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Part I

Bass Filter
1 Overview
It is desirable to find the digital transfer function H (z) approximating the ana-
log circuitry of the Casio SK-1. Two of these is the Bass Filter and the Chord
Filter. Schematically, these filters are identical. But, they have different com-
ponent values. Analysis will be performed on the Bass Filter, then component
values substituted in to obtain an analysis of the Chord Filter. H (z) can be
obtained by performing the bilinear transform on the continuous-time transfer
function H(s). H (s) can be obtained by manipulating the continuous-time ex-
pressions that describe the circuit’s behavior. This analysis assumes linear /
ideal circuit behavior.

A schematic diagram of the Bass Filter circuit, as found in the Realistic
Concertmate-500 service manual (the alternate name of the Casio SK-1, when
it was sold through RadioShack). V L1 is ground, Vin enters on the right, and
Vout leaves on the left.
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To analyze the circuit, a load resistor RL will be added from Vout to ground.
This represents the load that the rest of the circuit will contribute to the Bass
Filter. For now, a “reasonable” value of 1M Ω will be used. This can be replaced
by a more accurate value once it is obtained. A node V is defined to make
algebraic manipulations simpler (it will cancel out early on). Components are
labelled as in the Realistic Concertmate-500 service manual:

Component values as given in the Realistic Concertmate-500 service manual:

R28 = 15 kΩ

R31 = 22 kΩ

C21 = 0.047µF
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C23 = 0.1µF

2 The Continuous-Time Tranfer Function

2.1 Voltage Divider
Once expressions for Vin and Vout are obtained, their ratio will give the continuous-
time transfer function H (s). Vin and Vout can be found using voltage dividers.
In a voltage divider, the input voltage is proportional to the series impedance
of Z1 + Z2, and the output voltage is proportional to the impedance Z2.

Vi = i ∗ (Z1 + Z2)→ i =
Vi

Z1 + Z2

Vo = i ∗ Z2 → i =
Vo
Z2

Vi
Z1 + Z2

=
Vo
Z2
→ Vo = Vi

Z2

Z1 + Z2

2.2 Finding the Transfer Function
Expressions for Vin and Vout are obtained by application of the voltage divider
equation. Keep in mind that the impedance of a resistor is the same as its resis-
tance (ZR = R) and that the impedance of a capacitor is inversely proportional
to its capacitance multiplied by s (ZC = 1

sC ), where s is the differentiation
operator on the s-plane, R is the value of the resistor in Ohms (Ω), and C is
the value of the capacitor in Farads(F ).

Vout = V
RL

R28 +RL

V = Vin
Z

Z +R31 + 1
sC23

→ Vin = V
Z +R31 + 1

sC23

Z

Where Z is the impedance of C21 in parallel with the series impedance of
R28 and RL.

Z = C21‖(R28 +RL)

=
1

sC21
(R28 +RL)

R28 +RL + 1
sC21

=
(R28 +RL) sC21

(R28 +RL) sC21 + 1

=
Znum

Zdenom
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With expressions for Vin and Vout in terms of impedences, H (s) is easily
obtained:

H (s) =
Vout
Vin

=
V RL

R28+RL

V
Z+R31+

1
sC23

Z

Node voltage V drops out of the expression:

H (s) =
RL

R28+RL

Z+R31+
1

sC23

Z

=

(
RL

R28 +RL

)(
Z

Z +R31 + 1
sC23

)

Avoiding compound fractions, simplifying, and collecting terms:

H (s) =

(
RL

R28 +RL

)(
ZsC23

ZsC23 + (R31sC31 + 1)

)
=

(
RL

R28 +RL

)( Znum

Zdenom
sC23

Znum

Zdenom
sC23 + (R31sC31 + 1)

)

=

(
RL

R28 +RL

)(
ZnumsC32

ZnumsC23 + Zdenom (R31sC31 + 1)

)
=

(
RL

R28 +RL

)(
(R28 +RL) sC21

(R28 +RL) s2C21C23 + ((R28 +RL) sC21 + 1) (R31sC31 + 1)

)
= RL

(
sC21

(R28 +RL) s2C21C23 +R31 (R28 +RL) s2C21C23 + (R28 +RL) sC21 +R31sC23 + 1

)
=

RLsC21

(R31 + 1) (R28 +RL)C21C23s2 + ((R28 +RL)C21 +R31C23) s+ 1

2.3 Coefficients
This transfer function is second-order in the numerator and second-order in the
denominator (as would be expected for a circuit with two capacitors). The
transfer function of a general second-order filter is:

H(s) =
β2s

2 + β1s+ β0
α2s2 + α1s+ α0

The Casio SK-1 Bass Filter can be described as a second-order filter with
analog filter coefficients:
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β2 = 0

β1 = RLC21

β0 = 0

α2 = (R31 + 1) (R28 +RL)C21C23

α1 = (R28 +RL)C21 +R31C23

α0 = 1

3 The Bilinear Transform

3.1 Definition
Much like a transfer function in continuous time, a transfer function in discrete
time can be written in terms of digital filter coefficients.

H(z) =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2

The bilinear transform is used to transform from a continuous-time repre-
sentation of a system to a discrete-time representation by substituting in an
approximation of the trapezoidal rule for integration (where T is the sampling
period):

s =
2

T

1− z−1

1 + z−1

Substituting this expression for each s in the continuous-time representa-
tion of the transfer function H (s) will give the discrete-time representation of
the transfer function H (z). This can be done manually, or with a symbolic
manipulator. However, in the case of commonly used filters (such as the bi-
quad), expressions for the digital filter coeffcients in terms of the analog filter
coefficients are already available.

b0 = 4β2 + 2Tβ1 + T 2β0

b1 = −8β2 + 2β0T
2

b2 = 4β2 − 2Tβ1 + Tβ0

a0 = 4α2 + 2Tα1 + T 2α0

a1 = −8α2 + 2T 2α0

a2 = 4α2 − 2Tα1 + T 2α0

For most implementations, α0 should equal 1, so the whole filter can be
normalized by dividing by α0:
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b0 =
4β2 + 2Tβ1 + T 2β0
4α2 + 2Tα1 + T 2α0

b1 =
−8β2 + 2T 2β0

4α2 + 2Tα1 + T 2α0

b2 =
4β2 − 2Tβ1 + Tβ0

4α2 + 2Tα1 + T 2α0

a0 = 1

a1 =
−8α2 + 2T 2α0

4α2 + 2Tα1 + T 2α0

a2 =
4α2 − 2Tα1 + T 2α0

4α2 + 2Tα1 + T 2α0

3.2 Alternatives
The bilinear transform is only a first-order approximation of the exact transfor-
mation form the s-plane to the z-plane. Higher-order approximations may also
be employed, or other methods such as impulse invariance.

4 The Discrete-Time Transfer Function

4.1 Bilinear Transform
Substituting the analog filter coefficients into the expressions for the digital filter
coefficients, the digital filter coefficients are obtained in terms of the circuit’s
component values and the sampling period:

b0 = 4β2 + 2Tβ1 + β0T
2

= 2TRLC21

b1 = −8β2 + 2β0T
2

= 0

b2 = 4β2 − 2Tβ1 + β0T
2

= −2TRLC21

a0 = 4α2 + 2Tα1 + T 2α0

= 4 (R31 + 1) (R28 +RL)C21C23 + 2T ((R28 +RL)C21 +R31C23) + T 2
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a1 = −8α2 + 2T 2α0

= −8 (R31 + 1) (R28 +RL)C21C23 + 2T 2

a2 = 4α2 − 2Tα1 + T 2α0

= 4 (R31 + 1) (R28 +RL)C21C23 − 2T ((R28 +RL)C21 +R31C23) + T 2

For most implementations, α0 should equal 1, so the whole filter can be
normalized by dividing by α0:

b0 =
2TRLC21

4 (R31 + 1) (R28 +RL)C21C23 + 2T ((R28 +RL)C21 +R31C23) + T 2

b1 = 0

b2 =
−2TRLC21

4 (R31 + 1) (R28 +RL)C21C23 + 2T ((R28 +RL)C21 +R31C23) + T 2

a0 = 1

a1 =
−8 (R31 + 1) (R28 +RL)C21C23 + 2T 2

4 (R31 + 1) (R28 +RL)C21C23 + 2T ((R28 +RL)C21 +R31C23) + T 2

a2 =
4 (R31 + 1) (R28 +RL)C21C23 − 2T ((R28 +RL)C21 +R31C23) + T 2

4 (R31 + 1) (R28 +RL)C21C23 + 2T ((R28 +RL)C21 +R31C23) + T 2

4.2 Magnitude Response
The magnitude response of the Bass Filter (with sampling rate fs = 48000Hz)
is plotted in both in continuous time and in discrete time.
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The Bass Filter is clearly a band-pass filter. By inspection, the cutoff fre-
quency is around 20Hz and the filter has a high-frequency roll-off of 6 dB/octave
or 20 dB/decade (and, presumably, an identical low-frequency roll-off).

4.3 Phase Response
The phase response of the Bass Filter (with fs = 48000Hz) is plotted in both
in continuous time and in discrete time.
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For both the magnitude and phase responses, there is no visible difference
between the plots for the continuous-time and discrete-time filters, so the bi-
linear transform is assumed to be an approximation of high enough order to
well-describe this system. Presumably, frequency warping is not an issue for
low-order filters.

5 Parameterizing

5.1 Filter Parameters
It will be helpful to understand the Bass Filter’s behavior in terms of filter
parameters (Q, ωc). This is easier done in continuous-time, so the analog filter
coefficients are revisited:

β2 = 0

β1 = RLC21

β0 = 0

α2 = (R31 + 1) (R28 +RL)C21C23

α1 = (R28 +RL)C21 +R31C23

α0 = 1

The Bass Filter closely resembles the case of a resonant peaking filter, as
defined in the course notes for MUS424/EE367D: Signal Processing Techniques
for Digital Audio Effects (Abel/Berners, 2011), whose transfer function is given
as:
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H (s) =
s
ω0(

s
ω0

)2
+ 1

Q

(
s
ω0

)
+ 1

And whose filter coefficients are:

β2 = 0

β1 =
s

ω0

β0 = 0

α2 =

(
1

ω0

)2

α1 =
1

Qω0

α0 = 1

In this case, the denominator coefficients will be used to find the values for
Q and ω0 in terms of the component values.

5.2 Center Frequency
First, solving for ω0 using the analog filter coefficient α1:

1

ω0
= RLC21

ω0 =
1√

RLC21

ωc is in radians, to get the cutoff frequency in Hertz (f0), ω0 is multiplied
by 2π:

f0 =
2π√
RLC21

Since the center frequency is sensitive to the circuit load RL, it is important
to obtain an accurate value for RL if an accurate Bass Filter is expected! Using
the “reasonable” value of 1MΩ for RL, the cutoff frequency of the Bass Filter
is 28.98Hz.

5.3 Bandwidth (Q)
Now, solving for Q using the analog filter coefficient α1 and the expression for
ωc:
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1

Qω0
= (R28 +RL)C21 +R31C23

Q =
1

((R28 +RL)C21 +R31C23)ω0

=

√
RLC21

(R28 +RL)C21 +R31C23

Since the Q is somewhat sensitive to the circuit load RL, it could be impor-
tant to obtain an accurate value for RL is an accurate Bass Filter is expected!
Using the “reasonable” value of 1MΩ for RL, the value of Q is 4.3442.

5.4 Gain at Center Frequency
The gain at center frequency is found by evaluating the transfer function H (s)
at s = ω0:

H (w0) =
RLC21ω0

(R31 + 1) (R28 +RL)C21C23ω02 + ((R28 +RL)C21 +R31C23)ω0 + 1

Using the “reasonable” value of 1MΩ for RL, the gain at center frequency
of the Bass Filter is 0.5391.

5.5 “Circuit Bending”
The Casio SK-1 Bass Filter cirucit has static component values. However, it
may be desirable to modify the circuit to allow some of the parameters (for
instance ωc, Q) to be controlled (essentially, a digital implementation of circuit-
bending). By experimentation, it is found that changing any of the component
values of the filter will affect the magnitude and phase response of the filter, but
that changing the value of Resistor R31 in particular has the result of changing
the Q of the filter.

The magnitude response of the filter (with fs = 48000Hz) is plotted in
discrete time, with the resistance of R31 varying between 22 Ω and 22MΩ.
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By inspection, a ten-fold increase in the resistance of R31 generally cor-
responds to a ten-fold decrease of the bandwidth of the filter, and a ten-fold
decrease in the resistance of R31 generally corresponds to a ten-fold increase of
the bandwidth. This behavior is somewhat different around DC and the Nyquist
frequency.

The phase response of the filter (with fs = 48000Hz) is plotted in discrete
time, with the resistance of R31 varying between 22 Ω and 22MΩ.
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It will be useful to find the value of resistor R31 that is required to produce
a filter with a desired Q. The equation for Q is revisited, solving for R31 in
terms of the desired Q and component values:

Q =

√
RLC21

(R28 +RL)C21 +R31C23

R31C23 =

√
RLC21

Q
− (R28 +RL)C21

R31 =

√
RLC21

Q − (R28 +RL)C21

C23

This allows the filter model to include a control for theQ of the filter, which is
analagous to replacing resistor R31 in the physical circuit with a potentiometer -
a digital implementation of circuit-bending ! Since the center frequency is always
going to be so low, it might even make sense (from an interface standpoint) to
parameterize this sort of filter in terms of a “cutoff frequency” corresponding to
the point where the high-freuqency roll-off hits an arbitrary attenuation (−3 dB,
−6 dB, etc.).

This will also affect the gain at the center frequency, (keep in mind, the
original gain at center frequency is 0.5391, corresponding to R31 = 22 kΩ).

13



The gain is not affected very much, unless R31 gets above 100kΩ (corre-
sponding to a very low Q). This can be seen on the graph of the magnitude
response as well.

6 Implementation
A test implementation of the Casio SK-1 Bass Filter is made in “BassFilter.vst,”
a Steinberg Virtual Studio Technology plugin. The plugin has a control for Q
that will select the proper value of R31 for the desired bandwidth (default-
ing to 4.3442, corresponding to R31 = 22 kΩ). The transfer function H (z)
is implemented mostly as it is described in this write-up, with the biquad fil-
ter arranged in a Direct Form II Transposed topology. The only difference is
that smoothing (via an RMS level estimator with a very short time constant,
τ = 10milliseconds) is done on the cutoff frequency to avoid “pops” when the
parameter is changed.

Part II

Chord Filter
7 Overview
The schematic diagram of the Chord Filter circuit is identical to that of the
Bass Filter:
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To analyze the circuit, a load resistor RL will be added from Vout to ground.
This represents the load that the rest of the circuit will contribute to the Chord
Filter. For now, a “reasonable” value of 1M Ω will be used. This can be replaced
by a more accurate value once it is obtained. A node V is defined to make
algebraic manipulations simpler (it will cancel out early on). Components are
labelled as in the Realistic Concertmate-500 service manual:

The only difference from the Bass Filter is that the components are named
differently, and one has a different value. Component values as given in the
Realistic Concertmate-500 service manual:

R27 = 6.6 kΩ
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R30 = 22 kΩ

C20 = 0.047µF

C22 = 0.1µF

8 The Continuous-Time Tranfer Function

8.1 Finding the Transfer Function
The continuous-time transfer function of the Chord Filter, which is identical to
that of the Bass Filter, except with different component names substituted in.

H (s) =
RLsC20

(R30 + 1) (R27 +RL)C20C22s2 + ((R27 +RL)C20 +R30C22) s+ 1

8.2 Coefficients
The Casio SK-1 Chord Filter can be described as a second-order filter with
analog filter coefficients:

β2 = 0

β1 = RLC20

β0 = 0

α2 = (R30 + 1) (R27 +RL)C20C22

α1 = (R27 +RL)C20 +R30C22

α0 = 1

9 The Discrete-Time Transfer Function

9.1 Bilinear Transform
The discrete-time transfer function of the Chord Filter, which is identical to
that of the Bass Filter, except with different component names substituted in:

b0 = 2TRLC20

b1 = 0

b2 = −2TRLC20

a0 = 4 (R30 + 1) (R27 +RL)C20C22 + 2T ((R27 +RL)C20 +R30C22) + T 2

a1 = −8 (R30 + 1) (R27 +RL)C20C22 + 2T 2

a2 = 4 (R30 + 1) (R27 +RL)C20C22 − 2T ((R27 +RL)C20 +R30C22) + T 2
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For most implementations, α0 should equal 1, so the whole filter can be
normalized by dividing by α0:

b0 =
2TRLC20

4 (R30 + 1) (R27 +RL)C20C22 + 2T ((R27 +RL)C20 +R30C22) + T 2

b1 = 0

b2 =
−2TRLC20

4 (R30 + 1) (R27 +RL)C20C22 + 2T ((R27 +RL)C20 +R30C22) + T 2

a0 = 1

a1 =
−8 (R30 + 1) (R27 +RL)C20C22 + 2T 2

4 (R30 + 1) (R27 +RL)C20C22 + 2T ((R27 +RL)C20 +R30C22) + T 2

a2 =
4 (R30 + 1) (R27 +RL)C20C22 − 2T ((R27 +RL)C20 +R30C22) + T 2

4 (R30 + 1) (R27 +RL)C20C22 + 2T ((R27 +RL)C20 +R30C22) + T 2

9.2 Magnitude Response
The magnitude response of the Chord Filter (with sampling rate fs = 48000Hz)
is plotted in both in continuous time and in discrete time.
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The Chord Filter is clearly a band-pass filter. By inspection, the cutoff fre-
quency is around 20Hz and the filter has a high-frequency roll-off of 6 dB/octave
or 20 dB/decade (and, presumably, an identical low-frequency roll-off).

9.3 Phase Response
The phase response of the Chord Filter (with fs = 48000Hz) is plotted in both
in continuous time and in discrete time.
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For both the magnitude and phase responses, there is no visible difference
between the plots for the continuous-time and discrete-time filters, so the bi-
linear transform is assumed to be an approximation of high enough order to
well-describe this system. Presumably, frequency warping is not an issue for
low-order filters.

10 Parameterizing

10.1 Center Frequency
First, solving for ω0 using the analog filter coefficient α1:

1

ω0
= RLC20

ω0 =
1√

RLC20

ωc is in radians, to get the cutoff frequency in Hertz (f0), ω0 is multiplied
by 2π:

f0 =
2π√
RLC20

Since the center frequency is sensitive to the circuit load RL, it is important
to obtain an accurate value for RL if an accurate Chord Filter is expected!
Using the “reasonable” value of 1MΩ for RL, the cutoff frequency of the Chord
Filter is 28.98Hz.
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10.2 Bandwidth (Q)
Now, solving for Q using the analog filter coefficient α1 and the expression for
ωc:

1

Qω0
= (R27 +RL)C20 +R30C22

Q =
1

((R27 +RL)C20 +R30C22)ω0

=

√
RLC20

(R27 +RL)C20 +R30C22

Since the Q is somewhat sensitive to the circuit load RL, it could be impor-
tant to obtain an accurate value for RL is an accurate Chord Filter is expected!
Using the “reasonable” value of 1MΩ for RL, the value of Q is 4.3788. Notice,
this is only very slightly different from the Bass Filter.

10.3 Gain at Center Frequency
The gain at center frequency is found by evaluating the transfer function H (s)
at s = ω0:

H (w0) =
RLC20ω0

(R30 + 1) (R27 +RL)C20C22ω02 + ((R27 +RL)C20 +R30C22)ω0 + 1

Using the “reasonable” value of 1MΩ for RL, the gain at center frequency
of the Chord Filter is 0.6305. Notice, this is only very slightly different from
the Bass Filter.

10.4 “Circuit Bending”
The Casio SK-1 Chord Filter cirucit has static component values. However,
it may be desirable to modify the circuit to allow some of the parameters (for
instance ωc, Q) to be controlled (essentially, a digital implementation of circuit-
bending). By experimentation, it is found that changing any of the component
values of the filter will affect the magnitude and phase response of the filter, but
that changing the value of Resistor R30 in particular has the result of changing
the Q of the filter.

The magnitude response of the filter (with fs = 48000Hz) is plotted in
discrete time, with the resistance of R30 varying between 22 Ω and 22MΩ.
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By inspection, a ten-fold increase in the resistance of R30 generally cor-
responds to a ten-fold decrease of the bandwidth of the filter, and a ten-fold
decrease in the resistance of R30 generally corresponds to a ten-fold increase of
the bandwidth. This behavior is somewhat different around DC and the Nyquist
frequency.

The phase response of the filter (with fs = 48000Hz) is plotted in discrete
time, with the resistance of R30 varying between 22 Ω and 22MΩ.
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It will be useful to find the value of resistor R30 that is required to produce
a filter with a desired Q. The equation for Q is revisited, solving for R30 in
terms of the desired Q and component values:

R30 =

√
RLC20

Q − (R27 +RL)C20

C22

This allows the filter model to include a control for theQ of the filter, which is
analagous to replacing resistor R30 in the physical circuit with a potentiometer -
a digital implementation of circuit-bending ! Since the center frequency is always
going to be so low, it might even make sense (from an interface standpoint) to
parameterize this sort of filter in terms of a “cutoff frequency” corresponding to
the point where the high-freuqency roll-off hits an arbitrary attenuation (−3 dB,
−6 dB, etc.).

This will also affect the gain at the center frequency, (keep in mind, the
original gain at center frequency is 0.6305, corresponding to R30 = 22 kΩ).
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The gain is not affected very much, unless R30 gets above 100kΩ (corre-
sponding to a very low Q). This can be seen on the graph of the magnitude
response as well.

11 Implementation
A test implementation of the Casio SK-1 Chord Filter is made in “ChordFil-
ter.vst,” a Steinberg Virtual Studio Technology plugin. The plugin has a control
for Q that will select the proper value of R30 for the desired bandwidth (de-
faulting to 4.3788, corresponding to R30 = 22 kΩ). The transfer function H (z)
is implemented mostly as it is described in this write-up, with the biquad fil-
ter arranged in a Direct Form II Transposed topology. The only difference is
that smoothing (via an RMS level estimator with a very short time constant,
τ = 10milliseconds) is done on the cutoff frequency to avoid “pops” when the
parameter is changed.

23


