Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Parallel Junction of Multivariable Complex Waveguides

We now consider the scattering matrix for the parallel junction of $N$ $m$-variable physical waveguides, and at the same time, we treat the generalized case of matrix transfer-function wave impedances. Equations (13) and (11) can be rewritten for each $m$-variable branch as

\begin{displaymath}
\begin{array}{rcccc}
{\mbox{\boldmath$u$}}_i^+ &=& & {\mbox{...
...h$\Gamma$}}^{*}_i(1/z^*)& {\mbox{\boldmath$p$}}_i^-
\end{array}\end{displaymath} (43)

and
\begin{displaymath}
\begin{array}{l}
{\mbox{\boldmath$u$}}_i = {\mbox{\boldmath$...
...\mbox{\boldmath$p$}}_i^- = p_J{\mbox{\boldmath$1$}}
\end{array}\end{displaymath} (44)

where ${\mbox{\boldmath$\Gamma$}}_i(z)={\mbox{\boldmath$R$}}_i^{-1}(z)$, $p_J$ is the pressure at the junction, and we have used pressure continuity to equate ${\mbox{\boldmath$p$}}_i$ to $p_J$ for any $i$.

Using conservation of velocity we obtain

$\displaystyle 0$ $\textstyle =$ $\displaystyle {\mbox{\boldmath$1$}}^T{\sum_{i=1}^{N}{{\mbox{\boldmath$u$}}_i}}$  
  $\textstyle =$ $\displaystyle {\mbox{\boldmath$1$}}^T{\displaystyle \sum_{i=1}^{N}}\left\{\left...
...{\mbox{\boldmath$\Gamma$}}^{*}_i(1/z^*)\right]{\mbox{\boldmath$p$}}_i^+ \right.$  
    $\displaystyle \left. \qquad - {\mbox{\boldmath$\Gamma$}}^{*}_i(1/z^*)p_J{\mbox{\boldmath$1$}}\right\}$  

and
\begin{displaymath}
p_J= S {\mbox{\boldmath$1$}}^T {\sum_{i=1}^{N}{\left[{\mbox{...
...math$\Gamma$}}^{*}_i(1/z^*)\right] {\mbox{\boldmath$p$}}_i^+}}
\end{displaymath} (45)

where
\begin{displaymath}
S = \left\{{\mbox{\boldmath$1$}}^T\left[{\sum_{i=1}^{N}{{\mb...
...ma$}}^{*}_i(1/z^*)}}\right]{\mbox{\boldmath$1$}}\right\}^{-1}.
\end{displaymath} (46)

Hence, the scattering matrix is given by
\begin{displaymath}
{\mbox{\boldmath$A$}}= S \left[\begin{array}{l}{\mbox{\boldm...
...\end{array} \right]
\end{array}\right] - {\mbox{\boldmath$I$}}
\end{displaymath} (47)

It is clear that (38) is a special case of (48) when $m=1$. If the branches do not all have the same dimensionality $m$, we may still use the expression (48) by letting $m$ be the largest dimensionality and embedding each branch in an $m$-variable propagation space.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download wgj.pdf

``Aspects of Digital Waveguide Networks for Acoustic Modeling Applications'', by Julius O. Smith III and Davide Rocchesso , December 19, 1997, Web published at http://ccrma.stanford.edu/~jos/wgj/.
Copyright © 2007-02-07 by Julius O. Smith III and Davide Rocchesso
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]