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ABSTRACT 

 
In this paper a novel audio classification method based on Entropy Model [1] is presented. By applying this 

model on Harmonic Product Spectrum [2], a viable classification system that is able to discriminate between 

music and various ambient noises can be achieved that even performs well in a „lo-fi‟ environment with audio 

signals of poor quality. 

 

 

 

1. INTRODUCTION 

 
Gracenote has been providing Music Identification services throughout the world in various forms.  One 

particular service is referred to as Mobile MusicID [3], which enables users to recognize the music around 

them when they send the ambient audio signal to Gracenote servers through mobile handsets.  On the server 

side, finding possible matches from audio fingerprints that have been either generated on the handset, or from 

audio submitted by the handset on the server side incurs a significant amount of computational load, which 

translates into monetary equipment and operational cost.  Through monitoring the audio recording submitted 

to this service from handset users, we have found that some users sent almost silent recordings that have little 

data to extract a fingerprint from, and the remaining data has a noise-like characteristic (thus simple level 

thresholding does not function well).  Other users frequently submit ambient noise with no discernable music 

content that could be used by the algorithm for identification.  In those cases, it would be desirable to advise 

the user to record more prominent music audio by, for example, approaching the sound source in order to 

achieve a positive recognition event.  It is further beneficial if we could apprehend query attempts that are 

bound to fail due to these issues and prevent querying against the recognition service altogether as this would 

save costs in server operation and also for establishing the network connection between the handset and the 

service.   

    With this purpose in mind, a silence detector had been designed in the past, anticipating that this could be 

solved using a fairly straightforward algorithm.  The silence detector simply calculates the energy level for 

each time frame, which is 3s long.  If the average energy level is below a predefined and heuristically 

determined threshold value the signal is assumed to be silent, and instead of sending the query to the service a 

proper message is returned to the user.  However, in real-world handsets, with the presence of Automatic 

Gain Controller (AGC) [6], silent sounds are overlaid with system inherent noise from the analog frontend of 

the handset, causing the overall energy level to become higher than the threshold value.  If we raise the 

threshold value for the silence detection to adapt to this case, however, we will likely also discard music 

signals which result in energy levels below this adapted threshold value which could potentially still be 

recognized by the system.  

    Thus, the essence of the problem rather becomes music versus noise classification challenge in order to 

combat the influence of the systematic noise in conjunction with the AGC.  In addition, since the computing 

power of mobile handsets is limited, it would not be adequate to apply machine learning techniques with 

many-dimensional feature vectors.  This means that the fewer features we choose, the more feasible the 

solution will be for real-world implementation.  In this paper, some existing features are listed in section 2 

which have been investigated for this project.  In section 3, a new method for the classification is described.  



Subsequently, we present experimental results in section 4.  Discussion on the results is presented in section 5, 

followed by the conclusions in section 6.  

 

 

 

2. AUDIO FEATURES FOR CLASSIFICATION 

 
In this section several features which have been used historically for music classification are listed and 

explained in more detail. 

 
2.1. Zero Crossing Rate 

 
In the context of discrete-time signals, a zero crossing is said to occur if successive samples have different 

algebraic signs.  The rate at which zero crossings occur is a simple measure of the frequency content of a 

signal.  This feature has been used to discern voiced data with unvoiced data.  However, it was not feasible to 

utilize this feature for music versus noise classification since this feature has exhibited little differences 

between music and noise cases.  This might be because music and noise both have unvoiced and voiced parts 

in them. 

 

2.2. Spectral Roll-Off Point 

 
The Roll-Off is another measure of spectral shape. It is the point in the spectrum where frequency 

components reside that occurs below some percentage (usually at 85%) of the power spectrum.   

 

 

2.3. Spectral Centroid 

 
This is the gravity centre of the spectral distribution within a frame.  The centroid measures the spectral shape.  

Higher centroid values indicate higher frequencies. 

 

 

2.4. Spectral Flatness 

 
Spectral Flatness is a measure of the noisiness or sinusoidal character of a spectrum or a part of it.  It is 

computed by the ratio of the geometric mean to the arithmetic mean of the energy spectrum value.  A high 

spectral flatness indicates that this would sound similar to white noise, and the graph of the spectrum would 

appear relatively flat and smooth.  A low spectral flatness indicates that the spectral power is concentrated in a 

relatively small number of bands - this would typically sound like a mixture of sine waves, and the spectrum 

would appear "spiky".   

 

 

2.5. Auto-Correlation 

 
This feature is a mathematical representation of the degree of similarity between a given time series and a 

lagged (i.e. time-shifted) version of itself over successive time intervals.  It is the same as calculating the 

correlation between two different time series, except that the same time series is used twice - once in its 

original form and once lagged one or more time periods.  In average, music data exhibits a higher auto-

correlation value compared to noise data. 

 

 



2.6. Harmonic Product Spectrum (HPS) 

 
If the input signal resembles a musical note, then its spectrum typically consists of a series of peaks, 

corresponding to the fundamental frequency together with harmonic components at integer multiples of the 

fundamental.  Hence, when we „compress‟ the spectrum a number of times (down sampling), and compare it 

with the original spectrum, we can see that the strongest harmonic peaks line up.  The first peak in the original 

spectrum coincides with the second peak in the spectrum compressed by a factor of two, which coincides with 

the third peak in the spectrum compressed by a factor of three.  Hence, when the various spectrums are 

multiplied together, the result will form clear peak at the fundamental frequency.  

 
 

 

3. DETAILS OF THE PROPOSED METHOD 

 
When a musical instrument is played, the human intervention typically excites specific harmonics.  After a 

while, the acoustic wave eventually disperses and is converted into heat energy.  Human perceives the 

acoustic excitation of the frequency distribution as music, and when the acoustic energy is dispersed to other 

frequency bands, the sound is no longer noticed as music.  HPS is a useful means to represent the human 

perception of each frequency band.  However, the quantification of the inharmonicity is another challenge that 

needs to be addressed for the distinction of musical signals and non-musical signals.  

    In this work, HPS is considered as a probability density function of human perception at each auditory 

scene. Although there is no explicit measure of the inharmonicity, one can quantify the randomness of the 

HPS distribution by using Shannon entropy [5]. 

 
3.1. Entropy 

 
In Shannon‟s original work, entropy is defined to measure the amount of information that an information 

channel can transmit, but is equivalently used to measure the uncertainty of probability density functions. We 

can make use of Shannon entropy to evaluate the randomness of HPS, which enables us to measure the 

inharmonicity of a given signal.  

                          

where p(xi) denotes the probability that event xi happens. 

 

3.2. System Structure 

 

 
The classification is carried over 6 seconds-length of audio.  The audio is first resampled to have 11.025 kHz 

sampling rate, and then is normalized to have unit energy, and this enables this system to ignore the signal 

level differences from audio samples.  After the normalization, the audio is segmented into overlapping 

frames.  Each frame has a length of 0.185 seconds and is weighted by a hann window with an overlap factor 

of ¾  (75%).  The windowed signal is the input to the HPS.  The compression factor R used for HPS is 5.  

Then, only the values over 200 Hz are considered for further processing.   

6 seconds audio Hann window HPS Entropy Classification 

 



Since the HPS distribution at each frame is considered as the probability density function for the entropy 

model, the HPS is always normalized to have their sum as 1.  Finally, the entropy of the probability density 

function at each frame was evaluated to quantify the inharmonicity of the input audio when perceived by the 

human auditory system. 

 

 

 

4. EXPERIMENTS 

 
The noise samples used for the experiments consist of the noise samples from Sony Ericsson and the author‟s 

own recording by Nokia N95.  All the music samples were recorded through N95 while playing the original 

music samples from PC speaker.  For the recording of test music and noise samples, the same quality setting 

(8000 Hz, Mono, 16-bit PCM) was used.  All the samples used for the explanation is available at [4].   

 

 
 

            Figure 1. The entropy from ‘Rhythm of the Rain’ 

 

Figure 1 shows the entropy of the song „Rhythm of the Rain‟.  This song starts with the thunder sound 

followed by the sound of raindrop.  Then, the music band starts playing at around 5 seconds.  The raindrop 

sound lasts until 15 seconds.  From this figure, we can see that the entropy values between 0 to 5 seconds 

period are high since the HPS distribution is close to flat (See Figure 2 left) in that period.  When the band 

starts music, the low entropy values close to 0 are presented since the sounds have harmonicity, and thus the 

peak value is higher (See Figure 2 right).  We can also see that the entropy values between 5 seconds and 15 

seconds period which have both raindrop sound and musical sound show similar graph from 15 seconds 

through 20 seconds where inharmonic raindrop sound has vanished. 

 

    
  Figure 2. The HPS distribution around 3 seconds (left) and 6 seconds (right) 



             
 

             Figure 3. The entropy from ‘Uptown Girl’ 

 

Figure 3 is from „Uptown Girl‟ which starts with fast drum beating for the first 1 second.  Then, singers and 

band start playing, thus we can see the entropy values close to 0 starting around 2 seconds.  The drum beating 

is loudly repeated during this audio snippet, and we can see that higher entropy values between 0.3 and 0.6 

are well synched with drum beats.  As to the low entropy values, the main singer starts singing by stressing 

the words “up-town-girl” around 8 seconds, and we can clearly see the three entropy values close to 0 

between 8 to 10 seconds in Figure 3. 

 

 

  
          Figure 4 (a) N95 recording    Figure 4 (b) PC recording 

  

Figure 4 (a) is from the N95 recordings of “Mona Lisa” by Nat King Cole, which starts with a guitar plucking 

repeated 12 times.  We can see the entropy values are close to 0 from the start to 5 seconds.  After the 12
th

 

plucking at around 5 seconds, the dispersed music sound becomes noisy sound until new notes are presented 

at around 6.5 seconds, which we can verify by seeing the entropy value going down around that time. 

    Figure 4 (b) is from PC recordings of the same song, and this comparison shows how the AGC in handsets 

can make a difference when it comes to recording.  If we listen to the recording from N95, we can see that the 

guitar plucking sound level at around 5 seconds abruptly decreases shortly after plucking.  This is why the 

entropy value around 5 seconds in Figure 4 (a) is a little off from 0 whereas this plucking is clearly presented 

in Figure 4 (b) since there is no AGC in PC.  Similar AGC effects are presented at around 19 seconds, which 

we can see the differences by comparing Figure 4 (a) and (b) at around 19 seconds. 

 



The experiments were done with 6 seconds music and noise recordings from N95.  The entropy value graph is 

sorted in increasing order.  Figure 5 shows the unsorted time order entropy on the left and sorted entropy 

graph on the right from a noise sample recorded in a silent room.  Figure 6 shows them for the music „Green 

Hornet‟ by Al Hirt which has a very fast trumpet sounds in it. 

 

 
 

    Figure 5. The entropy from a noise sample 

 

 

 

 
 

    Figure 6. The entropy from a music sample 

 

 

Different tendency is shown in the sorted entropy graph between Figure 5 and 6.  First of all, y-intercept is 

higher in Figure 5, suggesting that the noise sample has little low valued entropy, which is quite reasonable 

given that this noise signal does not have harmonic components.  Also, the entropy value of Figure 6 

increases slowly compared to that of Figure 5, which means that the music signal has an abundance of 

harmonic sounds in it.  Thus, we can generally say that the area between the sorted graph and x-axis from 

origin to 1 second will have smaller value in Figure 6.  Based on this tendency, a classifier function was 

defined as follows: 

 

 



 

 

 
 

           Figure 7 (a) Entropy from Noise samples              Figure 7 (b) Entropy from Music samples 

 

 

 

 

 

5. DISCUSSION 

 
Figure 7 shows experimental results with music and noise.  Noise sources include silent room, wind, rain, 

stepping on the street, wave on the shore, and moving cars in distance. 

    In Figure 7 (a), it is noticeable that the entropy values are increasing rapidly from the origin to 1 second.  

The sky blue color graph is from one of the noise samples from Sony Ericsson, and it has reached to entropy 1, 

the maximum entropy.  It turned out that this sample has some amount of total silence (amplitude 0) in it, and 

it explains the presence of maximum entropy. 

    In Figure 7 (b), we can see that most music samples show exponential-shaped graph, which grows very 

slowly at the origin as we expected.  We can also see that some music samples show entropy tendency close 

to that from noise.  This can be explained by some examples.   

    Music such as “Don‟t let me be misunderstood” by Animals or “Mickey” by Toni Basil have only 

percussion instruments for the first 6 seconds, and the algorithm presented in this work relies on 

harmonicity/inharmonicity information through entropy model.  Thus, this algorithm classifies the music as 

noise since the HPS distribution of the music would be flat, close to uniform distribution, and the entropy of 

this distribution will be higher than that of normal harmonic music.  Actually, the percussion sound itself is 

noisy; it is our perception that recognizes them as music. Nonetheless, this algorithm can still work for 

percussion sounds if there is some amount of harmonic sound.  Figure 8 shows this situation.  The first 8 

seconds of “Don‟t let me be misunderstood” only consist of percussion instruments.  This percussive sound 

lasts throughout the music.  When the electric guitar sound emerges at around 8 seconds, we can see low 

entropy values originated from the guitar sound are also being presented.  At around 23 seconds, the guitar 

starts playing the main melody.  The guitar sound hits its maximum loudness around 28 seconds, and this is 

shown as a low entropy values at the graph.  Shortly after 40 seconds, other non-percussive instruments start 

playing.   

 

 

 

 

 



 

 
     Figure 8. The entropy from Don‟t let me be misunderstood 

 

 

Harmonic Product Spectrum itself is prone to fail at determining the fundamental frequency of the signal 

when the inharmonicity of the signal increases.  This is because one high peak in HPS distribution with 

harmonic signal will be spreading into several low peaks when the inharmonicity increases.  The details of 

this effect for piano sound can be found at [7].  

    Although the HPS has the limitation when it comes to picking up the fundamental frequency of the signal, 

if only the harmonic characteristics are presented in the signal, this will result in some peaks in the HPS 

distribution.  Thus, the HPS combined with entropy works well even with the mixture of harmonic and 

inharmonic signals. 

 

 

 

6. CONCLUSION 

 
In this paper, we have presented a novel music/noise classification method based on entropy model with 

Harmonic Product Spectrum.  Experimental evaluation shows that this method can work with reasonable 

classification power based on the amount of harmonicity.  More elaborated music/noise classification would 

require incorporating onset detection for percussive sounds.   
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