Variable Fractional Delay Filters in Bandlimited
Oscillator Algorithms for Music Synthesis

(Invited Paper)

Jussi Pekonen*, Vesa Vilimiki*, Juhan Nam®, Julius O. Smith’ and Jonathan S. Abelf
*Department of Signal Processing and Acoustics
Aalto University School of Science and Technology
Espoo, Finland
Email: {Jussi.Pekonen,Vesa.Valimaki} @tkk.fi
fCenter for Computer Research in Music and Acoustics
Stanford University
Stanford, California 94305, USA
Email: {juhan,jos,abel} @ccrma.stanford.edu

Abstract—Trivially sampled geometric waveforms such as the
rectangular pulse wave used in subtractive sound synthesis suffer
from aliasing caused by the discontinuities in the waveform or its
derivative. Several algorithms for the reduction of aliasing dis-
tortion have been suggested, providing either complete removal
or great suppression of aliasing. Some antialiasing oscillators
utilize variable fractional delay filters as an essential part of
the algorithm. In this paper, these oscillators are reviewed with
an emphasis on motivating the use of the fractional delay filters.

Index Terms—Fractional delay filters, bandlimited oscillators,
music synthesis

I. INTRODUCTION

Subtractive sound synthesis was a popular technique in
music synthesizers in the 1960s and 1970s. In subtractive
synthesis a spectrally rich source signal is shaped with a
time-varying resonant filter to produce evolving and lively
sounds. Today, digital emulation of these vintage sounds, often
referred as “virtual analog synthesis,” is an interesting topic
of research, initiated in 1995 by the introduction of the Nord
Lead synthesizer that emulated the analog synthesizers as a
digital unit.

Traditionally, the subtractive synthesis technique uses peri-
odic geometric waveforms such as sawtooth, rectangular pulse,
and triangular pulse waves as the source signal [1], [2]. Un-
fortunately, as these classical waveforms have discontinuities
in the waveform or waveform derivative, they have a non-
bandlimited spectrum. Therefore, trivial digital synthesis of
these waveforms via sampling results in an aliased signal in
which the harmonics above the Nyquist limit fold back to the
audio band [3]-[6]. Since the harmonics of these waveforms
decay moderately, by about 6 dB per octave in case of a
sawtooth and a rectangular pulse wave and by 12 dB per
octave in case of a triangular pulse wave, the aliasing becomes
clearly audible especially at high fundamental frequencies. The
aliasing issue is illustrated in Fig. 1 where the waveform of
a continuous-time rectangular pulse wave having fundamental
frequency fo = 3.322 kHz (note G#7) and duty cycle of 40%
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Fig. 1. (a) The continuous-time waveform of a rectangular pulse wave having
fundamental frequency fo = 3.322 kHz (note G#7) and duty cycle of 40%
and (b) the spectrum of its trivially sampled digital representation. The dots
in (a) represent the sampled data. A sampling frequency fs = 44.1 kHz was
used. The non-aliased spectral components are indicated with crosses in (b).

is plotted together with the spectrum of its trivially sampled
digital representation for the sampling frequency f; = 44.1
kHz.

Numerous algorithms have been suggested to either remove
or suppress the aliasing. Some of these algorithms produce an
ideally bandlimited waveform by synthesizing a fixed number
of harmonics [7]-[11]. Another group of algorithms allow
some aliasing mainly at high frequencies where the human
hearing is less sensitive by performing lowpass filtering prior
to the sampling of the waveform. The lowpass filtering can be
applied to the derivative of the waveform which is an impulse
train [12] that is integrated after the filtering to obtain the
bandlimited waveform. It has been also suggested that the



integration can be performed beforehand in order to avoid
numerical problems associated with the integration [13].

There are also algorithms that produce aliasing in the whole
audio band but more suppressed than in the case of trivial
sampling. The aliasing can be suppressed by sampling the
trivial waveform at a higher sampling frequency [4], [6] but
a very high oversampling factor should be used in order to
obtain a proper alias reduction performance. Alternatively, the
sawtooth waveform can be obtained by applying a tracking
highpass and a fixed lowpass filter to a full-wave rectified
sinusoid of half of the fundamental frequency [14] or by
applying a differentiating filter to a piecewise polynomial
waveform [15]-[18]. By modifying the basic algorithm of the
latter approach the other classical waveforms can be obtained.

There are also other nonlinear techniques that can produce
the classical waveforms [19]-[26] but it should be noted that
these nonlinear approaches are generally not bandlimited. The
aliasing can also be suppressed in the digital domain by
applying a digital post-processing filter to the alias-corrupted
waveform [27].

In this paper, the connection between the bandlimited
interpolation via fractional delay filtering and bandlimited
classical waveform synthesis is explained. Section II presents
an antialiasing oscillator approach where the formulation of
the algorithm resembles the formulation of the bandlimited
interpolation. In Section III, the use of the fractional delay
filters in the oscillator algorithm is investigated in more detail.
Finally, Section IV concludes the paper.

II. QUASI BANDLIMITED WAVEFORM SYNTHESIS

Of the bandlimited oscillator algorithms listed above, band-
limited interpolation and fractional delay filters are directly
applicable to the wavetable synthesis approach [10] where the
waveform is generated from a precomputed table that contains
one cycle of bandlimited oscillation by stepping the table index
appropriately to match the desired fundamental frequency.
As the step size is in general not an integer, wavetable
interpolation is needed to avoid deviation from the desired
pitch. In addition, fractional delay filters are needed in the
comb filters of the post-processing approach [27]. On the other
hand, the phase distortion approaches that use time-varying
first-order allpass filters [21]-[25] can be loosely interpreted
as a special use of the first-order Thiran allpass fractional delay
filter.

The Stilson and Smith approach [12] where the waveform
derivative is bandlimited results in a formulation that resem-
bles the formulation of the bandlimited interpolation. Consider,
for instance, a continuous-time rectangular pulse wave having
a duty cycle, i.e. the pulse width, P. It can be expressed as
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where Ty = 1/ fy is the oscillation period in seconds and u(z)

is the Heaviside unit step function,

0, for x <0,
0.5, for x =0, and 2)
1, for x > 0.

u(z) =

The derivative of the rectangular pulse wave is given by
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where §(z) is the Dirac delta (impulse) function that is zero
when x # 0 and that satisfies the condition
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When the differentiated signal is bandlimited, each Dirac
delta function is replaced with the impulse response of the
bandlimiting lowpass filter [12], [28]. In the ideal case, the
lowpass filter impulse response is given as

hia(t) = sinc(fct), S

where f. is the cutoff frequency of the filter and sinc(x) =
sin(mx)/(7x).

Now, by integrating the bandlimited impulse train where
the impulses of Eq. (3) are replaced with the bandlimited
impulse of Eq. (5), the bandlimited rectangular pulse wave
will be obtained. This approach is directly applicable also for
sawtooth and triangular pulse waves. It should be noted that
with the triangular pulse wave the waveform derivative is the
rectangular pulse wave that has a duty cycle of 50% and an
amplitude 8 fy A where A is the original amplitude. The Stilson
and Smith approach, often called the bandlimited impulse train
(BLIT) synthesis method, can therefore be depicted with a
general block diagram given in Fig. 2. The phase counter steps
the phase of the oscillator according to the desired fundamental
and sampling frequencies. The discontinuity detector triggers
the BLIT synthesizer whenever the waveform derivative con-
tains a discontinuity. Finally, the bandlimited impulse train is
integrated, or double integrated in the case of triangular pulse
wave, to obtain the bandlimited waveform.

Three observations can be made from the derivation given
above. First, as the fundamental frequency of the oscillation
is arbitrary, waveform discontinuities are generally located
between sampling instants and the location varies from dis-
continuity to another. This means that the peak of the sinc
function needs to be shifted according to a variable fractional
delay relative to the sampling instant following the location of
the discontinuity. Second, since the sinc function is infinitely
long, complete synthesis of the ideal bandlimited impulse train
is impossible as it requires infinitely many sinc-function values
to be summed at each sampling instant [12], [28]. Third, since
the inline evaluation of the sinc function is impractical, it
needs to be approximated. Pulses obtained with, e.g., modified
FM synthesis [29] could be used but typically the sinc function
is windowed and sampled from a table [30]. These approxima-
tions produce waveforms that are not completely bandlimited,
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Fig. 2. Block diagram of an oscillator based on the BLIT approach. The bandlimited waveform y(n) is obtained as the integral (double integral in case of

triangular pulse wave) of the bandlimited impulse train §(n).

having some aliasing at high frequencies. However, since
human hearing is less sensitive at high frequencies, the aliasing
is not that clearly audible. Therefore, these algorithms are
usually called quasi bandlimited oscillator algorithms [30].

III. FRACTIONAL DELAY FILTERS IN QUASI BANDLIMITED
OSCILLATOR ALGORITHMS

As the basis function of ideal bandlimited interpolation is
also the sinc function [31], [32], the approximation approaches
used for bandlimited interpolation can be utilized also in the
synthesis of a bandlimited impulse train. Practical and efficient
approximation techniques for bandlimited interpolation are
fractional delay filters [33], [34], and recently their use have
been tested also in the synthesis of the bandlimited impulse
train [35], [36].

A. Feedback delay loop oscillator

In [35] a low-order Thiran allpass filter was utilized in a
feedback delay loop to generate an impulse train that has a
desired constant period. The impulse train synthesis is trig-
gered only once and the resulting impulse train is completely
free from aliasing. The block diagram of a feedback delay loop
BLIT synthesizer is depicted in Fig. 3. The delay line length
is the integer part of the oscillation period Py = fs/ fo and the
fractional delay filter Hq(z) is to be designed to implement
the fractional part of the oscillation period Py — |Py| at
the fundamental frequency. A bipolar BLIT is obtained by
using two feedback delay loops with the second loop, i.e., the
loop that generates the negative pulses, triggered delayed with
respect to the other. However, if the time difference between
the positive and negative pulses is symmetric, i.e., the duty
cycle is equal to 50%, the structure given in Fig. 3 can be
used but with the loop delay halved and with the summation
element replaced with a subtraction.

The waveform and the spectrum obtained with the feedback
delay loop approach are presented in Fig. 4. The initial wave-
form (Fig. 4(a)) has a series of impulses with slight dispersion
whereas the waveform after one second (Fig. 4(b)) completely
becomes dispersed over time due to the frequency-dependent
group delay of the allpass filter. This dispersion causes a
small degree of inharmonic overtones as shown in Fig. 4(c)
where the harmonic references are marked with crosses for
comparison. However, an objective evaluation based on inhar-
monicity coefficient has showed the effect of inharmonicity to
be nearly inaudible, although a slight time-varying phase shift
was detected at high fundamental frequencies in an informal
listening test [35].
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Fig. 3.  Block diagram of the unipolar feedback delay loop BLIT algo-
rithm [35]. The delay line length is the integer part of the oscillation period.
The filter Hgq(z) is an allpass filter that produces the fractional delay. The
block connected to the summation element is an impulse trigger.

When the fundamental frequency changes over time, for
example, for vibrato and glissando, the delay produced by
the feedback delay loop is required to change in real-time.
However, with a single read pointer structure of Fig. 3 the
changes in the delay line length and in the fractional delay
filter coefficients can introduce discontinuities into the loop.
This problem can be avoided by using two reading pointers
corresponding to two different frequencies and cross-fading
the two allpass filter outputs [37]. Van Duyne et al. suggested
setting the range of the fractional delay between 0.618 and
1.618 to minimize the transient effect and modifying the cross-
fader to ramp up after 5 warm-up samples which corresponds
to the time that the transient dies out [38]. Fig. 5 shows
the block diagram of the feedback delay loop algorithm that
incorporates these extensions that enable time-varying pitch.

B. Fractional delay BLIT oscillators

In [36], bandlimited impulses were synthesized using low-
order Lagrange and B-spline interpolators and Thiran allpass
filters. These interpolators were also used in the fractional
delay filter approaches to the bandlimited interpolation [33],
[39]-[43]. Lagrange interpolation provides a maximally flat
approximation of the sinc function around the zero fre-
quency [33], [44]. B-splines are often used in image processing
applications [42]. Thiran allpass filters have unity gain at all
frequencies and they produce a maximally flat group delay
response at DC [33].

The use of fractional delay filtering approaches is illustrated
in Fig. 6 where the synthesis of the bandlimited impulse
train, the resulting approximately bandlimited waveform, and
the spectrum of the waveform are shown for the third-
order Lagrange and B-spline interpolators. The continuous-
time interpolation polynomials are shown in the impulse-train
plot together with the fractional delay associated with each
discontinuity. Note that the fractional delay varies from a
discontinuity to another. It can also be seen that the aliasing
is greatly reduced (compare Fig. 1(b) with Figs. 6(e) and 6(f))
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Fig. 4. The unipolar impulse train of the feedback delay loop BLIT approach
after (a) the trigger and (b) one second of oscillation for fo = 3.322 kHz
and fs = 44.1 kHz. The spectrum of the impulse train is shown in (c). It is
clearly shown that the impulse train does not include any aliasing and that
it is inharmonic (the desired harmonics are indicated with crosses in (c)).
The inharmonicity makes the output of the algorithm to deviate from an ideal
impulse train as illustrated in (b).

> H(2)
T »P—> Delay line X-fader > §(n)
> Hi(2)
Fig. 5. Block diagram of the feedback delay loop BLIT algorithm that

enables time-varying fundamental frequency [35]. The X-fader block performs
the cross-fading of the allpass filter outputs.

especially at low frequencies.

It should also be noted that the peaks of the B-spline
interpolation polynomials are less extreme than those of the
Lagrange interpolator but since the B-spline interpolator is al-
ways non-negative, the integration of the impulse train results
effectively in the same polarization change of the waveform.
Moreover, the spectrum of the third-order B-spline given in
Fig. 6(f) shows two interesting points. First, the third-order B-
spline interpolator algorithm produces less aliasing compared

to the Lagrange interpolator of same order (see Fig. 6(e)).
Second, the amplitude drop of the higher harmonics is quite
large with the B-spline interpolator whereas with the Lagrange
interpolator the higher harmonics have almost the desired
amplitudes. This happens because the B-spline interpolator
has a rather steep roll-off to the stop-band with a trade-
off of greater attenuation in the pass-band. By designing the
fractional delay filter using another optimization criterion [33],
a good alias reduction could be obtained while the pass-band
attenuation would be reduced.

The low-order Thiran allpass fractional delay filters were
noted to provide good alias reduction especially at low fre-
quencies [36]. Up to the fundamental frequency the alias re-
duction obtained with the Nth-order allpass filter was observed
to be close to that of the (/N +1)th-order Lagrange interpolator
for N = 1 and 2. However, the allpass filters produce
considerable aliasing at higher frequencies and the aliasing
level is clearly higher than with the Lagrange and B-spline
interpolators. This is a result from the fact that the higher com-
ponents are attenuated less with the allpass filters than with
the polynomial interpolators. Still, the higher components are
slightly attenuated also with the allpass fractional delay filters.
Aside the higher aliasing level at high frequencies, the Thiran
allpass filters have also another drawback. The computation
of the filter coefficient requires a division (see [33]) every
period which is impractical in hardware implementations.
Approximations for the coefficient computation that avoid the
division have been suggested in [35], [36].

As mentioned above, Brandt suggested in [13] that the
numerical problems of the integration in the BLIT algorithm
could be overcome by performing the integration before the
sampling of the basis function. This means that the sampled
sinc function is accumulated and used as an approximation
of the bandlimited step function. Now, at every discontinuity
the read of the bandlimited step function (BLEP) is triggered
and output. When the table read exceeds the last element of
the table, the synthesizer outputs ones. The algorithm can be
further simplified by subtracting the unit step function from the
table and applying the resulting BLEP residual as a correction
function to the discontinuities of the trivial non-bandlimited
waveform [30], [45] as illustrated in Fig. 7.

The BLEP approach can be applied to the fractional delay
filtering BLITs as the BLEP function obtained with them is the
integral of the filter coefficients with respect to the delay. This
extension has been shown in [30] for the linear interpolator,
i.e. the first-order Lagrange (and B-spline as they are exactly
the same) interpolation filter. In [19] the extension was tested
with a third-order spline and a truncated third-order Lagrange
interpolators that modify only the two samples that precede
and follow the discontinuity.

IV. CONCLUSIONS

Trivial sampling of classical geometric waveforms such as
the sawtooth, rectangular pulse, and triangular pulse wave
used in subtractive sound synthesis suffers from harsh aliasing
caused by the discontinuities in the waveform or its derivative.
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The approximately bandlimited impulse train obtained with the third-order (a) Lagrange and (b) B-spline fractional delay filter for the rectangular

pulse wave having duty cycle of 40%, fo = 3.322 kHz, and fs = 44.1 kHz. The integrals of the bandlimited impulse trains, i.e., the approximately bandlimited
rectangular pulse waves, are shown in (c) and (d) for the Lagrange and the B-spline approaches, respectively. The spectra of the waveforms are given in
(e) for the Lagrange interpolator and in (f) for the B-spline interpolator. The dots in (a)—(d) represent the sampled data. In (a) and (b), the continuous-time
impulse responses are shown with a solid line and the corresponding fractional delays of each discontinuity are given right to the impulses. The crosses in
(e) and (f) illustrate the desired amplitudes of the non-aliased spectral components.
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Fig. 7. Block diagram of an oscillator based on the BLEP approach. The bandlimited step function is applied as a correction function to the non-bandlimited

trivial oscillator output.

Several techniques to remove or suppress the aliasing have
been proposed and one of them formulates the bandlimited
synthesis by applying a lowpass filter to the derivative of the
waveform prior to sampling. As the derivative of the sawtooth
and rectangular pulse waves and the second derivative of the
triangular pulse wave is an impulse train, the impulses of the
derivative are replaced with the impulse response of the low-
pass filter. The integration of the resulting bandlimited impulse
train (BLIT) produces a bandlimited waveform. In the ideal
case, the BLIT formulation results in a bandlimited impulse
that is the same as the basis function of the ideal bandlimited
interpolation. Since ideal bandlimited interpolation is often
approximated with fractional delay filters, it is natural to use

them also to approximate the ideal bandlimited impulse of
the BLIT approach. In this paper, this extension was reviewed
with an emphasis on motivating the use of the fractional delay
filters. Recently proposed feedback delay loop and fractional
delay filter BLIT oscillators were presented in more detail and
their alias reduction performance were exemplified.
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