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Abstract

The short-time Fourier transform (STFT) based spectrogramis
commonly used to analyze the time-frequency content of a sig-
nal. Depending on window size, the STFT provides a trade-off
between time and frequency resolutions. This paper presents
a novel method that achieves high resolution simultaneously
in both time and frequency. We extend Probabilistic Latent
Component Analysis (PLCA) to jointly decompose two spec-
trograms, one with a high time resolution and one with a high
frequency resolution. Using this decomposition, a new spectro-
gram, maintaining high resolution in both time and frequency,
is constructed. Termed the “super-resolution spectrogram”, it
can be particularly useful for speech as it can simultaneously
resolve both glottal pulses and individual harmonics.
Index Terms: STFT, spectrogram decompositions, spectral
analysis, signal representations, time-frequency distribution

1. Introduction
The short-time Fourier transform (STFT) is a general-purpose
tool to represent a signal in a time-frequency domain [1]. The
spectrogram, which is the magnitude display of the STFT, is
particularly useful for speech and musical signals in that it
provides visualized information of sound sources, for exam-
ple, temporal evolution of harmonic and noise components. A
downside of the STFT is that high resolution cannot be achieved
simultaneously in both time and frequency. The STFT of a sig-
nal is computed from a series of signal segments over a sliding
window. When the window is short, temporal changes of the
signal can be well observed while harmonic peaks are blurred
on the frequency axis. When the window is long, on the other
hand, harmonic peaks become sharp while temporal changes
are smeared on the time axis.

To overcome the inherent tradeoff between time and fre-
quency resolutions of the STFT, alternative time-frequency rep-
resentations have been suggested. One approach is using non-
uniform time-frequency resolution. The wavelet transformand
constant-Q transform fall into this category [2] [3]. Others in-
clude quadratic transforms known as Cohen's class, such as,
the Wigner-Ville and Choi-Williams distributions [4] [5].They
are known to provide high resolution, particularly for non-
stationary signals. Another method is the reassigned spectro-
gram, which also provides highly sharpened spectral distribu-
tion by remapping the regular STFT to instantaneous time and
frequency domains [6].

In this paper, we present a novel time-frequency represen-
tation that can achieve high resolution simultaneously in both
time and frequency domains. The basic idea is to �rst jointly

decompose two spectrograms, one formed with a high time res-
olution and the other with a high frequency resolution. We pro-
pose a method termed here Coupled Probabilistic Latent Com-
ponent Analysis (PLCA) to perform this decomposition. Cou-
pled PLCA is an extension to PLCA [7] that is used to decom-
pose individual spectrograms. Using the result of these decom-
positions, we construct a spectrogram that has a high resolution
in both time and frequency. This resulting spectrogram effec-
tively resolves temporal changes and sharp harmonic peaks si-
multaneously.

2. Proposed Method

In this section, we �rst describe PLCA applied to spectrogram
decomposition. We then describe the proposed method, Cou-
pled PLCA, which jointly decomposes two spectrograms de-
rived from the same signal source. Finally, we describe the con-
struction of the super-resolution spectrogram.

2.1. PLCA

PLCA is a technique that is used to decompose a spectrogram
into a sum of outer products of non-negative spectral and tem-
poral components. The PLCA model is given by:

Vf t � 
X

z

P(z)P (f jz)P (t jz) (1)

whereVf t is spectrogram evaluated atf; t . P (f jz) are spectral
components, which can be interpreted as basis vectors.P (t jz)
are temporal components that indicate the occurrences of the
corresponding spectral components in time.P (z) is a distribu-
tion of weights. is a scaling factor. All of these distributions
are multinomial distributions.

A given spectrogram can be decomposed by estimating
the parameters of the multinomial distributions,P (f jz),
P (t jz), andP(z). This parameter estimation is done using the
Expectation-Maximization (EM) algorithm as follows:

E Step:

P (zjf; t ) =
P (z)P (f jz)P (t jz)P
z P(z)P (f jz)P (t jz)

(2)
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Figure 1: Two spectrograms of a mixture of sine and impulse,
one with high frequency resolution (left) and the other withhigh
time resolution (right). Only either one of them is displayed in
high resolution. Note that shapes of the temporal and spectral
components also follow time and frequency resolutions of the
spectrograms.

M Step:

P (f jz) =

P
t Vf t P(zjf; t )

P
f

P
t Vf t P(zjf; t )

(3)

P (t jz) =

P
f Vf t P(zjf; t )

P
t

P
f Vf t P(zjf; t )

(4)

P (z) =

P
f

P
t Vf t P(zjf; t )

P
z

P
f

P
t Vf t P(zjf; t )

(5)

2.2. Coupled PLCA

PLCA can be used to decompose an individual spectrogram.
However, the spectrogram can have high resolution in either
time or frequency, but not both. For a given signal, we can com-
pute a spectrogram with high frequency resolution,V ( F ) using
a long window, and a spectrogram with high time resolution,
V ( T ) using a short window. We can perform a separate decom-
position on each of these spectrograms using PLCA. This will
yield two separate sets of component distributions:

1. High frequency resolution distributions —PF (f jz),
PF (t jz), andPF (z)

2. High time resolution distributions —PT (f jz), PT (t jz),
andPT (z)

PF (f jz) will describe the spectral structure of the spectrogram
with a high frequency resolution.PF (t jz) will indicate the oc-
currences of these spectral components in time. However, the
resolution of these occurrences in time will be poor. On the
other hand,PT (t jz) will indicate the occurrences with a much
higher resolution while the distribution ofPT (f jz) is smeared.
Fig. 1 illustrates an example of the two spectrograms and their
corresponding spectral and temporal components applied tothe
sum of a sinusoid and an impulse.

This decomposition gives rise to the idea that a spectro-
gram with high resolution in both time and frequency can be
constructed by using the spectral resolution ofPF (f jz) and the
temporal resolution ofPT (t jz). The problem is thatPF (f jz)
and PT (t jz) are computed independently. This means that
they have no direct correspondence. For example, there is no
guarantee thatPT (t jZ = 1) will indicate the occurrences of
PF (f jZ = 1) . When a large number of components are used,

there is very little chance of having a correspondence between
the components.

In order to force a correspondence, we couple the two inde-
pendent problems by assuming that the two STFT spectrograms
were derived from the same high resolution parent spectrogram.
In this way, the componentsPT (f jz) andPF (t jz) can be in-
terpreted as blurred versions ofPF (f jz) andPT (t jz), respec-
tively. Using a frequency blurring functionBF () and a time
blurring functionBT () , we have the following equations that
establish the coupling between the two independent problems:

PT (f jz) = BF (PF (f jz)) (6)

PF (t jz) = BT (PT (t jz)) (7)

Using this correspondence, we eliminatePT (f jz) and
PF (t jz) from the independent problems and propose a coupled
estimation procedure that we call Coupled PLCA. The estima-
tion is done using the EM algorithm as follows:

E Step:

PF (zjf; t ) =
PF (z)PF (f jz)BT (PT (t jz))P
z PF (z)PF (f jz)BT (PT (t jz))

(8)

PT (zjf; t ) =
PT (z)BF (PF (f jz)) PT (t jz)P
z PT (z)BF (PF (f jz)) PT (t jz)

(9)

M Step:

PF (f jz) =

P
t V ( F )

f t PF (zjf; t )
P

f

P
t V ( F )

f t PF (zjf; t )
(10)

PT (t jz) =

P
f V ( T )

f t PT (zjf; t )
P

t

P
f V ( T )

f t PT (zjf; t )
(11)

PF (z) =

P
f

P
t V ( F )

f t PF (zjf; t )
P

z

P
f

P
t V ( F )

f t PF (zjf; t )
(12)

PT (z) =

P
f

P
t V ( T )

f t PT (zjf; t )
P

z

P
f

P
t V ( T )

f t PT (zjf; t )
(13)

2.3. Blurring Function

The blurring functions are derived from the relationship be-
tween long and short windows used in forming the two spectro-
grams. Since the spectrogram is given as the magnitude of the
STFT, the temporal and spectral blurring functions are expected
to only approximate a Fourier transform pair. Furthermore,
as the temporal and spectral components are non-negative, no-
sidelobe or low-sidelobe windows [8] should be considered.We
approach the solution with elementary signals, assuming that
the result can be generalized to complicated signals.

In Fig. 1, the shapes of temporal components correspond-
ing to the impulse are determined by the windows used in the
spectrograms because windowing the impulse results in sam-
pling the window every hop size (which is de�ned as the win-
dow length minus the overlap length in STFT). Likewise, from
duality between the impulse and sine in time and frequency do-
mains, the shapes of frequency components corresponding to
the sine frequency are determined by the magnitude responseof
the window. Therefore, the blurring function can be viewed as a
linear �lter that converts a short window to a long window in the
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Figure 2:Super-resolution spectrogram of a mixture of sine and
impulse. It is constructed from high time and frequency resolu-
tion components obtained by coupled PLCA.

time domain or the sharp magnitude response to the wide one
in the frequency domain. These can be expressed as follows:

wF (n) = BF (wT (n)) =
X

i

bT (i )wT (n � ih ) + eT (n) (14)

WT (k) = BT (WF (k)) =
X

j

bF (j )WF (k � j ) + eF (k) (15)

whereh is the hop size of the STFT,wT (n) and wF (n) are
short and long windows,WT (k) and WF (k) are their mag-
nitude responses, andbT (n) andbF (k) are coef�cients of the
time and frequency blurring functions, respectively. Notethat
the time indexi spans the width of the long window, whereas the
frequency indexj is limited to the main lobe of the wide mag-
nitude response assuming that the sidelobe level is low enough.
The unknown blurring �lter coef�cientsbT (i ) andbF (j ) can be
computed by least squares, that is, minimizing the squared error
noted in the Eq. (14) and (15).

The blurring functions that we derived above only approx-
imate the time or frequency blurring that occurs in the hypoth-
esized conversion from the super-resolution spectrogram to the
high frequency resolution spectrogram or the high time resolu-
tion spectrogram. Eq. (7) and (6) are therefore approximations
and do not hold with equality. We are therefore effectively per-
forming an approximation to Coupled PLCA (and to the EM
algorithm).

2.4. Super-Resolution Spectrogram

Using Coupled PLCA and blurring functions, we compute spec-
tral components,PF (f jz), with high frequency resolution and
temporal components,PT (t jz), with high time resolution. Us-
ing these distributions along with the weights, we can construct
a spectrogram with high resolution in both time and frequency.
Since the problem is coupled, the mixture weightsPF (z) and
PT (z) tend to be almost identical. We can therefore use ei-
ther one. The super-resolution spectrogram is constructedas
follows:

V ( S )
f t =

X

z

PF (z)PF (f jz)PT (t jz) (16)

Fig. 2 shows the super-resolution spectrogram for the sine and
impulse mixture. Compared to Fig. 1, both sine and impulse are
displayed with a high resolution.
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Figure 3:Three spectrograms of a male voice: high time resolu-
tion spectrogram (top), high frequency resolution spectrogram
(middle), and super-resolution spectrogram (bottom). Hann
windows of 8 and 64 ms were used for the high time resolution
and high frequency resolution spectrograms respectively,with 1
ms hop size in both cases.

3. Results
The proposed method has been applied to speech. Speech sig-
nals are typically analyzed using both wideband (high time
resolution) and narrowband (high frequency resolution) spec-
trograms because they provide different types of information.
A wideband spectrogram effectively displays the variationof
formants and periodic excitation of glottal pulses for voiced
speech, while a narrowband spectrogram shows trajectoriesof
individual harmonics, which are associated with the pitch of
voiced speech.

Fig. 3 compares wideband, narrowband, and the proposed
super-resolution spectrograms of a speech example. To com-
pute the super-resolution spectrogram, Coupled PLCA was per-
formed on the wideband and narrowband spectrograms derived
from the same speech signal using 100 components and run-
ning the EM algorithm for 100 iterations. The resulting super-
resolution spectrogram presents well-resolved occurrences of
glottal pulses as well as sharp harmonic curves, preservingthe
locality in both time or frequency. Note that the voiced part
of the super-resolution spectrogram has a waf�e pattern dueto
simultaneous appearance of the harmonics and periodic glottal
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Figure 4: Magni�ed portion of the super-resolution spectro-
gram in Fig. 3 and its time-domain waveform. Note that the
glottal pulses in the waveform correspond the vertical lines in
the super-resolution spectrogram.

pulses. This can help distinguishing voiced speech from un-
voiced speech, which has a rather ragged and sparse distribu-
tion.

Fig. 4 magni�es a voiced portion of the super-resolution
spectrogram and its corresponding waveform in the time do-
main. The periodic occurrences of glottal pulses seen in
the waveform exactly match the vertical lines in the super-
resolution spectrogram. This demonstrates the surprisingfact
that pitch of the speech can be observed from not only the har-
monic relation on the frequency axis but also the periodic series
of vertical lines on the time axis in the super-resolution spec-
trogram. Since the period and frequency are reciprocal to each
other, the rectangular grid becomes taller and thinner as pitch
increases (0.05 to 0.14 ms), whereas it turns shorter and broader
as the pitch decreases (0.14 to 0.30 ms).

4. Discussion
While experimenting with the proposed method, we found that
the following should be taken into account in order to obtain
a satisfying super-resolution spectrogram. First, STFT param-
eters, in particular, window size and hop size, should be ap-
propriately chosen so that high-time and high-frequency reso-
lution spectrogramsV ( T ) andV ( F ) contain desirable proper-
ties in each time and frequency domain. We have seen that the
super-resolution spectrogram does not produce a successful re-
sult without such conditions. Second, the short and long win-
dow of the two STFTs should be center-aligned over the wave-
form for the same numbered frame of the two spectrograms.
When they are not correctly aligned, the time blurring functions
can distort the result. Third, the super-resolution spectrogram
generally works well for signals with both sharp attack and pe-
riodicity. Thus, speech signals are seen to be good examplesto
demonstrate the effectiveness of the proposed method.

Our �rst experiment toward the super-resolution spectro-
gram also revealed two issues. The EM algorithm is guaranteed
to increase the log-likelihood and get closer to a local optimum
in every iteration. We can therefore assume that the resultscan
only get better with more iterations. Since we are only using

an approximation to the EM algorithm (due to inexact blurring
functions) as described in sec. 2.3, we lose these convergence
guarantees. In practice, we therefore observe that the super-
resolution spectrogram occasionally degrades beyond about 150
iterations. In order to avoid the problem, more investigation will
be needed to �gure out the blurring process for a given window.
Furthermore, an optimized window, which is not only robust
to the degradation but also minimizes the error in estimating
time and frequency blurring functions, should be designed to
improve the result. Another caveat is the execution time. We
performed the coupled PLCA using Matlab running on a com-
puter with 2.16 GHz Intel Core Duo and 2GB RAM. It took
more than a minute for the speech example in Fig. 3, which is
one second long at 8kHz sampling frequency, with 100 compo-
nents and 100 EM iterations. In order to improve the execution
time, the minimum iteration and the minimum number of com-
ponents necessary to produce a reasonably well-resolved spec-
trogram in both time and frequency, will need to be studied.

5. Conclusion
In this paper, we present a method for constructing a spec-
trogram with high locality in both time and frequency do-
mains, starting from two STFT-based spectrograms, one with
a high resolution in the time domain, and the other with a
high resolution in the frequency domain. We extended the
PLCA method for spectrogram modeling, and proposed Cou-
pled PLCA. Here we link different spectrograms of the same
sound source through blurring functions, which enables us to
estimate parameters for a single super-resolution spectrogram.
Successful initial testing on speech signals validates ourap-
proach. Future works include designing more exact blurring
functions to ensure the convergence of the EM algorithm, �nd-
ing optimal PLCA parameters, and qualitative evaluation of
speech signal analysis. In addition, the coupling method can
be extended to incorporate three or more spectrograms.
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