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Abstract

A digital sinusoidal oscillator derived from digital waveguide theory is described which has
good properties for VLSI implementation. Its main features are no wavetable and a computa-
tional complexity of only one multiply per sample when amplitude and frequency are constant.
Three additions are required per sample. A piecewise exponential amplitude envelope is avail-
able for the cost of a second multiplication per sample, which need not be as expensive as the
tuning multiply. In the presence of frequency modulation (FM), the amplitude coefficient can
be varied to exactly cancel amplitude modulation (AM) caused by changing the frequency of
oscillation.
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1 Introduction

One of the very first computer music techniques introduced was additive synthesis [3]. It is based
on Fourier’s theorem which states that any sound can be constructed from elementary sinusoids,
such as are approximately produced by carefully struck tuning forks. Additive synthesis attempts
to apply this theorem to the synthesis of sound by employing large banks of sinusoidal oscillators,
each having independent amplitude and frequency controls. Many analysis methods, e.g., the phase
vocoder, have been developed to support additive synthesis. A summary is given in [5].

While additive synthesis is very powerful and general, it has been held back from widespread
usage due to its computational expense. For example, on a single DSP56001 digital signal-processing
chip, clocked at 33 MHz, only about 60 sinusoidal partials can be synthesized in real time using
non-interpolated, table-lookup oscillators. Interpolated table-lookup oscillators are much more
expensive, and when all the bells and whistles are added, and system overhead is accounted for, only
around 12 fully general, high-quality partials are sustainable at 44.1 KHz on a 33MHz DSP56001
(based on analysis of implementations provided by the NeXT Music Kit).

At CD-quality sampling rates, the note A1 on the piano requires 22050/55 ≈ 400 sinusoidal
partials, and at least the low-frequency partials should use interpolated lookups. Assuming a
worst-case average of 100 partials per voice, providing 32-voice polyphony requires 3200 partials,
or around 64 DSP chips, assuming we can pack an average of 50 partials into each DSP. A more
reasonable complement of 8 DSP chips would provide only 4-voice polyphony which is simply not
enough for a piano synthesis. However, since DSP chips are getting faster and cheaper, DSP-based
additive synthesis looks viable in the future.

The cost of additive synthesis can be greatly reduced by making special purpose VLSI optimized
for sinusoidal synthesis. In a VLSI environment, major bottlenecks are wavetables and multiplica-

tions. Even if a single sinusoidal wavetable is shared, it must be accessed sequentially, inhibiting
parallelism. The wavetable can be eliminated entirely if recursive algorithms are used to synthesize
sinusoids directly.

In [1], three techniques were examined for generating sinusoids digitally by means of recursive
algorithms. The recursions can be interpreted as implementations of second-order digital resonators
in which the damping is set to zero. The three methods considered were

1. the coupled form which is identical to a two-dimensional vector rotation,

2. the modified coupled form, or “magic circle” algorithm, which is similar to (1) but has ideal
numerical behavior, and

3. the direct-form, second-order, digital resonator with its poles set to the unit circle.

These three recursions are defined as follows:

(1) xn = cnxn−1 + snyn−1

yn = −snxn−1 + cnyn−1 (Coupled Form)

(2) xn = xn−1 + ǫyn−1

yn = −ǫxn + yn−1 (“Magic Circle”)

(3) xn = 2cnxn−1 − yn−1

yn = xn−1 (Direct-Form Resonator)
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where cn
∆
= cos(2πfnT ), sn

∆
= sin(2πfnT ), fn is the instantaneous frequency of oscillation (Hz)

at time sample n, and T is the sampling period in seconds. The magic circle parameter is ǫ =
2 sin(πfnT ).

The digital waveguide oscillator appears to have the best overall properties yet seen for VLSI
implementation. The new structure was derived as a spin-off from recent results in the theory and
implementation of digital waveguides [6, 7]. Any second-order digital filter structure can be used
as a starting point for developing a corresponding sinusoidal signal generator, so in this case we
begin with the second-order waveguide filter.

2 The Second-Order Waveguide Filter

The first step is to make a second-order digital filter with zero damping by abutting two unit-sample
sections of waveguide medium, and terminating on the left and right with perfect reflections, as
shown in Fig. 1. The wave impedance in section i is given by Ri = ρc/Ai, where ρ is air density,
Ai is the cross-sectional area of tube section i, and c is sound speed. The reflection coefficient is
determined by the impedance discontinuity via k = (R1 − R2)/(R1 + R2). It turns out that to
obtain sinusoidal oscillation, one of the terminations must provide an inverting reflection while the
other is non-inverting.
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Figure 1: The second-order, lossless, digital waveguide oscillator, built using two acoustic tube

sections.

At the junction between sections 1 and 2, the signal is partially transmitted and partially
reflected such that energy is conserved, i.e., we have lossless scattering. The formula for the
reflection coefficient k can be derived from the physical constraints that (1) pressure is continuous
across the junction, and (2) there is no net flow into or out of the junction. For traveling pressure
waves p±(t) and volume-velocity waves u±(t), we have p+(t) = Ru+(t) and p−(t) = −Ru−(t). The
physical pressure and volume velocity are obtained by summing the traveling-wave components.

The discrete-time simulation for the physical system of Fig. 1 is shown in Fig. 2. The propagation
time from the junction to a reflecting termination and back is one sample period. The half sample
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delay from the junction to the reflecting termination has been commuted with the termination and
combined with the half sample delay to the termination. This is a special case of a “half-rate”
waveguide filter [6].
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Figure 2: The second-order, lossless, waveguide filter.

Since only two samples of delay are present, the digital system is at most second order, and
since the coefficients are real, at most one frequency of oscillation is possible in (0, π).

The scattering junction shown in the figure is called the Kelly-Lochbaum junction in the liter-
ature on lattice and ladder digital filters [2]. While it is the most natural from a physical point of
view, it requires four multiplies and two additions for its implementation.

It is well known that lossless scattering junctions can be implemented in a variety of equiv-
alent forms, such as the two-multiply and even one-multiply junctions. However, most have the
disadvantage of not being normalized in the sense that changing the reflection coefficient k changes
the amplitude of oscillation. This can be understood physically by noting that a change in k im-
plies a change in R2/R1. Since the signal power contained in a waveguide variable, say p+

1 (n),

is
[

p+
1 (n)

]2

/R1, we find that modulating the reflection coefficient corresponds to modulating the

signal energy represented by the signal sample in at least one of the two delay elements. Since
energy is proportional to amplitude squared, energy modulation implies amplitude modulation.

The well-known normalization procedure is to replace the traveling pressure waves p± by “root-
power” pressure waves p̃± = p±/

√
R so that signal power is just the square of a signal sample

(p̃±)2. When this is done, the scattering junction transforms from the Kelly-Lochbaum or one-
multiply form into the normalized ladder junction in which the reflection coefficients are again ±k,
but the forward and reverse transmission coefficients become

√
1 − k2. Defining k = sin(θ), the

transmission coefficients can be seen as cos(θ), and we arrive essentially at the coupled form, or
two-dimensional vector rotation considered in [1].

An alternative normalization technique is based on the digital waveguide transformer [6]. The
purpose of a “transformer” is to “step” the force variable (pressure in our example) by some factor g
without scattering and without affecting signal energy. Since traveling signal power is proportional
to pressure times velocity p+u+, it follows that velocity must be stepped by the inverse factor 1/g
to keep power constant. This is the familiar behavior of transformers for analog electrical circuits:
voltage is stepped up by the “turns ratio” and current is stepped down by the reciprocal factor.
Now, since p+ = Ru+, traveling signal power is equal to p+u+ = (p+)2/R. Therefore, stepping up
pressure through a transformer by the factor g corresponds to stepping up the wave impedance R
by the factor g2. In other words, the transformer raises pressure and decreases volume velocity by
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raising the wave impedance (narrowing the acoustic tube) like a converging cone.
If a transformer is inserted in a waveguide immediately to the left, say, of a scattering junction,

it can be used to modulate the the wave impedance “seen” to the left by the junction without having
to use root-power waves in the simulation. As a result, the one-multiply junction can be used for
the scattering junction, since the junction itself is not normalized. Since the transformer requires
two multiplies, a total of three multiplies can effectively implement a normalized junction, where
four were needed before. Finally, in just this special case, one of the transformer coefficients can be
commuted with the delay element on the left and combined with the other transformer coefficient.
For convenience, the −1 coefficient on the left is commuted into the junction so it merely toggles
the signs of inputs to existing summers. These transformations lead to the final form shown in
Fig. 3.
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Figure 3: The transformer-normalized, digital waveguide oscillator.

The “tuning coefficient” is given by C(n) = cos(2πfnT ), where fn is the desired oscillation
frequency in Hz at sample n, and T is the sampling period in seconds. The “amplitude coefficient”
is G(n) = rngn/gn−1, where rn = e−T/τn is the exponential growth or decay per sample (rn ≡
1 for constant amplitude), and gn is the normalizing transformer “turns ratio” given by gn =
√

[1 − C(n)]/[1 + C(n)]. When both amplitude and frequency are constant, we have G(n) ≡ 1,
and only the tuning multiply is operational. When frequency changes, the amplitude coefficient
deviates from unity for only one time sample to normalize the oscillation amplitude.

When amplitude and frequency are constant, there is no gradual exponential growth or decay
due to round-off error. This happens because the only rounding is at the output of the tuning
multiply, and all other computations are exact. Therefore, quantization in the tuning coefficient
can only cause quantization in the frequency of oscillation. Note that any one-multiply digital
oscillator should have this property. In contrast, the only other known normalized oscillator, the
coupled form, does exhibit exponential amplitude drift because it has two coefficients c = cos(θ)
and s = sin(θ) which, after quantization, no longer obey c2 + s2 = 1 for most tunings.

3 Conclusions

A recursive algorithm was presented for digital sinusoid generation that has excellent properties for
VLSI implementation. It is like the coupled form in that it offers instantaneous amplitude from its
state and constant amplitude in the presence of frequency modulation. However, its implementation
requires only one or two multiplies per sample instead of four.

While these properties make the new oscillator appear ideally suited for FM applications in
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VLSI, there are issues to be resolved regarding conversion from modulator output to carrier coef-
ficients. Preliminary experiments indicate that FM indices less than 1 are well behaved when the
output of a modulating oscillator simply adds to the coefficient of the carrier oscillator (bypassing
the exact FM formulas). Approximate amplitude normalizing coefficients have also been derived
which provide a first-order approximation to the exact AM compensation at low cost. For music
synthesis applications, we believe a distortion in the details of the FM instantaneous frequency
trajectory and a moderate amount of incidental AM can be tolerated since they produce only
second-order timbral effects in many situations.
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