Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Bibliography

1
Handbook of Mathematical Functions,
New York: Dover, 1965.

2
R. D. Ayers, L. J. Eliason, and D. Mahgerefteh, ``The conical bore in musical acoustics,'' American Journal of Physics, vol. 53, pp. 528-537, June 1985.

3
V. Belevitch, ``Summary of the history of circuit theory,'' Proceedings of the IRE, vol. 50, pp. 848-855, May 1962.

4
V. Belevitch, Classical Network Theory,
San Francisco: Holden-Day, 1968.

5
A. Benade, ``Equivalent Circuits for Conical Waveguides,'' Journal of the Acoustical Society of America, vol. 83, pp. 1764-1769, May 1988.

6
G. Borin and G. De Poli, ``A Hammer-String Interaction Model for Physical Model Synthesis,'' in Proc. XI Colloquium Mus. Inform., (Bologna, Italy), pp. 89-92, AIMI, Nov. 1995.

7
G. Borin and G. De Poli, ``A Hysteretic Hammer-String Interaction Model for Physical Model Synthesis,'' in Proceedings of the Nordic Acoustical Meeting (NAM-96), Helsinki, Finland, (Helsinki, Finland), pp. 399-406, June 1996.

8
G. Borin, G. De Poli, and A. Sarti, Sound Synthesis by Dynamic Systems Interaction, vol. Readings in Computer-Generated Music, pp. 139-160,
IEEE Computer Society Press, 1992,
D. Baggi, editor.

9
A. Bruckstein and T. Kailath, ``An inverse scattering framework for several problems in signal processing,'' IEEE Signal Processing Magazine, vol. 4, pp. 6-20, January 1987.

10
A. Chaigne, ``On the Use of Finite Differences for Musical Synthesis. Application to Plucked Stringed Instruments,'' J. Acoustique, vol. 5, pp. 181-211, 1992.

11
A. Chaigne and A. Askenfelt, ``Numerical Simulations of Piano Strings. I. A Physical Model for a Struck String using Finite Difference Methods,'' Journal of the Acoustical Society of America, vol. 95, pp. 1112-1118, Feb 1994.

12
J. Chung and K. K. Parhi, ``Scaled normalized lattice digital filter structures,'' IEEE Transactions on Circuits and Systems-II, vol. 42, pp. 278-282, Apr. 1995.

13
P. Cook, ``Integration of physical modeling for synthesis and animation,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 525-528, Computer Music Association, 1995.

14
P. R. Cook, Identification of Control Parameters in an Articulatory Vocal Tract Model, with Applications to the Synthesis of Singing,
PhD thesis, Elec. Engineering Dept., Stanford University, Dec. 1990.

15
P. R. Cook, ``Tbone: An interactive waveguide brass instrument synthesis workbench for the NeXT machine,'' in Proceedings of the 1991 International Computer Music Conference, Montreal, pp. 297-299, Computer Music Association, 1991.

16
P. R. Cook, ``A meta-wind-instrument physical model, and a meta-controller for real time performance control,'' in Proceedings of the 1992 International Computer Music Conference, San Jose, pp. 273-276, Computer Music Association, 1992.

17
P. R. Cook, ``Singing voice synthesis: History, current work, and future directions,'' Computer Music Journal, vol. 20, pp. 38-46, Fall 1996.

18
P. R. Cook, ``Synthesis toolkit in C++, version 1.0,'' in SIGGRAPH Proceedings, Assoc. Comp. Mach., May 1996.

19
L. Cremer, The Physics of the Violin,
Cambridge, MA: MIT Press, 1984.

20
J. l. d'Alembert, ``Investigation of the curve formed by a vibrating string, 1747,'' in Acoustics: Historical and Philosophical Development (R. B. Linsdsay, ed.), pp. 119-123, Stroudsburg: Dowden, Hutchinson & Ross, 1973.

21
G. De Poli and A. Sarti, ``Generalized adaptors with memory for nonlinear wave digital structures,'' in EUSIPCO, (Trieste, Italy), pp. 1941-1944, Sept. 1996.

22
J. R. Deller Jr., J. G. Proakis, and J. H. Hansen, Discrete-Time Processing of Speech Signals,
New York: Macmillan, 1993.

23
P. H. Dietz and N. Amir, ``Synthesis of trumpet tones by physical modeling,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-95), Dourdan, France, (France), pp. 471-477, Société Français d'Acoustique, July 1995.

24
W. C. Elmore and M. A. Heald, Physics of Waves,
New York: McGraw Hill, 1969,
Dover Publ., New York, 1985.

25
K. T. Erickson and A. N. Michel, ``Stability analysis of fixed-point digital filters using computer generated Lyapunov functions--Part I: Direct form and coupled form filters, and Part II: Wave digital filters and lattice digital filters,'' IEEE Transactions on Circuits and Systems, vol. 32, pp. 113-132 and 132-142, Feb. 1985.

26
A. Fettweis, ``Some Principles of Designing Digital Filters Imitating Classical Filter Structures,'' IEEE Transactions on Circuit Theory, vol. 18, pp. 314-316, Mar. 1971.

27
A. Fettweis, ``Wave Digital Filters: Theory and Practice,'' Proceedings of the IEEE, vol. 74, pp. 270-327, Feb. 1986.

28
A. Fettweis and K. Meerkötter, ``On Adaptors for Wave Digital Filters,'' IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 23, pp. 516-524, Dec. 1975.

29
J. L. Flanagan, K. Ishizaka, and K. L. Shipley, ``Signal models for low bit-rate coding of speech,'' Journal of the Acoustical Society of America, vol. 68, no. 3, pp. 780-791, 1980.

30
F. Fontana and D. Rocchesso, ``Physical modeling of membranes for percussion instruments,'' Acta Acustica, vol. 84, pp. 529-542, May/June 1998.

31
F. Fontana and D. Rocchesso, ``Simulations of Membrane-based Percussion Instruments,'' in Proc. Workshop: Sound Synthesis by Physical Modeling, (Firenze, Italy), Centro Tempo Reale, June 1996.

32
W. Frank and A. Lacroix, ``Improved vocal tract models for speech synthesis,'' Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 2011-2014, April 7-11 1986.

33
M. A. Gerzon, ``Unitary (Energy Preserving) Multichannel Networks with Feedback,'' Electronics Letters V, vol. 12, no. 11, pp. 278-279, 1976.

34
G. H. Golub and C. F. V. Loan, Matrix Computations,
Baltimore: The Johns Hopkins University Press, 1989.

35
A. H. Gray and J. D. Markel, ``A Normalized Digital Filter Structure,'' IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 23, pp. 268-277, June 1975.

36
S. Hirschman, Digital Waveguide Modelling and Simulation of Reed Woodwind Instruments,
Engineer's thesis, Elec. Engineering Dept., Stanford University (CCRMA), May 1991,
available as CCRMA Technical Report Stan-M-72, Music Dept., Stanford University, July 1991.

37
S. Hirschman, P. R. Cook, and J. O. Smith, ``Digital waveguide modelling of reed woodwinds: An interactive development environment on the NeXT computer,'' in Proceedings of the 1991 International Computer Music Conference, Montreal, pp. 300-303, Computer Music Association, 1991,
available in ``CCRMA Papers on Physical Modeling from the 1991 International Computer Music Conference,'' Department of Music Technical Report STAN-M-73, Stanford University, October 1991.

38
Y. H. Hu, ``CORDIC-Based VLSI Architectures for Digital Signal Processing,'' IEEE Signal Processing Magazine, pp. 16-35, July 1992.

39
J. J. L. Kelly and C. C. Lochbaum, ``Speech synthesis,'' Proceedings of the Fourth International Congress on Acoustics, Copenhagen, pp. 1-4, September 1962,
Paper G42.

40
D. A. Jaffe and J. O. Smith, ``Extensions of the Karplus-Strong Plucked String Algorithm,'' Computer Music Journal, vol. 7, no. 2, pp. 56-69, 1983.

41
D. A. Jaffe and J. O. Smith, ``Performance expression in commuted waveguide synthesis of bowed strings,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 343-346, Computer Music Association, 1995.

42
J.-M. Jot and A. Chaigne, ``Digital Delay Networks for Designing Artificial Reverberators,'' in Audio Engineering Society Convention, (Paris, France), AES, Feb. 1991.

43
T. Kailath, Linear Systems,
Englewood Cliffs: Prentice-Hall, 1980.

44
M. Karjalainen and U. K. Laine, ``A model for real-time sound synthesis of guitar on a floating-point signal processor,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Toronto, vol. 5, (New York), pp. 3653-3656, IEEE Press, May 1991.

45
M. Karjalainen and J. O. Smith, ``Body modeling techniques for string instrument synthesis,'' in Proceedings of the 1996 International Computer Music Conference, Hong Kong, pp. 232-239, Computer Music Association, Aug. 1996.

46
M. Karjalainen, U. K. Laine, T. I. Laakso, and V. Välimäki, ``Transmission-Line Modeling and Real-Time Synthesis of String and Wind Instruments,'' in Proc. International Computer Music Conference, (Montreal, Canada), pp. 293-296, ICMA, 1991.

47
M. Karjalainen, J. Backman, and J. Pölkki, ``Analysis, Modeling, and Real-Time Sound Synthesis of the Kantele, A Traditional Finnish String Instrument,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, (Minneapolis), pp. 229-232, IEEE, 1993.

48
M. Karjalainen, V. Välimäki, and Z. Jánosy, ``Towards High-Quality Sound Synthesis of the Guitar and String Instruments,'' in Proc. International Computer Music Conference, (Tokyo, Japan), pp. 56-63, ICMA, 1993.

49
M. Karjalainen, V. Välimäki, B. Hernoux, and J. Huopaniemi, ``Exploration of wind instruments using digital signal processing and physical modeling techniques,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 509-516, Computer Music Association, 1995,
Revised version published in the Journal of New Music Research, 24(4), December 1995.

50
E. Keller, Fundamentals of Speech Synthesis,
New York: John Wiley and Sons, Inc., 1994.

51
S.-Y. Kung, ``On supercomputing with systolic/wavefront array processors,'' Proceedings of the IEEE, vol. 72, pp. 867-884, July 1984.

52
H. Kuttruff, Room Acoustics,
Essex, England: Elsevier Science, 1991,
Third Ed.; First Ed. 1973.

53
T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, ``Splitting the Unit Delay--Tools for Fractional Delay Filter Design,'' IEEE Signal Processing Magazine, vol. 13, pp. 30-60, January 1996.

54
A. Lacroix and B. Makai, ``A novel vocoder concept based on discrete time acoustic tubes,'' Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Washington, D.C., pp. 73-76, April 2-4 1979.

55
F. T. Leighton, Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes,
Los Altos, California: William Kaufmann, Inc., 1992.

56
I. T. Lim and B. G. Lee, ``Lossless Pole-Zero Modeling of Speech Signals,'' IEEE Transactions on Speech and Audio Processing, vol. 1, pp. 269-276, July 1993.

57
J. D. Markel and A. H. Gray, Linear Prediction of Speech,
New York: Springer-Verlag, 1976.

58
K. Meerkotter and R. Scholtz, ``Digital simulation of nonlinear circuits by wave digital filter principles,'' in IEEE Proc. ISCAS '89, (New York), pp. 720-723, IEEE Press, 1989.

59
R. K. Miller and A. N. Michel, Ordinary Differential Equations,
New York: Academic Press, 1982.

60
P. M. Morse, Vibration and Sound,
New York: American Institute of Physics for the Acoustical Society of America, 1991,
1st ed. 1936, 2nd ed. 1948.

61
P. M. Morse and K. U. Ingard, Theoretical Acoustics,
New York: McGraw-Hill, 1968,
Reprinted in 1986, Princeton Univ. Press, Princeton, NJ.

62
P. J. Moylan, ``Implications of passivity in a class of nonlinear systems,'' IEEE Transactions on Automatic Control, vol. 19, pp. 373-381, Aug. 1974.

63
R. W. Newcomb, Linear Multiport Synthesis,
New York: McGraw-Hill, 1966.

64
A. Paladin and D. Rocchesso, ``A Dispersive Resonator in Real Time on MARS Workstation,'' in Proc. International Computer Music Conference (A. Strange, ed.), (San Jose, CA), pp. 146-149, ICMA, Oct. 1992.

65
T. W. Parks and C. S. Burrus, Digital Filter Design,
New York: John Wiley and Sons, Inc., 1987.

66
S. Perlis, Theory of Matrices,
Reading, Mass.: Addison-Wesley, 1952.

67
J. R. Pierce and S. A. Van Duyne, ``A passive nonlinear digital filter design which facilitates physics-based sound synthesis of highly nonlinear musical instruments,'' Journal of the Acoustical Society of America, vol. 101, pp. 1120-1126, Feb. 1997.

68
N. Porcaro, P. Scandalis, D. Jaffe, and J. O. Smith, ``Using SynthBuilder for the creation of physical models,'' in Proceedings of the 1996 International Computer Music Conference, Hong Kong, Computer Music Association, 1996.

69
G. Putland, ``Every one-parameter acoustic field obeys webster's horn equation,'' Journal of the Audio Engineering Society, vol. 41, pp. 435-451, June 1993.

70
W. Putnam and J. O. Smith, ``Design of fractional delay filters using convex optimization,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 1997,
http://ccrma.stanford.edu/~jos/resample/optfir.pdf.

71
P. A. Regalia, S. K. Mitra, and P. P. Vaidyanathan, ``The Digital All-Pass Filter: A Versatile Signal Processing Building Block,'' Proceedings of the IEEE, vol. 76, pp. 19-37, Jan. 1988.

72
J. D. Rhodes, P. C. Marston, and D. C. Youla, ``Explicit solution for the synthesis of two-variable transmission-line networks,'' IEEE Transactions on Circuit Theory, vol. CT-20, pp. 504-511, Sept. 1973.

73
C. Roads, The Computer Music Tutorial,
Cambridge, MA: MIT Press, 1996.

74
C. Roads, S. T. Pope, A. Piccialli, and G. De Poli, eds., Musical Signal Processing,
Netherlands: Swets and Zietlinger, 1997.

75
R. A. Roberts and C. T. Mullis, Digital Signal Processing,
Reading - MA: Addison-Wesley, 1987.

76
D. Rocchesso, Strutture ed Algoritmi per l'Elaborazione del Suono basati su Reti di Linee di Ritardo Interconnesse,
Phd thesis, Università di Padova, Dipartimento di Elettronica e Informatica, Feb. 1996.

77
D. Rocchesso and F. Scalcon, ``Accurate Dispersion Simulation for Piano Strings,'' in Proceedings of the Nordic Acoustical Meeting (NAM-96), Helsinki, Finland, pp. 407-414, June 1996.

78
D. Rocchesso and J. O. Smith, ``Circulant Feedback Delay Networks for Sound Synthesis and Processing,'' in Proc. International Computer Music Conference, (Aarhus, Denmark), pp. 378-382, ICMA, Sept. 1994.

79
D. Rocchesso and J. O. Smith, ``Circulant and Elliptic Feedback Delay Networks for Artificial Reverberation,'' IEEE Transactions on Speech and Audio Processing, vol. 5, no. 1, pp. 51-63, 1996.

80
D. Rocchesso and F. Turra, ``A Generalized Excitation for Real-Time Sound Synthesis by Physical Models,'' in Proc. of the Stockholm Music Acoustics Conf. (A. Friberg, J. Iwarsson, E. Jansson, and J. Sundberg, eds.), (Stockholm), pp. 584-588, Royal Swedish Academy of Music, July 1993.

81
X. Rodet, ``Flexible yet controllable physical models: A nonlinear dynamics approach,'' in Proceedings of the 1993 International Computer Music Conference, Tokyo, pp. 10-15, Computer Music Association, 1993.

82
X. Rodet, ``One and two mass model oscillations for voice and instruments,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 207-214, Computer Music Association, 1995.

83
T. Saramäki, ``On the Design of Digital Filters as a Sum of Two All-Pass Filters,'' IEEE Transactions on Circuits and Systems, vol. 32, pp. 1191-1193, Nov. 1985.

84
L. Savioja, J. Backman, A. Järvinen, and T. Takala, ``Waveguide Mesh Method for Low-Frequency Simulation of Room Acoustics,'' Proceedings of the 15th International Conference on Acoustics (ICA-95), Trondheim, Norway, pp. 637-640, June 1995.

85
G. Scavone, An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues and Digital Waveguide Modeling Techniques,
PhD thesis, Music Department, March 1997,
In preparation; date estimated.

86
G. Scavone and J. O. Smith, ``Digital waveguide modeling of woodwind toneholes,'' in Proceedings of the 1997 International Computer Music Conference, Greece, Computer Music Association, 1997.

87
G. Scavone and J. O. Smith, ``Scattering parameters for the Keefe clarinet tonehole model,'' in Proceedings of the International Symposium on Musical Acoustics (ISMA-97), Edinburgh, Scotland, pp. 433-438, Aug. 1997.

88
R. W. Schafer and L. R. Rabiner, ``A digital signal processing approach to interpolation,'' Proceedings of the IEEE, vol. 61, pp. 692-702, June 1973.

89
J. Schroeter and M. M. Sondhi, ``Techniques for estimating vocal-tract shapes from the speech signal,'' IEEE Transactions on Speech and Audio Processing, vol. 2, pp. 133-150, Jan. 1994.

90
J. O. Smith, Techniques for Digital Filter Design and System Identification with Application to the Violin,
PhD thesis, Elec. Engineering Dept., Stanford University, June 1983.

91
J. O. Smith, ``A New Approach to Digital Reverberation Using Closed Waveguide Networks,'' in Proc. International Computer Music Conference, (Vancouver, Canada), pp. 47-53, ICMA, 1985,
Also available in [93].

92
J. O. Smith, ``Elimination of limit cycles and overflow oscillations in time-varying lattice and ladder digital filters,'' Tech. Rep. STAN-M-35, CCRMA, Music Department, Stanford University, May 1986,
Short version published in Proceedings of the IEEE Conference on Circuits and Systems, San Jose, May 1986. Full version also available in [93].

93
J. O. Smith, ``Music applications of digital waveguides,'' Tech. Rep. STAN-M-39, CCRMA, Music Department, Stanford University, 1987,
A compendium containing four related papers and presentation overheads on digital waveguide reverberation, synthesis, and filtering. CCRMA technical reports can be ordered by calling (415)723-4971 or by sending an email request to hmk@ccrma.stanford.edu.

94
J. O. Smith, ``Waveguide filter tutorial,'' in Proceedings of the 1987 International Computer Music Conference, Champaign-Urbana, pp. 9-16, Computer Music Association, 1987.

95
J. O. Smith, ``Waveguide digital filters,'' in Music Applications of Digital Waveguides, CCRMA, 1987,
Part IV of [93].

96
J. O. Smith, ``Waveguide simulation of non-cylindrical acoustic tubes,'' in Proceedings of the 1991 International Computer Music Conference, Montreal, pp. 304-307, Computer Music Association, 1991.

97
J. O. Smith, ``Physical modeling using digital waveguides,'' Computer Music Journal, vol. 16, pp. 74-91, Winter 1992,
special issue: Physical Modeling of Musical Instruments, Part I. http://ccrma.stanford.edu/~jos/pmudw/.

98
J. O. Smith, ``Efficient synthesis of stringed musical instruments,'' in Proceedings of the 1993 International Computer Music Conference, Tokyo, pp. 64-71, Computer Music Association, 1993.

99
J. O. Smith, ``Use of commutativity in simplifying acoustic simulations,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, (New York), IEEE Press, Oct. 1993.

100
J. O. Smith, ``Physical modeling synthesis update,'' Computer Music Journal, vol. 20, pp. 44-56, Summer 1996.

101
J. O. Smith, ``Acoustic modeling using digital waveguides,'' in Musical Signal Processing (C. Roads, S. T. Pope, A. Piccialli, and G. De Poli, eds.), pp. 221-263, Netherlands: Swets and Zietlinger, 1997.

102
J. O. Smith, ``Principles of digital waveguide models of musical instruments,'' in Applications of Digital Signal Processing to Audio and Acoustics (M. Kahrs and K. Brandenburg, eds.), pp. 417-466, Boston/Dordrecht/London: Kluwer Academic Publishers, 1998.

103
J. O. Smith and P. R. Cook, ``The second-order digital waveguide oscillator,'' in Proceedings of the 1992 International Computer Music Conference, San Jose, pp. 150-153, Computer Music Association, San 1992,
Available online at http://www-ccrma.stanford.edu/~jos/.

104
J. O. Smith and B. Friedlander, ``Adaptive Interpolated Time-Delay Estimation,'' IEEE Transactions on Aerospace and Electronic Systems, vol. 21, pp. 180-199, Mar. 1985.

105
J. O. Smith and P. Gossett, ``A flexible sampling-rate conversion method,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 2, (San Diego), pp. 19.4.1-19.4.2, IEEE Press, March 1984,
An expanded tutorial based on this paper and associated free software are available online under http://www-ccrma.stanford.edu/~jos.

106
J. O. Smith and D. Rocchesso, ``Connection between Feedback Delay Networks and Waveguide Networks for Digital Reverberation,'' in Proc. International Computer Music Conference, (Aarhus, Denmark), pp. 376-377, ICMA, Sept. 1994.

107
J. O. Smith and G. Scavone, ``The one-filter Keefe clarinet tonehole,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 1997.

108
T. Stilson, ``Forward-going wave extraction in acoustic tubes,'' in Proceedings of the 1995 International Computer Music Conference, Banff, pp. 517-520, Computer Music Association, 1995.

109
J. Strikwerda, Finite Difference Schemes and Partial Differential Equations,
Pacific Grove, CA: Wadsworth and Brooks, 1989.

110
P. P. Vaidyanathan, Multirate Systems and Filter Banks,
Englewood Cliffs, NY: Prentice Hall, 1993.

111
P. P. Vaidyanathan and S. K. Mitra, ``Low Passband Sensitivity Digital Filters: A Generalized Viewpoint and Synthesis Procedures,'' Proceedings of the IEEE, vol. 72, pp. 404-423, Apr. 1984.

112
P. P. Vaidyanathan and S. K. Mitra, ``A General Family of Multivariable Digital Lattice Filters,'' IEEE Transactions on Circuits and Systems, vol. 32, pp. 1234-1245, Dec. 1985.

113
P. P. Vaidyanathan and S. K. Mitra, ``Passivity Properties of Low-Sensitivity Digital Filter Structures,'' IEEE Transactions on Circuits and Systems, vol. 32, pp. 217-223, Mar. 1985.

114
P. P. Vaidyanathan, S. K. Mitra, and Y. Neuvo, ``A New Approach to the Realization of Low-Sensitivity IIR Digital Filters,'' IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 34, pp. 350-361, Apr. 1986.

115
V. Välimäki, Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters,
PhD thesis, Report no. 37, Helsinki University of Technology, Faculty of Elec. Eng., Lab. of Acoustic and Audio Signal Processing, Espoo, Finland, Dec. 1995.

116
V. Välimäki and M. Karjalainen, ``Digital Waveguide Modeling of Wind Instrument Bores Constructed of Truncated Cones,'' in Proc. International Computer Music Conference, (Aarhus, Denmark), pp. 423-430, ICMA, 1994.

117
V. Välimäki and M. Karjalainen, ``Improving the Kelly-Lochbaum vocal tract model using conical tube sections and fractional delay filtering techniques,'' in Proc. 1994 International Conference on Spoken Language Processing (ICSLP-94), vol. 2, (Yokohama, Japan), pp. 615-618, IEEE Press, Sept. 18-22 1994.

118
V. Välimäki and M. Karjalainen, ``Implementation of Fractional Delay Waveguide Models using Allpass Filters,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, (Detroit), pp. 8-12, IEEE, May 1995.

119
V. Välimäki, M. Karjalainen, and T. I. Laakso, ``Modeling of Woodwind Bores with Finger Holes,'' in Proc. International Computer Music Conference, (Tokyo, Japan), pp. 32-39, ICMA, 1993.

120
V. Välimäki, T. I. Laakso, and J. Mackenzie, ``Elimination of Transients in Time-Varying Allpass Fractional Delay Filters with Application to Digital Waveguide Modeling,'' in Proc. International Computer Music Conference, (Banff, Canada), pp. 327-334, ICMA, 1995.

121
V. Välimäki, J. Huopaniemi, M. Karjalainen, and Z. Jánosy, ``Physical Modeling of Plucked String Instruments with Application to Real-Time Sound Synthesis,'' Audio Engineering Society Convention, vol. Preprint 3956, Feb 1995,
Submitted to the Journal of the Audio Engineering Society.

122
S. A. Van Duyne and J. O. Smith, ``Physical Modeling with the 2-D Digital Waveguide Mesh,'' in Proc. International Computer Music Conference, (Tokyo, Japan), pp. 40-47, ICMA, 1993.

123
S. A. Van Duyne and J. O. Smith, ``The 2-D Digital Waveguide Mesh,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, (Mohonk, NY), IEEE, 1993.

124
S. A. Van Duyne and J. O. Smith, ``The Tetrahedral Digital Waveguide Mesh,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, (Mohonk, NY), IEEE, Oct. 1995.

125
S. A. Van Duyne and J. O. Smith, ``The Tetrahedral Waveguide Mesh: Multiply-Free Computation of Wave Propagation in Free Space,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, (Mohonk, NY), Oct. 1995.

126
S. A. Van Duyne, J. R. Pierce, and J. O. Smith, ``Traveling Wave Implementation of a Lossless Mode-Coupling Filter and the Wave Digital Hammer,'' in Proc. International Computer Music Conference, (Aarhus, Denmark), pp. 411-418, ICMA, Sept. 1994.

127
S. A. Van Duyne, J. R. Pierce, and J. O. Smith, ``Traveling-wave implementation of a lossless mode-coupling filter and the wave digital hammer,'' in Proceedings of the 1994 International Computer Music Conference, Århus, pp. 411-418, Computer Music Association, 1994,
Also presented at the conference of the Acoustical Society of America, Nov., 1994.

128
M. E. Van Valkenburg, Introduction to Modern Network Synthesis,
New York: John Wiley and Sons, Inc., 1960.

129
M. E. Van Valkenburg, Introduction to Modern Network Synthesis,
New York: John Wiley and Sons, Inc., 1960.

130
M. van Walstijn and G. de Bruin, ``Conical waveguide filters,'' in Proceedings of the Second International Conference on Acoustics and Musical Research, (Ferrara, Italy), pp. 47-54, CIARM, May 1995.

131
A. Wang and J. O. Smith, ``On fast fir filters implemented as tail-canceling iir filters,'' IEEE Transactions on Signal Processing, vol. 45, 1997,
Accepted for publication.

132
G. Weinreich, ``Coupled Piano Strings,'' Journal of the Acoustical Society of America, vol. 62, pp. 1474-1484, Dec. 1977.

133
M. R. Wohlers, Lumped and Distributed Passive Networks,
New York: Academic Press, Inc., 1969.

134
Yamaha Corp., ``Yamaha VL-1 User's Manual,'' 1993.

Julius O. Smith received the B.S.E.E. degree from Rice University, Houston, TX, in 1975. He received the M.S. and Ph.D. degrees in E.E. from Stanford University, Stanford, CA, in 1978 and 1983, respectively. His Ph.D. research involved the application of digital signal processing and system identification techniques to the modeling and synthesis of the violin, clarinet, reverberant spaces, and other musical systems. From 1975 to 1977 he worked in the Signal Processing Department at ESL, Sunnyvale, CA, on systems for digital communications. From 1982 to 1986 he was with the Adaptive Systems Department at Systems Control Technology, Palo Alto, CA, where he worked in the areas of adaptive filtering and spectral estimation. From 1986 to 1991 he was employed at NeXT Computer, Inc., responsible for sound, music, and signal processing software for the NeXT computer workstation. Since then he has been an Associate Professor at the Center for Computer Research in Music and Acoustics (CCRMA) at Stanford teaching courses in signal processing and music technology, and pursuing research in signal processing techniques applied to music and audio. For more information, see http://ccrma.stanford.edu/~jos/.

Davide Rocchesso is a PhD candidate at the Dipartimento di Elettronica e Informatica, Università di Padova - Italy. He received his Electrical Engineering degree from the Università di Padova in 1992, with a dissertation on real-time physical modeling of music instruments. In 1994 and 1995, he was visiting scholar at the Center for Computer Research in Music and Acoustics (CCRMA), Stanford University. He has been collaborating with the Centro di Sonologia Computazionale (CSC) dell'Università di Padova since 1991, as a researcher and a live-electronic designer/performer. His main interests are in audio signal processing, physical modeling, sound reverberation and spatialization, parallel algorithms. Since 1995 he has been a member of the Board of Directors of the Associazione di Informatica Musicale Italiana (AIMI).


Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download wgj.pdf

``Aspects of Digital Waveguide Networks for Acoustic Modeling Applications'', by Julius O. Smith III and Davide Rocchesso , December 19, 1997, Web published at http://ccrma.stanford.edu/~jos/wgj/.
Copyright © 2007-02-07 by Julius O. Smith III and Davide Rocchesso
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]