
the frequency domain, it might be instructive to 
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consider how such as system responds to a quasi-
sinusoidal input. 

The steady-state response of an FIR filter to a sine wave 
is a sine of the same frequency, with amplitude and 
phase determined by the gains and delays of the taps. In 
the real world, however, a sine-like sound would have 
finite attack and decay times. We would like to 
understand how these transitions affect the amplitude, 
instantaneous frequency and phase coherence of the 
output signal and corresponding STFT. 

Figure 11 shows the response of a simulated reverb to a 
time-limited sine wave. The reverb was simulated by 
windowing white noise with an exponential decay; the 
result was convolved with a windowed sinusoid having 
instantaneous attack and decay. Instead of a smooth 
response, we see a great deal of amplitude fluctuation 
(Figure 11, bottom) resulting from phase differences at 
the convolution output taps. (The result sounds a bit like 
Morse code.) The amount of fluctuation appears to 
increase with longer decay times. 

 

Figure 11: (Top) Envelope of windowed sinusoid. 
(Middle) Envelope of white noise  

windowed with an exponential decay.  
(Bottom) Envelope of the windowed sinusoid  

convolved with the exponential decay. 

In Figure 12, we take a closer look at this phenomenon. 
Here, we see the output of the sum of two delay taps in 
response to a sine wave with instantaneous onset.  

 

Figure 12: (Top) Envelope of the sum of two delay taps 
in response to a windowed sinusoid.  

(Middle) Magnitude of the sinusoid’s center STFT 
channel (Bin 80) and two adjacent channels.  

(Bottom) Phase increment (frequency) of the same  
three STFT channels. 

The top portion of Figure 12 shows the overall output 
amplitude. When the sine wave’s attack reaches a new 
delay tap (around the midpoint of the plot), the 
amplitude of the overall output signal suddenly changes 
(in this case, drops), reflecting the extent to which the 
new tap’s output is in phase with the output of the 
preceding tap(s).  

In the middle part of Figure 12, we see the magnitude 
response of the three STFT channels closest to the 
frequency of the input sinusoid (all of whom are within 
the “region of influence” of the spectral peak) [10]. The 
sudden changes in magnitude caused by the emergence 
of the signal from the new delay tap are smoothed by 
our use of a Hanning window. 

In the bottom portion of Figure 12, we see the 
instantaneous frequencies of the same three STFT 
channels, as measured by the phase difference between 
adjacent frames. Here, we observe that the 
instantaneous frequencies, which had settled into a 
steady state, are suddenly disrupted by the emergence of 
the new delayed sinusoid. As with the magnitudes, the 
sudden changes in phase are filtered by the window, 
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causing short, smooth variations in the instantaneous 
frequencies of the nearby channels. Once the disruption 
has passed, all the adjacent channels converge in phase 
and frequency to match the input sinusoid, thus 
resuming vertical phase coherence. 

The fluctuations in instantaneous frequency are 
generally too small and brief to be perceived as pitch 
changes. The main perceptible effect of the tapped 
delay’s sine response is the fluctuation of the 
magnitudes. It is unclear to what extent the phase 
fluctuations are perceived independently from their 
impact on the output amplitude, but one way or another 
they appear to be related to the “phasiness” 
phenomenon. 

Each time the attack or decay of a windowed sinusoid 
reaches a new delay tap, there is a sudden loss of 
horizontal phase coherence, as well as a brief 
disturbance of the vertical phase coherence. The time it 
takes the phases to reach a new equilibrium depends on 
the attack or decay time as well as the FFT window 
used. 

It has been estimated that a high-quality reverb should 
have an echo density of as many as 10,000 echoes per 
second [2]. This implies that the aforementioned phase 
disturbances should occur at a very high rate relative to 
typical STFT window and hop sizes. However, looking 
at the sine response of our simulated reverb in Figure 
11, we notice that, due to convolution’s inherent 
smoothing property, the large amplitude fluctuations 
happen on a much slower time-scale, on the order of 
typical STFT frame rates. Any one particular echo will 
have minimal impact on the overall signal because its 
ability to affect the output phase is limited by its 
magnitude in relation to that of the overall signal. 

The above observations suggest that we might consider 
disrupting the phase from time to time, causing a brief 
loss of phase coherence.  

6. PHASE GENERATION METHODS 

There are many possible ways of generating the phase 
signal. We will begin with a deterministic phase 
propagation method. 

6.1. Propagation of Instantaneous Frequency 

 

Figure 13: Phase computation based on continuation of 
the instantaneous frequency. 

If we compute and propagate the instantaneous 
frequencies of the sum of the input and feedback STFTs 
(from Figure 7), the resulting phase algorithm (Figure 
13) resembles that of our time-freeze algorithm in 
Section 3. The response of the resulting Spectral 
Magnitude Decay algorithm to a windowed sinusoidal 
input is a perfect, though artificially smooth, enveloped 
sine wave, as shown in Figure 14. Note that the 
amplitude of the output grows as more energy is fed into 
the system and begins to decay as the input goes silent. 
The sine response does not suffer from any of the phase 
incoherence exhibited in Figure 11; however, this 
changes when we introduce more complex input signals. 

 

Figure 14: Time-limited sinusoidal input (top);  
smooth Spectral Magnitude Decay response using 

frequency propagation (bottom). 

 



Vickers et al Frequency Domain Artificial Reverberation 
 

AES 121st Convention, San Francisco, CA, USA, 2006 October 5–8 

Page 12 of 15 

If we compute the instantaneous frequencies by taking 
phase differences between two frames that are one 
sample apart, as recommended in [16] and [22], the 
impulse response is the same as that of our time-freeze 
method; i.e., a decaying, N-periodic series of impulses, 
as shown in Figure 4. However, if we derive 

  
!!

k
by 

subtracting the phases of frames R  samples apart 
(instead of one sample apart), the impulse response is 
somewhat less regular, perhaps because the 
instantaneous frequency is only known modulo 2 !  
[22]. 

Note that our basic Spectral Magnitude Decay 
algorithm, shown in Figure 7, automatically weights the 
influence of the phases of the input and feedback signals 
according to their respective magnitudes. As mentioned 
in [14] (in the context of phase locking), “In a sum of 
complex numbers, the summand with the greatest 
modulus naturally has the strongest effect on the phase 
of the sum.” Thus, this algorithm should satisfy the 
desired phase signal characteristics 5.1.2 and 5.1.3. 

However, while the time-freeze reverb (Figure 3) has a 
pleasant quality, the Vega response [17] of our Spectral 
Magnitude Decay algorithm using instantaneous 
frequency propagation (Figures 7 and 13) can be 
somewhat ‘jittery,’ in violation of characteristic 5.1.5. 
This may be due to corruption of the instantaneous 
frequency information, because we are deriving a single 
frequency from the sum of the input and feedback 
signals in violation of the phase vocoder’s assumption 
of one partial per frequency channel. 

Furthermore, as mentioned, the impulse response is 
extremely sparse and N-periodic, in violation of 
characteristic 5.1.1. 

6.2. Phase Randomization 

The resemblance of room responses to decaying white 
noise and the natural occurrence of phase randomization 
in reverberant environments suggest that we consider 
randomizing the phases. 

The phases of each frequency channel k can be modified 
at each frame by adding a random offset [23]: 

  
!
k

s
t
u

( ) = !
k
t
u

( )+V
k ,u
"
k ,u

, 

where 

  !k tu( )  is the instantaneous phase of the kth frequency 

channel at time t
u

, 

  !k
s
t
u

( )  is the instantaneous synthesis (output) phase of 

the kth  frequency channel at time t
u

, 

 
!
k ,u

 is a uniform random variable over [-π,π], and 

 Vk ,u ! 0,1[ ] . 

Thus, when V
k ,u

= 0 for all frequency channels k and all 

times t
u

, no phase randomization is applied. If V
k ,u

= 1, 
the phase offsets will be completely random [23].  

When the input to our Spectral Magnitude Decay 
algorithm is an impulse, unvoiced speech or other noise-
like signals, phase randomization (or ‘phase dithering’) 
produces a high-quality response; many musical inputs 
also yield an acceptable output quality.  

Unfortunately, with short STFT windows and pitched or 
sine-like input signals, phase randomization can 
produce a “whisperization” effect, because short Fourier 
transforms have a small number of channels with poor 
frequency resolution, and the randomized phases can’t 
help define the instantaneous frequencies [8]. On the 
other hand, long windows produce long latency times, 
which can be unacceptable for real-time applications.  

In addition, full phase randomization does not allow 
frequency resolution finer than that of the FFT channel 
spacing, in violation of characteristic 5.1.2. As a result, 
we consider combining the instantaneous frequency 
propagation with partial phase randomization. 

6.3. Partial Phase Randomization 

By controlling V
k ,u

, we have a great deal of freedom 
regarding which channels undergo phase randomization, 
how frequently, and to what degree. As V

k ,u
 increases 

from 0 to 1, the resulting random modulation disrupts 
the long-term periodicities, increasing the effective 
bandwidth of each sinusoidal component from a spectral 
line to a narrowband noise resembling the Fourier 
transform of the synthesis window [23]. (True 
reverberation may have a similar broadening effect on 
input spectral lines.) 
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Ideally, we would like to preserve and reverberate the 
pitch information while adding a controlled amount of 
phase randomization. However, there may be an 
inherent conflict between requirements 5.1.1 and 5.1.2. 
To the extent we randomize the phases to diffuse the 
impulse response, the resulting frequency modulations 
may tend to blur the sub-bin frequency resolution. Since 
this presumably occurs in true reverberation as well, this 
may not be a problem so much as a control opportunity. 

We can apply phase randomization either inside or after 
the feedback loop. Applying randomization inside the 
loop, as shown in Figure 15, may diffuse the impulse 
response more efficiently, using a smaller amount of 
randomization, than if we dither the phases outside the 
loop. However, adding randomization within the loop 
may permanently corrupt the sub-bin frequency 
information.  

The optimal placement and depth of phase 
randomization, as well as which frequency bins it 
should be applied to and how often, remain subjects for 
further experimentation. For example, we may want to 
apply different amounts of phase randomization 
depending on whether a frequency channel is identified 
as being in the vicinity of a spectral peak. Also, we may 
want to apply more phase randomization to higher 
frequency channels, on the assumption that they don’t 
serve as coherent harmonics. 

6.4. Intermittent Phase Disruption 

Along the lines of what we found in Section 5.4 
regarding the phase disruption observed when a note 
onset or offset reached a new delay tap, we might 
consider temporarily disrupting the phases from time to 
time, and then allowing phase coherence to resume. One 
way to do this would be to advance or retard the phases 
at irregular intervals, by simply scaling all the phases by 
an integer multiple as is done in integer time-scaling [8, 
10]. The resulting temporal hickup would momentarily 
disrupt the phase coherence. 

 

 

Figure 15: Spectral Magnitude Decay algorithm, 
including phase randomization, roomLevel( ! )  

and dryMix. 

7. RESULTS 

7.1. Impulse Response 

Given sufficient phase randomization, the impulse 
response of the Spectral Magnitude Decay algorithm is 
quite good and resembles decaying noise, with the 
desired frequency-dependent decay times and no 
unwanted coloration or metallic effects.  

The perceived echo density can be quite high but 
(especially if the phase randomization is applied at the 
output) does not necessarily increase over time, unlike 
in real rooms and other reverb algorithms. Perceptually, 
the lack of increasing echo density does not appear to be 
a problem, since late reverb is generally defined to 
begin at the point where individual reflections become 
indistinguishable. 
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7.2. Music Response 

Given FFT sizes in the neighborhood of 8192 samples 
and moderate amounts of phase randomization, the 
Spectral Magnitude Decay reverb has a reasonably good 
quality output, though not good as that of convolution or 
the best time domain FDN reverbs. There can be a slight 
‘echoey’ quality to the output, and if the FFT sizes are 
reduced, the algorithm begins to suffer from 
‘whisperization.’ 

The parallel time-freeze method produces a higher 
quality output and, given limited phase randomization, 
is more tolerant of smaller FFT sizes. However, as 
mentioned previously, there are efficiency issues for 
longer decay times. 

8. REMAINING PROBLEMS AND AREAS 
FOR FUTURE RESEARCH 

We would like to further explore the following areas: 

1. When, where, and how often should we apply what 
amounts of phase randomization? 

2. Should we randomize the spectral magnitudes 
instead of (or in addition to) the phases? 

3. How can we control the ‘modal density’ (average 
number of resonances per Hz) [2] to simulate the 
coloration of small, highly reflective rooms (e.g., 
bathrooms)? 

4. What is the cause of the ‘echoey’ or ‘jittery’ quality 
sometimes exhibited by the Spectral Magnitude 
Decay reverb, and what is the best way to address 
this problem? 

5. Can the Spectral Magnitude Decay reverb be 
modified to tolerate smaller FFT sizes, to reduce 
the latency? 

6. How can the efficiency of the parallel time-freeze 
method be improved? 

 

 

9. CONCLUSIONS 

The Spectral Magnitude Decay method enables 
analysis-based synthesis of late reverberation, with 
easily controllable decay times as a function of 
frequency. If desired, multiple output channels could be 
generated using multiple inverse Fourier transforms 
with different phase randomization. 

The Spectral Magnitude Decay method requires less 
memory than time domain Feedback Delay Networks, 
and it gives independent control over the reverb energy 
and decay time in each frequency channel. Unlike 
convolution reverbs, the current approach provides 
simple parametric control over the decay spectra, with a 
computational cost independent of decay time. This 
method could be especially promising for systems in 
which the audio has already been transformed into the 
frequency domain for other types of processing.  

 

Errata or additional information on this topic may be 
provided at http://audioeffects.com/smd . 

Some of the methods described in this paper may be the 
subject of a pending patent application. 
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