
An Update on the Development of OpenMixer

Elliot KERMIT-CANFIELD and Fernando LOPEZ-LEZCANO
CCRMA (Center for Computer Research in Music and Acoustics),

Stanford University
{kermit|nando}@ccrma.stanford.edu

Abstract
This paper serves to update the community on the
development of OpenMixer, an open source, mul-
tichannel routing platform designed for CCRMA.
Serving as the replacement for a digital mixer,
OpenMixer provides routing control, Ambisonics de-
coders, digital room correction, and level metering
to the CCRMA Listening Room’s 22.4 channel, full
sphere speaker array.

Keywords
Multichannel Diffusion, Spatialization, Ambisonics,
Open Source Audio Software, 3D Audio

1 Introduction

The Listening Room at the Center for
Computer Research in Music and Acoustics
(CCRMA) is a versatile studio space serving the
CCRMA community. Featuring a 22.4 channel
spherical speaker array and a 32 speaker wave
field synthesis system, the Listening Room is an
important facility for research, music composi-
tion, and 3D sound diffusion among other uses.
As conventional mixers are limited in config-
urability, channel count, and usability, we have
implemented a software routing system—called
OpenMixer—to control the primary speaker
system.

Although conceived in 2006, the implemen-
tation of OpenMixer began in 2009. Since
then, the capabilities of the Listening Room
developed—there are more speakers, faster
computers, and more users. To meet the de-
mands, OpenMixer has been under continuous
development. This paper serves as an update
to its current status and extends Lopez-Lezcano
and Sadural’s 2010 LAC paper [1].

1.1 Original Implementation

OpenMixer is our hardware and software solu-
tion to the problem of routing, mixing and con-
trolling the diffusion of multiple multichannel
sources over a large number of speakers, and

was tailored to the Listening Room studio at
CCRMA. The control hardware is comprised
of standard PC computer components housed
in a fan-less case and off-the-shelf RME audio
sound cards, plus external Solid Stage Logic Al-
phaLink MADI AX and Aphex 141 boxes for
A/D and D/A conversion. The control soft-
ware runs on Gnu/Linux and is a collection of
free, open source software programs coordinated
from a master control program written in the
SuperCollider programming language. Inputs
to the system include 3 ADAT connections to
and from the Listening Room Linux workstation
(a regular CCRMA Linux computer that can be
used for music or sound work and has direct ac-
cess to all speakers), 2 additional ADAT I/Os
for external digital sources, 16 line level ana-
log inputs, 8 microphone preamplifier inputs, 8
analog inputs for a media player, and 4 ethernet
jacks connected to a separate network interface
(which can also provide Internet access) that en-
able computers which have NetJack easy access
to all speakers and features of the system.

At the time the previous paper was written,
the Listening Room was equipped with only 16
speakers in a 4 + 8 + 4 configuration, which
could either be addressed independently or be
fed the signals of an Ambisonics decoder (second
order horizontal, first order vertical) integrated
into the system. Two Behringer USB control
surfaces (BCF200 and BCR200) provided a sim-
ple and easy-to-use user interface.

1.2 Changes

The following sections outline most of the
changes to OpenMixer since 2009, both in hard-
ware and in the underlying control software and
functionality.



2 Hardware Upgrades

2.1 Speakers

The number of speakers in the Listening Room
has grown over time. The last major upgrade
happened in March 2011, when the number of
main speakers was changed from 16 to 22 (23 if
we count an additional “center channel” which
is only used for more accurate 5.1 or 7.1 play-
back). The spatial configuration was changed
from 4 + 8 + 4 to 1 + 6 + 8 + 6 + 1,
which enabled us to cover the sphere more uni-
formly and thus decode full periphonic third or-
der Ambisonics with high accuracy (see figs. 1
to 3). In addition, four subwoofers were added,
which required adding an additional eight chan-
nel ADAT D/A converter to the equipment
rack.

Figure 1: The Listening Room

Figure 2: 7 elevated speakers

2.2 Computer and Peripherals

One of CCRMA’s fan-less Linux machines is at
the heart of the Listening Room—OpenMixer
system. As we needed more processing power
to support some of the planned expansions of
the OpenMixer system, we migrated the hard-
ware from an old quad core Q9550 CPU running

Figure 3: 7 speakers below the grid floor

at 2.83GHz, an EP45-DS3R Gigabyte mother-
board, and 8G of RAM to a newer quad core
i7-3770K CPU running at 3.50GHz and using
a DZ77GA-70K Intel motherboard with 32G of
RAM. At the same time we moved from the
old Fedora 14 platform to Fedora 20 (new real
time (RT) patched kernel and newer versions of
all packages). An updated hardware signal-flow
chart can be seen in fig. 4.

The upgrade was anything but boring. Al-
though much faster, the upgraded computer re-
fused to work with the PCI audio cards used
by the old hardware. We were using two RME
cards in tandem—one RME Hammerfall DSP
MADI PCI that interfaced with the main SSL
A/D D/A box and an RME 9652 PCI card for
additional ADAT ports. The upgraded moth-
erboard included two legacy PCI slots for that
purpose, but we were never able to have both
cards working at the same time. The second
card would fail to get interrupts delivered to it.
This was difficult to debug and we spent count-
less hours switching cards around. We eventu-
ally had to move to newer PCI express cards
with equivalent functionality (an RME HDSPe
MADI and an RME RayDAT PCIe).

Even then, the technique of aggregating both
cards into a composite ALSA device using
.asoundrc did not work anymore. The newer
kernel, ALSA drivers, and hardware could not
get the card periods aligned, even though the
sound cards are synced using word clock. JACK
would immediately start generating xruns when
started on the composite device—each card by
itself would work fine. To get around this prob-
lem we tried running JACK on only one of the
cards and connecting the second card to the
system. We did this through either JACK’s
audioadapter internal client or alsa_in and
alsa_out clients. In both cases, the DSP load
was too high even for the upgraded hardware



Figure 4: System hardware diagram

platform.
We finally used Fons Adriaensen’s Zita-

ajbridge to add the second card as a separate
JACK client [2]. As in the previous solutions,
this performs unnecessary sampling rate conver-
sion of the second card inputs and outputs, but
it was the only way to get the system to work
reliably and the additional load was acceptable
(between 9 and 10% of a core each for 64 in-
put and output channels). Another twist to the
story is that we could not get the MADI card
to run as the master card when using the Ray-
DAT as a secondary audio card. We had to run
the RayDAT as the master, which increased the
channel count to sample-rate conversion as well
as the load. All these sound driver peculiari-
ties need serious debugging, but we just did not
have the time to do that.

For cases like this one it would be nice to have
an option in Zita-ajbridge to not do sampling
rate conversion at all, as the cards run in sync
through word clock.

3 Software Upgrades

3.1 SuperCollider and Supernova

The majority of OpenMixer runs inside Super-
Collider, a programming environment specifi-
cally designed for audio applications [3]. In ad-
dition to being well supported by a large devel-
oper/user community, SuperCollider is extend-

able through custom UGens and plugins and
handles multichannel audio, MIDI, and OSC in
a native and intuitive fashion.1 SuperCollider
itself is really two programs—an interpreted
language (sclang) controlling a separate syn-
thesis server (scsynth) running as a separate
unix process.

In this new version of OpenMixer, we
switched the synthesis server to SuperNova, an
alternative server written by Tim Blechmann
which supports automatic parallelization of the
DSP load across multiple cores [4]. This simpli-
fied the software considerably, as before this, we
were performing load balancing across cores by
instantiating several instances of scsynth and
controlling which server was chosen for particu-
lar tasks by hand.

When the OpenMixer computer boots, Su-
perCollider runs automatically as a boot ser-
vice and starts all other ancillary software. The
main task of SuperCollider is routing audio from
multiple sources (Linux workstation, ADAT,
analog, BluRay, mic preamps, and networks
sources) to the speaker array, as well at to
the Linux workstation and networks sources for
recording. This represents a complex many-to-
many routing relationship through the use of
software buses (see fig. 5). In addition to rout-
ing straight from a channel to some number
of speakers (each with independent gain con-
trol), OpenMixer also supports decoding of up
to third order Ambisonics audio streams. An-
other important task that SuperCollider per-
forms is as a task manager for subsidiary pro-
grams such as JACK and Jconvolver. If any of
OpenMixer’s auxiliary processes dies, the sys-
tem restarts them automatically.2

3.2 System software

Together with the hardware changes, we up-
graded the operating system to Fedora 20 and
a new RT patched kernel [5]. To get the best
real-time performance from the new system, we
needed to perform a few new tweaks to its con-
figuration.

We found that the Intel i7-3770K pro-
cessor together with the new kernel (cur-
rently 3.14.x with the latest RT patch)
used the new intel_pstate frequency
scaling driver instead of the conventional

1We could only imagine the horrors of programming
OpenMixer in C or C++!

2Except in very bad situations...



Figure 5: Simplified OpenMixer software rout-
ing diagram

governor-based scaling cpupower software.
The intel_pstate driver can be controlled
through variables in the /sys filesystem
(/sys/devices/system/cpu/intel_pstate).
The following incantation was used to tell the
driver to try to run all cores at the maximum
speed all the time:

echo 100 > /sys/devices/system/cpu/
intel_pstate/min_perf_pct

We also disabled the thermald daemon which
we normally run in all our Linux workstations,
as it also tweaks the speed of the processor cores
if the thermal load exceeds preset limits. We
know what the load on the processor is, so there
is no risk of thermal overloads. In both cases, we
want the core speed to be pegged to the max-
imum available. It looks like the scheduler is
not entirely aware of the current speed of each
core and can migrate a computationally heavy
task from a core running at full speed to one
that is idling (and running at a very low clock
frequency). The intel_pstate driver will of
course adjust the speed of the slow core, but
not fast enough to avoid an xrun in some cases.

We also had to disable hyper-threading (HT)
in the BIOS. This disables the additional “fake”
cores and brings down the total number from
eight to four (but those four are real cores—we
will use a cheaper Intel i5 processors which lacks
hyper-threading for future deployments). With-
out these changes, we experienced occasional
xruns in JACK. HT creates two logical cores out
of each physical core by storing extra state in-
formation that enables both logical cores to ap-
pear to be independent processors. The poten-
tial improvement in performance is only realized
by highly threaded applications and tops out at
about 20% in ideal conditions. This comes at

the cost of increased thread scheduling latency.
We don’t know how much latency HT actually
adds, but it seems that it is enough in our cur-
rent mix of tasks and threads to negate any ad-
vantage in raw processing power HT might of-
fer [6–8].

The start-up scripts that boot OpenMixer
have also changed. The boot activation of the
software now happens through a static systemd
service. The service executes a script that
tweaks root level access configuration settings
and then starts the main start-up script as the
“openmixer” user. This in turn starts a private
X server for future GUI extensions and transfers
control to sclang (the SuperCollider language).
The script also re-starts sclang if for some rea-
son sclang dies.

3.3 User Interface

The user interface in the previous version of
OpenMixer was limited to two Behringer con-
trol surfaces to access most common settings.
This was a deliberate choice to keep the inter-
face simple and mode-less, where every button,
fader, and knob had only one clearly labeled
function. Most of the interface has not changed
but some new functions have been added (see
fig. 6). For example, the master level control
knobs also double as level meters for each bank
of 8 channels (you can select the function of the
knobs), there is a “DRC on/off” button that can
be used to disable the correction filters on each
speaker, we now have a monitor option (with
optional pre-fader level) that routes any input
back to the Linux workstation, we implemented
a speaker test function to quickly make sure all
speakers are operational and also a software re-
set that reinitializes OpenMixer.

Figure 6: User interface

We have also employed SuperCollider’s QT



GUI objects to build a graphic user interface so
that a monitor connected to the control com-
puter can display relevant information. For
now, we have only implemented input and out-
put VU level meters, but this change opens the
door to future upgrades that should make Open-
Mixer even simpler to use, specially if we use a
video screen with touch control.

OpenMixer is internally controlled through
OSC messages. We have been therefore exper-
imenting with applications like TouchOSC on
tablets or smart phones to be able to control
OpenMixer remotely through simple apps in-
stalled in user’s equipment [9].

3.4 Subwoofer Processing

The addition of subwoofers to the Listen-
ing Room required us to implement proper
crossovers in software. We used LinkwitzRiley
4th order crossovers implemented as SuperCol-
lider UGens that are part of the instruments
that do software mixing and routing within
OpenMixer.

3.5 Ambisonics Decoding with ADT
and ATK

First through third order Ambisonics decoders
are naively supported by OpenMixer. In the
previous version of OpenMixer, Ambisonics de-
coders were provided by running ambdec_cli
as a subprocess of the master SuperCollider
program, with decoder matrices tuned to our
speaker arrangement kindly supplied by Fons
Adriansen. A stereo UHJ decoder was also pro-
vided by running Jconvolver as another subpro-
cess with the supplied UHJ preset configuration.

In the new version of OpenMixer, we have
switched to using decoders calculated by the
Ambisonics Decoder Toolbox (ADT), written
by Aaron Heller and Eric Benjamin [10–12].
ADT consists of Matlab/GNU Octave scripts
that calculate Ambisonics decoders though a
variety of techniques. In critical listening
tests, the decoders have proved to perform very
closely to the previous hand-tuned ones. In ad-
dition to generating Ambdec configuration files,
ADT writes the decoders as Faust programs
which can then be compiled to create native Su-
perCollider UGens [13]. For stereo UHJ decod-
ing, we have switched to the Ambisonic Toolkit
(ATK) UGens, written primarily by Joseph An-
derson [14]. We have been able to fold Ambison-
ics decoding entirely into SuperCollider which
minimizes the complexity of the code, the num-

ber of external programs used, JACK graph
complexity, and context switches.

3.6 Digital Room Correction

From the start, OpenMixer calibrates all speak-
ers for uniform sound pressure level and delay
at the center of the room. While the new lo-
cation of the speakers in the studio covers the
sphere with better resolution, they are not re-
ally suspended in a free field condition. In
particular, the speakers located under the grid
floor (below the listener) have a different tonal
quality due to the physical construction of the
“pit” in which they are located. Furthermore,
not all speakers are the same exact model (al-
though they all share the same high frequency
drivers). We have Mackie HR824s at ear level
and smaller Mackie HR624s for the elevated and
lowered speakers. The result of this led to in-
correct and sometimes confusing rendering, es-
pecially when decoding full sphere Ambisonics
(manifested through a tendency of sounds to be
“pulled” towards the ceiling).

In the new version of OpenMixer, we have im-
plemented digital room and speaker correction
using Denis Sbragion’s DRC software package,
as described by Joern Nettingsmeier [15]. By
recording the impulse responses of each speaker
at the listening position, inverse FIR filters can
be calculated to even out small differences in
speaker impulse response due to the speakers
themselves and their location in the room.3

This, coupled with the very dry acoustics of
the studio itself makes for an accurate and even
reproduction of sound over the whole sphere
around the listening position. The only trade
off is an increase of approximately 10 millisec-
onds in the latency of the system. We have
added an on/off switch to be able to bypass the
DRC generated correction filters and access the
speakers directly if necessary.

Jconvolver, written by Fons Adriaensen, is
used as an external subprocess of the main Su-
perCollider program and provides an efficient,
real-time convolution engine that performs the
filtering [17].

3.7 Adding HDMI inputs

We recently had the need to allow users to
connect HDMI audio based equipment (specif-
ically game consoles—for research, of course—

3We used 20 second logarithmic chirps, recorded and
analyzed with Fons Adriaensen’s Aliki [16].



and also laptops). This adds another way to
connect equipment to the system and can be
used to play back 5.1 or 7.1 content (easier in
those cases than using NetJack or analog in-
terfaces). We bought an Outlaw Model 975
surround processor, a low cost unit that pro-
vides both HDMI switching and decoding of
the most common compressed surround formats
(Dolby Digital, DTS, Dolby TrueHD, and DTS-
HD Master Audio, etc). The analog outputs of
the unit were connected to the “player” analog
interface, and the existing Oppo BluRay player
was connected to one of the Outlaw’s HDMI in-
puts.

The only gripe is that the unit cannot (yet)
be controlled from OpenMixer itself. It would
be nice to be able to control everything from
the OpenMixer control surfaces so that the user
does not need to know which HDMI input is
which and how the surround processor is con-
trolled. We could use an infrared remote con-
trol, or inquire if the RS232 interface included
in the unit can be used for control in addition
to firmware upgrades.

3.8 Demo Mode

OpenMixer makes the Listening Room easily
configurable, however, it requires some effort
between walking into the studio and hearing
sound. In the past, demonstrations of the Lis-
tening Room’s sound system—which are quite
frequent—typically included hunting for saved
Ardour sessions to recall and some amount
of guesswork to find projects spread across
CCRMA’s filesystem. To simplify this process,
we implemented a demo mode that highlights
the capabilities of the system in an easy to use
way. We used a Korg nanoKONTROL2 as a
control surface that is patched directly to Open-
Mixer. This controller has eight channel strips
(three buttons, a knob and a fader) and trans-
port control buttons. We have pre-rendered
an assortment of multi-channel works for the
Listening Room’s speaker configuration that
can be easily triggered through the nanoKON-
TROL2.

With minimal effort, someone can listen to a
curated set of mixes of great variety. We have
included selections that show off different types
of 3D diffusion (e.g., quad, 5.1, octophonic,
third order periphonic Ambisonics, etc.) as well
as mixing style (e.g., “concert hall-esque,” “fully
immersive,” “academic electroacoustic,” etc.).

One such piece, a recording mixed through Am-
bisonics, is rendered both in full third order Am-
bisonics and stereo UHJ in a time-synced way
so the “immersive-ness” of the decoders can be
audified and evaluated.

4 Future Work

Although OpenMixer was originally written for
the CCRMA Listening Room, we are working
to parameterize the scripts so that it is more
portable.4 Once appropriately parameterized,
we envision OpenMixer as a useful tool for other
people controlling multichannel speaker arrays.5

We are in the process of implementing Open-
Mixer in our small concert hall, the Stage, that
is equipped with a 16.8 channel 3D speaker sys-
tem. OpenMixer will make it possible to easily
move pieces from the Listening Room environ-
ment to the concert hall. This is especially true
in the Ambisonics domain, as new decoder tech-
nologies implemented in ADT make it relatively
easy to design effective 3D decoders for dome
speaker configurations such as the one we have
on the Stage. CCRMA concerts frequently fea-
ture large speaker arrays (up to 24.8) which are
controlled with similar systems. Making Open-
Mixer a general solution would simplify these
large scale productions.

Much work remains to be done in the soft-
ware itself, in particular, to use the new X-based
GUI interface and to control the whole system
through OSC from tablets and smart phones.

In the Listening Room itself, we have plans
to add more subwoofers (for a total of 8) to
increase both the fidelity and localization reso-
lution of low frequencies.

As the technology gets faster and the number
of speakers grow, OpenMixer will most likely
remain a work-in-progress.

We originally intended to use JackTrip as
an additional input source for remote perfor-
mances, but the feature did not see much de-
mand and it was impossible to make JackTrip
work (without changes to the source code) as a
reliable subprocess to the SuperCollider code.
We plan to use the currently unimplemented
JackTrip inputs to house Fons Adriansen’s Zita-
njbridge (network-JACK) JACK clients, thus

4Naturally, this is a challenging task as speaker con-
figuration, sound cards, input sources, etc. are different
for each system.

5More information about OpenMixer can be found at
https://ccrma.stanford.edu/software/openmixer.



providing a way to connect to the Listening
Room from remote locations [18].

5 Conclusions

OpenMixer is certainly not the only solution
for controlling 3D speaker arrays at CCRMA,
but it has fulfilled its purpose to make the Lis-
tening Room configurable for many different
uses. The latest inclusion of DRC-based im-
pulse response calibration has significantly im-
proved the quality of sound diffusion in the Lis-
tening Room, and is being considered for other
listening spaces at CCRMA.

6 Acknowledgments

The success of OpenMixer is largely due to
the support of the CCRMA community. Many
thanks to Chris Chafe and Jonathan Berger for
embracing the Listening Room in their classes
and projects. OpenMixer is built on free, open
source software and would never have existed
without all who contributed to those projects.

References

[1] F. Lopez-Lezcano and J. Sadural, “Open-
mixer: a routing mixer for multichannel
studios,” Linux Audio Conference, 2010.

[2] F. Adriaensen, “Zita-ajbridge, alsa-
jack and jack-alsa resampler.”
http://kokkinizita.linuxaudio.
org/linuxaudio/.

[3] J. McCartney, “Supercollider: real-
time audio synthesis and algorithmic
composition.” http://supercollider.
sourceforge.net/.

[4] T. Blechmann, “Supernova: a multipro-
cessor aware real-time audio synthesis en-
gine for supercollider,” Master’s thesis, TU
Wien, 2011.

[5] Various, “Real-time linux patches.”
https://rt.wiki.kernel.org/index.
php/Main_Page/.

[6] A. Valles, “Performance insights to
intel hyper-threading technology.”
https://software.intel.com/en-us/
articles/performance-insights-to-
intel-hyper-threading-technology.

[7] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi,
and R. Rooholamini, “An empirical study
of hyper-threading in high performance

computing clusters,” Linux Clusters Insti-
tute Conference, 2002.

[8] Calomel.org, “Network tuning and per-
formance: a simple guide to enhancing
network speeds.” https://calomel.org/
network_performance.html.

[9] Hexler.net, “Touchosc: Modular
osc and midi control surface for
iphone/ipod touch/ipad.” http:
//hexler.net/software/touchosc.

[10] A. Heller and E. Benjamin, “Ambisonic de-
coder toolkit.” http://www.ai.sri.com/
ajh/ambisonics/.

[11] A. Heller, E. Benjamin, and R. Lee, “A
toolkit for the design of ambisonic de-
coders,” Proceedings of the Linux Audio
Conference 2012, 2012.

[12] A. Heller and E. Benjamin, “The ambison-
ics decoder toolbox: Extensions for partial-
coverage loudspeaker arrays,” Proceedings
of the Linux Audio Conference 2014, 2014.

[13] Y. Orlarey, “Faust: the quick path from
ideas to efficient dsp.” http://faust.
grame.fr/.

[14] J. Anderson, “The ambisonic toolkit: tools
for soundfield-kernel composition.” http:
//www.ambisonictoolkit.net/.

[15] D. Sbragion, “Drc: Digital room cor-
rection.” http://drc-fir.sourceforge.
net/.

[16] F. Adriaensen, “Aliki, impulse re-
sponse measurement tool.” http:
//kokkinizita.linuxaudio.org/
linuxaudio/.

[17] F. Adriaensen, “Jconvolver, a convo-
lution engine.” http://kokkinizita.
linuxaudio.org/linuxaudio/.

[18] F. Adriaensen, “Zita-njbridge, network-
jack and jack-alsa resampler.”
http://kokkinizita.linuxaudio.
org/linuxaudio/.


