
Audio Engineering Society

Convention Paper

Presented at the 116th Convention
2004 May 8–11 Berlin, Germany

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Real-Time Internet MPEG-4 SA Player and
the Streaming Engine

Alvin W.Y. Su1, Yi-Song Xiao2, Jia-Lin Yeh3 and Jian-Lung Wu4

1 SCREAM, Dept. Of CSIE., National Cheng-Kung University, Tainan, Taiwan, R.O.C.
alvinsu@mail.ncku.edu.tw

2 SCREAM, Dept. Of CSIE., National Cheng-Kung University, Tainan, Taiwan, R.O.C.
al@cmslab.csie.ncku.edu.tw

3SCREAM, Dept. Of CSIE., National Cheng-Kung University, Tainan, Taiwan, R.O.C.
naturalized@msn.com

4SCREAM, Dept. Of CSIE., National Cheng-Kung University, Tainan, Taiwan, R.O.C.
f7488405@gmail.com

ABSTRACT

MPEG-4 Structure Audio is an algorithmic based coding standard designed for low bit-rate high quality audio. With
this standard, the desired sound can be identical on both the encoder side and the decoder side by using Structured
Audio Orchestra Language (SAOL) to generate sound samples. It requires a player and a streaming engine when
real-time interactive internet presentations are necessary. In this paper, we present such a system implemented and
applied over IBM PC based computers. The proposed streaming engine follows ISMA specification and its
implementation is closely related to Apple's Darwin Server. After the streaming SA player receives the bitstream
from the server, it converts SAOL data stream to JAVA codes and links to a proposed scheduler program generated
from SASL data stream for direct execution such that one can hear the sound in real time. Unlike sfront, no
intermediate C codes and C compilers are necessary. In order to improve the performance, optimized software
modules such as the core opcodes and the core wavetable engine have been embedded. Significant speedup is
achieved compared to the reference SAOLC decoder. Real-time demonstration of the system will be made during
the presentation. Discussion of the possible future algorithmic coding method using JAVA is also given.

Alvin Su et al. MPEG-4 SA Player…

AES 116th Convention, Berlin, Germany, 2004 May 8–11

1. INTRODUCTION

MPEG-4 is the more recent multimedia standards for
encoding, decoding, and transmission of multimedia
data [1]. Both audio and video parts support object-
based representation approaches for synthetic content to
guarantee the reproduction quality at the decoder sides.
Structured Audio (SA) was developed for synthetic
audio objects and was rooted from quite a few computer
languages for synthesized music reproduction [2]-[3].
SA contains several parts for different functions
described as follows. The SAOL (Structured Audio
Orchestra Language) defines the music instruments for
sound generation and processing. Because SAOL is a C-
like generic computer language and includes some
useful mathematic functions, it can be used to adopt
almost any synthesis algorithms, such as wavetable,
FM, and physical modeling methods [4]-[6]. To execute
the algorithms implemented with the SAOL is the most
important part of the complete MPEG-4 SA system and
it will take most of the computation power. The second
part is the SASL (Structured Audio Score Language).
The SASL maintains the music event lists which control
the orchestra with an object-based description approach.
The SASL performs the functions similar to the MIDI
messages [7]. Because many past computer music
applications use MIDI as their control, MPEG-4 SA
adopts MIDI as a method to control the orchestra, too.
To include the natural sound and wavetables, the
MPEG-4 provides the SASBF (Structured Audio
Sample Bank Format). When combining SASBF and
SASL, it is similar to MIDI-DLS [8]. Based on the
above tools, the MPEG-4 is divided into three profiles:
the score-based profile, the wavetable profile and the
full profile. The detail can be seen in [9]. Only the full
profile contains the SAOL and the SASL tools.

Though MPEG-4 SA is mainly for synthetic sound
reproduction, it can also be used to general audio coding
methods such as MPEG-1 Layer I and LPC codec [10]-
[11]. This is not surprising because the SAOL is general
enough to perform such jobs. In other words, most
sound applications can be implemented with the SAOL,
natural or synthetic. Being such as a powerful tool, the
MPEG-4 SA is still not popular though it has been
proposed for years. In order to implement the full
profile, the system must be able to execute the
instructions written by the SAOL. However, the most
popular tool for the SAOL is the sfront provided by
[12]. The sfront tool converts the SAOL program to an
ordinary C program. Then, one must use a C compiler to

compile the C program such that it can be executed with
a specific computer system. The sfornt is similar to a
SAOL decoder but the decoded output cannot be
executed in real time. If the MPEG-4 SA full profile
messages are to form a dedicated track in a standard
MPEG-4 bitstream for real-time internet streaming
applications with other media decoders, this is simply
not working. Therefore, it is necessary to develop a
“decoder” that can decode the SA messages and
generate the sound in real time. In this paper, we
propose such a JAVA based decoder for SAOL message
because JAVA can be executed at most computer
platforms as long as JAVA virtual machines are
installed and no C compiler is necessary. Because a
system running on a JAVA based environment is not as
efficient, we provide a few tools to reduce the
computational load. First of all, a core wavetable engine
and a default wavetable synthesizer are embedded.
Second, a core opcode engine defined in the SAOL is
also provided. It is noted that users can use his/her
algorithms to generate the sounds without using the
provided tools by writing the SAOL programs.
Significant speedup is achieved compared to the
reference decoder SAOLC [13] due to the addition of
these two tools. Third, a program scheduler is provided
to control the synthesis processing in real time based on
the received SASL data stream. It is noted that the
overall system is implemented with optimized C
programs except that SAOL decoder engine because the
functions for the SASL decoder, the core opcodes
engine, and the core wavetable engine and the default
wavetable synthesizer are all fixed functions. This can
improve the processing speed significantly. In order for
the real-time internet streaming applications, we provide
a streaming tool that follows the ISMA (International
Streaming Media Association) specification and is also
closely related to the Apple Darwin Streaming Server®

[14]. Because the Apple Quick-Time® player doesn’t
support the MPEG-4 SA data streams, a proprietary
player is provided to demonstrate the proposed system.
All of the works are developed over the Microsoft
Window® based IBM PC® computers. In general, the
proposed is still not perfect. However, this is the first
tools to realize the promise made by the MPEG-4 SA
standards.

The rest of the paper is organized as follows. The brief
introduction of the SA system is given in section 2. In
section 3, the implementation of the proposed player
and data server is described. In section 4, the streaming
engine and the data format are described. In section 5,

Page 2 of 9

Alvin Su et al. MPEG-4 SA Player…

AES 116th Convention, Berlin, Germany, 2004 May 8–11

the performance comparison with sfront and SAOLC is
provided. Conclusion and future works are in section 6.

2. STRUCTURE AUDIO BASED SYSTEM

The MPEG-4 Structure Audio is a software synthesis-
description language. It was developed based on some
past such languages such as Csound and Music V [15].
In addition to its basic synthesis functions, transmission
of the SA bitstream is included in the MPEG-4 standard
and this makes real-time internet applications possible.
There are some basic components inside a SA based
system, described as follows:

SAOL: A synthesis-description language used to
synthesize sounds based on the algorithms implemented
with SAOL. It is a digital signal processing language
with some core opcodes that are designed for music
synthesis.

SASL: A simple score or control language to work with
SAOL messages about how and when to produce
sounds. Very much like MIDI messages.

SASBF: It is used for storage or transmission of the
audio samples that are required in the synthesis
algorithms described by SAOL.

Scheduler: A run-time element of the SA based system
in the decoding process. It converts the SASL or MIDI
messages to real-time events to control the synthesizers
implemented with SAOL.

Normative reference to MIDI standard: Since MIDI is
used by many manufacturers, it is accepted to replace
SASL though it is less powerful.

The most important kernel of the SA based system is
the SAOL which is general enough to be used to
“describe” almost any possible synthesis algorithms. As
a matter of fact, it can be even used to implement some
sound decoders such as MP-3 and AAC [16] though the
performance might not be able to keep up with most
dedicate decoders implemented with standard C
programs or even low-level languages. Detail SA syntax
can be found in [3].

3. THE PROPOSED MPEG-4 SA PLAYER

Figure 1 shows the basic jobs required in the proposed
SA player - ScreamSA. When a MPEG-4 SA bitstream

is received, it is divided into four parts: header, sample
data (SASBF), score data (MIDI or SASL) and
orchestra data (SAOL). They are stored in respective
areas. The header and SAOL data are reconfigured such
that it can be executed with the decoding computer.
Usually, it requires a parser to convert the data to a
program compatible with a high-level computer
language such as C (This is what sfront does.). Then a
corresponding compiler is used to compile the program
and link the result for execution. Because the SAOL is
object-based, synthesizers and other function modules
can be generated such that they can be executed when
they are called by the scheduler. The sample data is
stored and will be used when any of the synthesizers is

asked to perform its work. The data can be audio
samples, synthesis parameters, filter coefficients, and so
on. Finally, the score data is used to construct the
scheduler to control the sound generation process.
Those who are familiar with MIDI processing should
have no difficulties in understanding this part [7]. The
score data usually contains two parts of information: the
timing and the control. Based on the timing information,
event lists will be generated in the scheduler. Then, the
scheduler sends the commands to start the processing

Figure 1 Structure Audio decoding process

Page 3 of 9

Alvin Su et al. MPEG-4 SA Player…

units implemented with SAOL at the
pre-determined time instants. A
command usually also includes the
control parameters of the synthesis
algorithm. Appendix 1 and Appendix 2
show one SASL as the score data and a
synthesis algorithm implemented with
SAOL, respectively. It is noted that the
normative reference to MIDI standard
is currently not supported.

Because our system uses JAVA, JAVA
binary codes are generated after the
SAOL codes are converted. There are
three types of information in the JAVA
binary codes: global run-time
environment parameters, instrument
synthesis codes, and user-defined
functions. A more detailed diagram of
the SAOL compiler is shown in Figure
2. The ScreamSA supports all the core
opcodes defined in SAOL. They are
optimized coded and pre-compiled as a
library to improve the speed. A
wavetable synthesizer is also provided
in case that one wants to use SASL
only and rely on the basic synthesis
engine of the ScreamSA. This is a very
simple wavetable based synthesis
engine and its sound quality is still not
as good as those state-of-the-art
wavetable engines. The SAOL
bitstream is converted into JAVA text
format data with the SAOL Parser.
Then, a JAVA class compiler is used to
generate the JAVA binary codes
described above.

Figure 2 ScreamSA SAOL-JAVA Conversion Process

Figure 3 shows the ScreamSA
Linker/Scheduler. It receives the SASL
bitstream and generates Score Event
Data (or Score Event List). Then it
combines the Event Data with the
JAVA binary codes and the sample data
to perform the synthesis processing with
the Instrument Machine Code Engine.
Finally, audio samples are generated
and sent to a soundcard for playing
back.

4. STREAMING APPLICATION

Figure 3 ScreamSA Linker/Scheduler

AES 116th Convention, Berlin, Germany, 2004 May 8–11
Page 4 of 9

Alvin Su et al. MPEG-4 SA Player…

AES 116th Convention, Berlin, Germany, 2004 May 8–11

In order to apply the SA system to Internet applications,
streaming technology is necessary. Because RTP is the
official streaming protocol employed by ISMA (Internet
Streaming Media Alliance) and MPEG-4, RTP will also
be included in our system. Table 1 shows the RTP data
header format. The definitions are as follows:
V: RTP version number.

P: 0 in our implementation.

X: Header extension

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

V P X CC M PT Sequence number
Timestamp

synchronization source (SSRC) identifier

Table 1 RTP header format.

CC: CSRC count.

M: Indication of whether it is the last packet of the
sample transmitted. The sample here is a MPEG-4
file format sample instead of audio samples.

PT: Payload type.

Sequence number: Generated randomly in initialization.

Request List of Music

Transmission of List of Music

File Selection

Transmit MPEG-4 SA bitstream

Request SAOL stream if necessary

Transmit SAOL data stream if necessary

Client builds a connection
to the SA database inside
the SA server

Selection of music .

ScreamSA Player receives
SA bitstream. Then, builds
processing units and the
scheduler.

ScreamSA Player
compute sounds. The
sounds are played using
Window utilities.

Retrieve music list in
database 。

Retrieve files for the
selected music

Search for SAOL files by
request

ClientClient RTP ServerRTP ServerCommunication Flow

Search for address of
requested musicReturn address of requested

music in SA Server
Start ScreamSA Player
to receive the selected
music from SA Server.

SA ServerSA Server

Start
Here

Start
Here

Request Music

Figure 4 MPEG-4/ScreamSA session process.

Page 5 of 9

Alvin Su et al. MPEG-4 SA Player…

Timestamp: We use tick as the basic unit that is identical
to MIDI. The reason is that it is more
precise.

SSRC: determined in the playback stage.

Figure 4 shows how the proposed client-server system
processes a typical session. The SA media data uses the
standard MPEG-4/QuickTime data format [17]. In order
to combine with other media data such as video,
appropriate timing information is necessary. In Media
header atom, timeScale information is set to be the krate
and duration has to be computed in advance and uses
krate as its unit. In MPEG-4 Audio atom, info contains
the important parameters such as arate, track,
outputBusWidth and so on. In Time-to-sample atom,
SampleCount is a 32-bit integer that specifies the
number of consecutive samples that have the same
duration and Sample duration is another 32-bit integer
that specifies the duration of each sample. If the size of
a sample is 2 second and krate is set to 10,
SampleDuration is 20. If the length of a piece of music
is 60 seconds, SampleCount is 30. The other
arrangement of the data stream depends mostly on the
original SA data itself and can be found in [19].
However, the above implementation has one major
problem because krate and duration will be fixed.
Therefore, the settempo opcode defined in SAOL is
prohibited. Otherwise, synchronization and data
communication of the system will have problems.

5. PERFORMANCE COMPARISON

For real-time Internet streaming applications, it is
necessary to have a high performance player. Currently,
the most popular tools have been the standard SAOLC
[13] and sfront [12]. None of them provides convenient
tools to construct a streaming server and the associate
player. Nevertheless, the required computation power
for a SAOL-implemented instrument is still a main
issue. As mentioned in section 3, JAVA is used in the
synthesis engine part. In fact, there are different ways of
implementing the server-client system. First, a SAOL-
JAVA converter can be used in the player side. Once
the SAOL stream is received, it is converted to JAVA

instructions that are executed through a JAVA virtual
machine. This is what we have done in section 3. In
order to reduce the workload of the player, one can also
convert the SAOL stream in the server side. Then, the
resultant JAVA instructions are converted into data
stream and sent to the player side. Therefore, no SAOL-
JAVA conversion is necessary in the player. The
problem with the second approach is that it will not be
standard-compliant and players have to have a JAVA
virtual machine installed. The third implementation
suggestion is to use JAVA or other similar high-level
computer languages to replace the role played by
SAOL. The reason is that it is very difficult to provide a
SAOL-JAVA converter that is so efficient that the
performance can be compared to that of the program
originally coded with C or JAVA. Since JAVA can
implement all the SAOL functions and has many
advantages over conventional programming languages
in the areas such as cross platform, memory
management, include-library management and so on, a
new standard may be formed to use such programming
languages as the new orchestra language.

In order to test the above different implementations, we
use a simple algorithm to test their performances. The
Karplu-Strong plucked string model is used in this paper
[18]. The SASL part and the SAOL part are shown in
Appendix 1 and Appendix 2, respectively. Both SAOLC
and sfront are used for comparison. These two tools can
be obtained from [12]-[13]. The third program is
generated from converting the SAOL program to a
JAVA program automatically using the proposed tools.
This is shown in Appendix 3. The last program is
modified from the third program by adding a JAVA
class called “Queue” which greatly improves the speed.
This is shown in Appendix 4. Both the 3rd and the 4th
programs are executed with Microsoft JAVA Virtual
Machine. However, the case of the last program replies
on a human programmer to write the codes instead of
generating them automatically from the SAOL codes.
For all the programs, srate is set to be 44100 and krate
is set to be 100. The duration is 4 seconds. These
programs are executed on a Pentium 3 1.2G/512MB
personal computer running Window XP. The execution
times of the four cases are shown in Table 2.

AES 116th Convention, Berlin, Germany, 2004 May 8–11
Page 6 of 9

Alvin Su et al. MPEG-4 SA Player…

6. FUTURE WORKS

AES 116th Convention, Berlin, Germany, 2004 May 8–11

A complete Structure Audio based system called the
ScreamSA consisting of a streaming server and a real-
time player is presented in this paper. SAOL, the most
computation heavy part, is converted into JAVA first.
Then, it can be executed using JAVA virtual machines
provided in many computer platforms. This increases
the portability of the player. The streaming engine
follows the suggestions of ISMA and the proposed
system receives and decodes the bitstream in real time
as long as the computation complexity is within the
limit of the client platform. Though the currently
existing system is slower than sfront, it nevertheless
provides some convenient tools which realize the
promise made by Structure Audio codec several years
ago. The proposed codec system can be found and
downloaded at [19].

This paper also raises a major problem about the
performance limitation when SAOL is used. With
SAOL, it is necessary to design a converter such that it
can be executed, for example, sfront and our ScreamSA.
Because some programming languages such as JAVA
can fully replace the role played by SAOL with much
better performance, one might want to use them in the
future standards. Our testing example shows that over 4
times improvement can be achieved. Therefore, we will
work on such a system in the near future. Of course, we
will disclose all the implementation details and source
codes, too. The normative reference to MIDI standard
may be added and the quality of the default wavetable
engine will be improved, too.

APPENDIX 1

SASL testing program
0 tempo 60
0 tone 1
1 tone 1
2 tone 0.5
2.5 tone 0.25
2.75 tone 0.25
3 tone 0.5
3.5 tone 0.5
4 end

APPENDIX 2

SAOL testing program
global {
 srate 44100;
 krate 100;

}
instr tone () {

 asig param[127],paramrun[127];
 asig fil, buf;
 asig counter, i;
 param[0]=7346.000000;
 :
 :
 param[126]=6582.000000;
 if (counter == 0) {
 i=0;
 while (i < 127)
 {
 paramrun[i]=param[i];
 i=i+1;
 }
 }
 if (counter < 600000) {
 buf=fil;
 fil=paramrun[126];
 i=126;
 while (i > 0) {
 paramrun[i]=paramrun[i-1];
 i=i-1;
 }
 paramrun[0]=0.5*fil+0.496*buf;
 output(0.00008*paramrun[0]);
 }
 counter = counter +1;

APPENDIX 3

JAVA program converted from SAOL program
import SSA.*;
public class KS extends SSA.Instr

 Execution Times (sec)
Saolc [13] 47.2
Sfront [12] 2. 5
ScreamSA 4.05
ScreamSA with Queue
Java class

0.83

Table 2. Execution times of four SAOL decoders

{
static float[]param;
float[]paramrun;
float fil, buf;
int counter, i=0;
public KS(){
paramrun=(float[])param.clone();
}
public void arate(Bus inputBus,Bus outputBus)
{

 int length=SAVM.activeSAVM.busLength;

Page 7 of 9

Alvin Su et al. MPEG-4 SA Player…

 for(int x=0;x<length;x++)

AES 116th Convention, Berlin, Germany, 2004 May 8–11

 {
 if (counter < 600000)
 {
 buf=fil;
 fil=paramrun[126];
 i=126;
 while (i > 0)
 {
 paramrun[i]=paramrun[i-1];
 i=i-1;
 }
 paramrun[0]=0.5f*fil+0.496f*buf;
 outputBus.output(0.00008f*paramrun[0]);
 }
 counter=counter+1;
 outputBus.advanceCursor();
 }

}
static
{

param=new float[127];
param[0]=7346.0f;

 :
 :

param[126]=6582.0f;
}

}

APPENDIX 4

Fast JAVA program
import SSA.*;
public class KSFast extends SSA.Instr
{

static float[]param;
float currentSample=0;
Queue queue;
public KSFast(){

 queue=new Queue();
 queue.setBuffer((float[])param.clone());
 }

public void arate(Bus inputBus,Bus outputBus)
 {

int length=SAVM.activeSAVM.busLength;
for(int x=0;x<length;x++)

 {
 float last=currentSample;
 currentSample=queue.getItem(126);
 currentSample*=0.496f;
 currentSample+=0.5f*last;
 outputBus.output(0.00008f*currentSample);
 queue.push(currentSample);
 outputBus.advanceCursor();
 }
 }

static
 {
 param=new float[127];

 param[0]=7346.0f;
 :
 :
 param[126]=6582.0f;
 }
}
final class Queue
{
 public int bufferLength;
 private float[]buffer;
 private int topIndex;
 public Queue()
 {
 topIndex=0;
 }
 public Queue(int size)
 {
 topIndex=0;
 setBuffer(new float[size]);
 }
 public void setBuffer(float[]nb)
 {
 buffer=nb;
 bufferLength=nb.length;
 }
 public float getItem(int index)
 {
 int i=index+topIndex+1;
 if(i<0){
 i+=bufferLength;
 }else if(i>=bufferLength){
 i-=bufferLength;
 }
 return buffer[i];
 }
 public void push(float v)
 {
 buffer[topIndex++]=v;
 if(topIndex==bufferLength)topIndex=0;
 }
}

7. ACKNOWLEDGEMENTS

This work was supported by National Science Council,
Taiwan, R.O.C. under contract No. 93-2213-E-006-025.

8. REFERENCES

[1] Rob Koenen “Overview of the MPEG-4 Standard”
ISO/IEC JTC1/SC29/WG11 N4668
March 2002

[2] Eric D. Scheirer, “The MPEG-4 Structured Audio
stan-dard,” in Proc. IEEE International Conference
on Acoustics,Speech and Signal Processing
(ICASSP-98), 1998

Page 8 of 9

http://www.mpeg4.net/

Alvin Su et al. MPEG-4 SA Player…

[3] Scheirer, E. D. & Vercoe, B. L. (1999). SAOL: The
MPEG-4 Structured Audio Orchestra Language.
ComputerMusic Journal 23(2), 31-51

[4] R. Bristow-Johnson. “Wavetable synthesis 101:
afundamental perspective”, Proc AES 101st, 1996
(AESReprint #4400).

[5] Scheirer, E. D. & Ray, L. (1998). “Algorithmic and
wavetable synthesis in the MPEG-4 multimedia
standard.” InProceedings of the 1998 105th
Convention of the Audio Engineering Society
(reprint #4811). San Francisco.

[6] Julius O. Smith, III, “Physical modeling synthesis
update,”Computer Music Journal, vol. 20, no. 2, pp.
44–56, 1996

[7] The Association of Musical Electronics
Industry, ”MIDI Media Adaptation Layer for IEEE-
1394” November 30, 2000.

[8] MIDI Manufacturers Association, “MIDI
Downloadable Sounds Level 1 Specification
“ version 1.1(January 1999).

[9] Scheirer, E. D. (1999). “Structured audio and
effects processing in the MPEG-4 multimedia
standard” MultimediaSystems 7(1), 11-22

[10] S. Shlien, "Guide to MPEG-1 Audio Standard,"
IEEE Transactions on Broadcasting, Vol. 40, pp.
206--218, Dec. 1994.

[11] J.D.Markel and A.H. Gray,Jr.,Linear Prediction of
Speech,Springer-Verlag,1976

[12] http://www.cs.berkeley.edu/~lazzaro/sa/sfman/

[13] http://web.media.mit.edu/~eds/mpeg4-old/

[14] "QuickTime Streaming Server Modules" and
"QuickTime Streaming Server Administrator's
Guide" documentations available on
http://developer.apple.com/darwin/projects/streami
ng/

[15] B. L. Vercoe, Csound: A Manual for the Audio-
Processing System (rev.1996). Cambridge, MA:
MIT Media Lab., 1985.

[16] ISO/IEC JTC1/SC29/WG11 MPEG,
InternationalStandard ISO/IEC 13818-7 "Generic
Coding ofMoving Pictures and Associated Audio:
AdvancedAudio Coding", 1997

[17] Apple Computer ,Inc. “QuickTime File Format”
2000

[18] Karplus,K., and Strong ,A.(1989)”Digital synthesis
of plucked-string considered as an electrical
transmission line,” J.Acoust. Soc. Am. 8,227-233.

[19] http://scream.csie.ncku.edu.tw/ScreamSA/index.ht
m

AES 116th Convention, Berlin, Germany, 2004 May 8–11
Page 9 of 9

http://www.cs.berkeley.edu/~lazzaro/sa/sfman/
http://web.media.mit.edu/~eds/mpeg4-old/
http://developer.apple.com/darwin/projects/streaming/
http://developer.apple.com/darwin/projects/streaming/
http://scream.csie.ncku.edu.tw/ScreamSA/index.htm
http://scream.csie.ncku.edu.tw/ScreamSA/index.htm

	INTRODUCTION
	STRUCTURE AUDIO BASED SYSTEM
	THE PROPOSED MPEG-4 SA PLAYER
	STREAMING APPLICATION
	PERFORMANCE COMPARISON
	FUTURE WORKS
	ACKNOWLEDGEMENTS
	REFERENCES

