Audio Engineering Society
Convention Paper

Presented at the 137th Convention
2014 October 9-12 Los Angeles, USA

AUDIO

\ ">

This Convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed
by at least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention
paper has been reproduced from the author’s advance manuscript without editing, corrections, or consideration by the
Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42”d Street, New York, New York 10165-2520, USA; also see
www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct
permission from the Journal of the Audio Engineering Society.

A Comparison of Real-Time Pitch Detection
Algorithms in SuperCollider

Elliot Kermit-Canfield®
L Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, USA

Correspondence should be addressed to Elliot Kermit-Canfield (kermit@ccrma.stanford.edu)

ABSTRACT

Three readily-available pitch detection algorithms implemented as unit generators in the SuperCollider pro-
gramming language are evaluated and compared with regard to their accuracy and latency for a variety of
test signals consisting of both harmonic and non-harmonic content. Suggestions are made for the type of

signal on which each algorithm performs well.

1. INTRODUCTION

Pitch detection is not a new area of research and
there are many algorithms and techniques which ac-
complish this task. Pitch detection is the process of
identifying the fundamental frequency, F0, of a sig-
nal. Although the goal of these algorithms is pitch
detection, they really perform pitch estimation, and
throughout this paper, these terms will be used in-
terchangeably. This paper does not seek to submit a
new technique for pitch detection, but rather inves-
tigates three pitch detection algorithm implementa-
tions in the SuperCollider audio programming envi-
ronment [1].

SuperCollider is an open source audio programming
environment which is well suited for many com-

puter/audio tasks ranging from composition to per-
formance to analysis. Since SuperCollider supports
real-time audio, pitch detection algorithms must
meet several criteria—they must detect pitch with
accuracy and stability but also run with low latency
and low computational load. These features are all
important for a robust and reliable pitch detector.

In the following section, the three pitch detection
algorithms are explained. Following that, section 3
introduces the test signals and methods for evalu-
ation. Sections 4 and 5 discuss and evaluate the
results of the evaluations, and the final section pro-
vides some concluding remarks and suggestions for
further research.
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2. PITCH ESTIMATION ALGORITHMS

There are three readily available pitch estimation
implementations in SuperCollider. Each is imple-
mented as a unit generator (UGen) that outputs two
values at control rate, one for if the algorithm has
detected pitch in that block (hasFreq) and a value
for the detected pitch (freq).! One of these UGens,
the so-called Pitch UGen, comes with the standard
SuperCollider download while the other two, Tartini
and Qitch, come packaged with the SC3 plugins [2].2

2.1. Pitch Autocorrelation Algorithm

The Pitch UGen is an implementation of perhaps
the most commonly used pitch detection scheme. It
is an autocorrelation function (ACF) based pitch de-
tector. The ACF finds periodicity of the input signal
by taking a series of correlations between the input
signal and a time delayed copy of itself at increasing
lags . It is defined as

N—-1
r(l) =Y x(n)a(n—1). (1)

At lag zero, the autocorrelation is at its maximum
and typically decreases as the lag increases. Since
pitched signals are periodic, they exhibit a special
property where their autocorrelations are also pe-
riodic. This causes the autocorrelation to be at a
minimum when the lag reaches half the period of
the fundamental frequency, at which point it should
rise again. We should observe maxima that peak
periodically at the fundamental frequency.

The implementation of the ACF in the Pitch UGen
is well designed.® It accepts a minimum frequency
and mazimum frequency which constrain acceptable
lag values. Operating at the execution frequency, it
does a rough pitch estimation by taking the autocor-
relation of the input at a resolution of mazBinsPe-
rOctave and finds the first peak after the peak at
lag zero that is higher in amplitude than the peak-

1SuperCollider allows unit generators to output values at
audio rate (e.g. 44,100 Hz) or at a slower control rate. Su-
perCollider defaults to a block size of 64, yielding a control
rate of about 689 Hz.

2The SC3 plugins contain commonly-used extensions to
SuperCollider not deemed essential or finished enough to be
packaged with the main source.

3The input arguments and their default values for the
Pitch, Tartini, and Qitch UGens can be found in their help
files.

Threshold multiplied by the value of the autocorrela-
tion at lag zero.* Once it finds that peak, it does a
finer resolution search before performing parabolic
interpolation to achieve its final pitch estimation.
Additionally, there are several features and safety
measures built into Pitch. Pitch allows for down-
sampling before performing the pitch estimation to
reduce computational load, and median smoothing,
which provides more stability and robustness at the
output, although it adds some latency. One can also
specify a clarity flag, which causes Pitch to output
the height of the autocorrelation peak normalized
by the height of the peak at zero lag instead of sim-
ply a boolean value for whether or not a pitch was
detected.

2.2. Tartini Frequency Domain Algorithm

The Tartini UGen is an implementation of Philip
McLeod’s Tartini algorithm which employs an FFT-
based normalized squared difference function (SDF)
method [3,4]. The SDF can be defined as

N-1

dl) =) (a(n) —z(n — 1) (2)

n=0

Multiplying this out, it can be seen that there is an
embedded ACF
N-1

d(l) = Z (x(n)* + z(n —D? = 2z(n)x(n —1). (3)

n=0

By changing the length of the window as a function
of
N-1-1

Y (@(n) —x(n—1))* (4)

n=0

(1) =

there is a tapering effect as [ increases caused by the
decreasing size of the window. By defining

N—-1-1

Y (@) —z(n-1?), ()

n=0

m/'(l) =

and by rewriting the ACF to allow the window to
change as a function of [

N—-1-1

Z x(n)x(n —1), (6)

n=0

r'(l) =

4The execution frequency must be between the minimum
and maximum frequencies.
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we can write the SDF as
d(l) =m'(l) = 2r'(1). (7)

In McLeod’s Tartini algorithm, the squared differ-
ence function is normalized and defined as

m/ (1) — 2r'(1)

n'(l)=1- )]

(8)

This bounds the output to [—1, 1], where 1 is perfect
correlation, —1 is perfect negative correlation, and 0
is no correlation.

For efficiency, this is then implemented in the fre-
quency domain. In SuperCollider, the user has con-
trol over the size of the FFT and the FFT window
hop size. Additionally, the user can set parame-
ters that constrain how many peaks in the auto-
correlation are considered as well as a threshold for
how high peaks must be in relation to the peak at
lag zero. Like the Pitch UGen, Tartini then per-
forms peak picking on local maxima and performs
parabolic interpolation on the most likely peak. Tar-
tini can also be configured to provide a clarity factor
loosely corresponding to confidence of the pitch es-
timation.

2.3. Qitch Constant Q Transform based Algo-
rithm
Qitch is a constant @ transform based pitch detec-
tion algorithm created by Judith Brown and Miller
Puckette [5-7]. This pitch estimation algorithm re-
lies on a perceptual model implemented as a con-
stant @ filterbank. The center frequencies are geo-
metrically spaced in quarter steps according to

Wk, = (Qi)kcwmina (9)
where k. is the k" filter and @y, is the lowest center
frequency. The bandwidth is defined to be wy, +1 —
wg, , which keeps @ constant.

In the instantiation of the Qitch UGen in Super-
collider, one must link to a .wav file containing the
kernels to the FFT. This makes using Qitch challeng-
ing, as one must load the kernel file into an audio
buffer and then pass the buffer to whatever func-
tion is utilizing Qitch. Qitch allows the user to in-
fluence the algorithm’s performance by supplying a
buffer containing an amplitude weighting contour for

the kernels, minimum and maximum detectable fre-
quencies, and a flag for refining the pitch estimation
based on instantaneous phase estimation.

3. METHODS

The three pitch detectors were tested with their de-
fault settings in response to a variety of test sig-
nals. In this paper, the test signals include chro-
matic scales synthesized with pure tones (single sinu-
soid), recorded guitar scales, and linear, sinusoidal
chirps. These signals range in terms of the com-
plexity of their spectra over time, noise floor, pitch
stability, and pitch range. More signals—including
synthesized Karplus-Strong plucked strings and FM
bells, as well as recorded piano and voice stimuli—
were tested, but due to the brevity of this paper,
they are not included in this analysis.?

Each pitch detector is evaluated with each signal to
see how it performs against the other detectors. We
are interested in how the performance of the Su-
perCollider UGens compare to each other in terms
of their accuracy, latency, robustness, and compu-
tational efficiency. Some algorithms work well on
specific types of signals but do poorly on others.

Because of SuperCollider’s language/server configu-
ration there is a substantial amount of overhead to
study the pitch detectors. Reusable SuperCollider
code was written that encapsulates the pitch detec-
tors in SynthDefs, which in SuperCollider are server
constructs primarily consisting of UGen graphs.
These SynthDefs run in parallel and contain open
sound control (OSC) triggers, which output the val-
ues of freq and hasFreq for their pitch detector once
every block. In the language, OSC responders lis-
ten for these events and write them to .csv files, see
Figure 1.

4. RESULTS

4.1. Chromatic Sinusoidal Scale

This is the simplest test case. The stimulus con-
sists of a chromatic progression of two-second long
pure sine tones ranging from Cs to C4 multiplied
by Hann window amplitude envelopes, see Figure 2.
This signal tests how the pitch detectors handle a
harmonically deficient signal.

5All audio files, Matlab and SuperCollider code, and ad-
ditional analytical graphics can be downloaded at
http://ccrma.stanford.edu/~kermit/scpitch.
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Fig. 1: SuperCollider Language and Server Routing
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Fig. 2: Chromatic Sinusoidal Scale from C3 to Cy

4.2. Sinusoidal Chirp

This test stimulus consisted of a full spectrum (20
Hz to 20 kHz) linear chirp, see Figure 3. Unlike the
scale example, this allows us to look at how the pitch
detectors do when confronted with a signal that is
constantly changing. Additionally, since we are test-
ing the detectors with their default settings, the fre-
quency of the chirp exceeds the range of detectable
frequencies for all three detectors. This allows us to
see what happens when a pitched signal is present
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0 . . . . .
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Fig. 3: Sinusoidal Chirp from 20 Hz to 20 kHz
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Fig. 4: Chromatic Guitar Scale from C3 to Cy4

that does not fall cleanly into the detectable range.

4.3. Chromatic Guitar Scale

The last stimulus presented here is a recorded chro-
matic guitar scale from Cs to Cy, see Figure 4. The
guitar’s spectrum contains a large number of har-
monic overtones that decay quicker as they rise in
frequency. This allows us to investigate the detec-
tor’s response to a harmonically rich spectrum that
changes over time. Unlike the synthesized exam-
ples, this stimulus has a higher noise floor due to
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Fig. 5: Output of hasFreq for a Synthesized
Karplus-Strong Plucked String Chromatic Scale
from C3 to Cy4

the recording process.® Additionally, because it is
recorded and not modeled, there is significant vari-
ance from note to note.

Although we acquired and analyzed the hasFreq out-
put for the three stimuli presented in this paper,
plots of their hasFreq outputs are not useful from a
visual perspective. Figure 5 shows the output of has-
Freq for the three detectors in response to a synthe-
sized Karplus-Strong plucked string chromatic scale.
A value of 1 means the pitch detector has estimated
F0 while a value of 0 means the detector is unable
to find FO with enough confidence.

5. DISCUSSION

Pitch, Tartini, and Qitch all performed well on the
sinusoidal scale and less well on the other two stimuli
(Figure 2). Pitch and Tartini can be extremely accu-
rate in their estimates while Qitch is frequently in-
accurate and has problems making stable estimates.
By analyzing the data output from freq and has-
Frreq, it is clear that Tartini has the lowest amount
of latency and Pitch has the largest amount of la-
tency. On average, Tartini makes its pitch estimate
1.4 times faster than Qitch and 1.6 times faster than
Pitch. Tartini takes about 0.05 seconds to make an

6The recordings were made in a quiet recording studio with
high quality equipment.

estimate with good data compared to 0.07 for Qitch
and 0.08 for Pitch.

In response to the sinusoidal chirp (Figure 3), Pitch
and Tartini performed reasonably well, but Qitch
failed to estimate the correct pitch. Both Pitch
and Tartini have issues estimating pitch once the
chirp exceeds the upper bound of their mazimum
frequency constraint. It is interesting to note that
both of these algorithms make the same type of mis-
take, which is an octave error. Due to the period-
icity of the ACF and the SDF, the algorithms pick
an incorrect local maxima causing both algorithms
to find a pitch, albeit inaccurate, modulo 2.

In the guitar example (Figure 4), it is interesting to
see that Pitch and Tartini do a good job for most of
the sequence. Naturally, in the time between each
pair of notes, the noise floor and decaying previous
note cause all three algorithms to have issues. In
Figure 5, note how the hasFreq output drops when
the higher harmonics fade out.” Pitch handles this
issue well by holding on to the previously detected
note until it has high enough confidence to make its
next estimation. Tartini, on the other hand, out-
puts glitchy data between the notes. Qitch’s data
for the entire sequence is noisier, most likely due to
spectral leakage in the calculation of the constant
@ transformation. Qitch especially seems to have
issues finding the lowest pitches, which is probably
due to the low resolution of the constant @ filterbank
at low frequencies. It is also interesting to note that
at around twenty seconds, the fundamental pitch
decays quicker than the first harmonic, causing all
three algorithms to estimate an incorrect frequency.

On a modern laptop computer, the CPU load for
all three pitch detectors is negligible.® Running
each pitch detection UGen independently, the aver-
age CPU load never rises above 0.5% and the peak
CPU spikes are never higher than 1.5%. Naturally,
CPU usage could be more of an issue when doing
other simultaneous processing or on a less powerful
computer.

From a use standpoint, both Pitch and Tartini make
the average user’s setup easier than Qitch. Both

"This figure is from a synthesized plucked string rather
than the recorded guitar.

82013 MacBook Pro running OSX with a 2.8 GHz Intel i7
processor and 8 GB RAM.
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of them can be used with their default settings to
yield satisfactory results. Qitch requires the extra
overhead of loading the FFT kernels manually to
make the algorithm work. Beyond that, Pitch al-
lows for the largest amount of customization. The
median smoothing feature and ability to downsam-
ple to reduce CPU load are great benefits to using
Pitch. At the same time, Tartini supplies the user
with a simplified list of controls compared to the
other UGens. All three UGens allow power users to
influence the inner works of the pitch detection al-
gorithms by changing parameters such as FFT size.

6. CONCLUSION

As it turns out, both Pitch and Tartini are robust
pitch estimators that work on a wide variety of sig-
nals. We would not hesitate to recommend both of
them to SuperCollider users. A user might need to
try both of them before choosing which one is best
for a specific job. Some of the advanced features
of Pitch, such as median smoothing, might make it
more attractive from a power-user perspective, al-
though Tartini has less latency in making its pitch
estimations. Qitch is not the most attractive pitch
estimater due to complexity in its use and lack of
accuracy.

Future experiments involve increasing the vocabu-
lary of test signals, tweaking the algorithms, and
implementing other pitch estimation schemes in Su-
perCollider.? Other pitch detection algorithms, such
as spectral peak picking and the YIN algorithm
have proven to work well in real-time audio con-
texts [9-11]. Additionally, chord recognition and
other multiple F'0 recognition tasks are on the cusp
of pitch estimation research [12,13].
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