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1 Introduction

In this appendix from [2], we reexamine the finite difference schemes corresponding to waveguide
meshes discussed in Chapter 4 of [2] in the special case for which the underlying model problem
is lossless, source-free, and does not exhibit any material parameter variation. In this case, these
finite difference schemes will solve the wave equation, given by

∂2u

∂t2
= γ2∇2u (1)

in either (2+1)D or (3+1)D, depending on the type of mesh. Here, γ is the wave speed, and ∇2 is the
Laplacian [6]. These schemes will be linear and shift-invariant, and as such, it is possible to analyze
them in the frequency domain, through what is called Von Neumann analysis [8]. We will apply
these methods to the rectilinear, interpolated rectilinear, triangular, hexagonal and fourth-order
accurate schemes in (2+1)D, then to the cubic rectilinear, interpolated cubic rectilinear, octahedral
and tetrahedral schemes in (3+1)D.

2 Von Neumann Analysis of Difference Schemes

In this section, we summarize the basics of Von Neumann analysis provided in [8]. Consider the
(N+1)D real-valued grid function Um(n), defined for integer n and for m = [m1, . . . ,mN ] ∈ Z

N ,
the set of all integer N -tuples. Such a grid function will be used, in a finite difference scheme, as
an approximation to the continuous solution u(x, t) to some problem, at the location x = m∆, and
at time t = nT , where ∆ is the grid spacing, and T is the time step. Here, and henceforth in this
appendix, we have assumed that the grid spacing is uniform in all the spatial coordinates, and that
the spatial domain is unbounded. We define the space step/time step ratio to be

v0 ,
∆

T

The spatial Fourier transform of Um(n) is defined by

Ûβ(n) =
1

(2π)N/2

∑

m∈ZN

e−i∆m·βUm(n)∆N

and is a periodic function of β= [β1, . . . , βN ]T , a vector of spatial wavenumbers. The transform
can be inverted by

Um(n) =
1

(2π)N/2

∫

[−π/∆,π/∆]N
ei∆m·βÛβ(n)dβ1dβ2 . . . dβN

where β∈ [−π/∆, π/∆]N refers to the space enclosed by the intervals −π/∆ ≤ βj ≤ π/∆, for
j = 1, . . . , N . If, for a given grid spacing ∆, we define the discrete spatial L2 norm of Um(n) by

‖U(n)‖2 =





∑

m∈ZN

U2
m(n)∆N





1/2
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and the corresponding spectral L2 norm of Ûβ(n) by

‖Û(n)‖2 =

(

∫

[−π/∆,π/∆]N
|Ûβ(n)|2dβ1dβ2 . . . dβN

)1/2

then if Um(n) and Ûβ(n) are in their respective L2 spaces, Parseval’s relation gives

‖U(n)‖2 = ‖Û(n)‖2

2.1 One-step Schemes

Consider the following one-step explicit difference scheme, which relates values of the grid function
Um(n+ 1) to values at the previous time step:

Um(n+ 1) =
∑

k∈K

αkUm−k(n)

where K is some subset of Z
N , and the parameters αk are constants; it is initialized by setting

Um(0) equal to some function Um,0 (assumed to be in L2). Taking the spatial Fourier transform of
this recursion gives

Ûβ(n+ 1) =

(

∑

k∈K

αke
−j∆k·β

)

Ûβ(n)

= Gβ Ûβ(n) (2)

Gβ so defined is called the spectral amplification factor for a one-step finite difference scheme. (2)
implies that we have, in particular, that

Ûβ(n+ 1) = Gn+1
β Ûβ,0 (3)

where Ûβ,0 is the spatial Fourier transform of the initial condition Um,0. (3) further implies that

‖Û(n+ 1)‖2 ≤
(

max
β

|Gβ|
)n+1

‖Û0‖2

and finally, through Parseval’s relation, that

‖U(n+ 1)‖2 ≤
(

max
β

|Gβ|
)n+1

‖U0‖2

If the αk which define the difference scheme are independent of the grid spacing and the time step,
then such a difference scheme is called stable if

max
β

|Gβ| ≤ 1

The L2 norm of the solution to the difference equation will thus not increase as the simulation
progresses.
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2.2 Multi-step Schemes

Multi-step methods can be treated in a very similar way. An explicit M -step method is defined by

Um(n+ 1) =
M
∑

r=1

∑

k∈Kr

αkUm−k(n+ 1 − r)

for constant coefficients αk contained in subsets Kr of Z
N . Taking the Fourier transform of this

recursion gives

Ûβ(n+ 1) =
M
∑

r=1

∑

k∈Kr

αke
−i∆k·βÛβ(n+ 1 − r) (4)

A simple way of examining (4) is to look for solutions of the form Ûβ(q) = Gq
βÛβ(0). This gives

the amplification polynomial equation

GM
β =

M
∑

r=1

∑

k∈Kr

αke
−i∆k·βGM−r

β

the solutions of which, Gβ,ν , ν = 1, . . . ,M must be bounded by unity for stability (though in
general, this is not sufficient, as we will show presently for a special case).

A particular form of the amplification polynomial equation which will appear frequently in our
subsequent treatment of finite difference schemes for the wave equation is that of a simple two-step
centered difference approximation, namely

G2
β +BβGβ + 1 = 0 (5)

for some real function Bβ. This expression has solutions

Gβ,± =
1

2

(

−Bβ ±
√

B2
β − 4

)

(6)

which will be bounded by (and in fact equal to) unity in magnitude if we have |Bβ| ≤ 2 for all
β. Furthermore, if |Bβ| > 2 for some β, then we will necessarily have an amplification factor with
magnitude greater than one at that frequency. For any β for which Gβ,± are not equal, we can
write

Ûβ(n+ 1) =
Gβ,−Ûβ,0 − Ûβ,1

Gβ,− −Gβ,+
Gn+1

β,+ +
Gβ,+Ûβ,0 − Ûβ,1

Gβ,+ −Gβ,−
Gn+1

β,−

where Ûβ,0 and Ûβ,1 are the spatial frequency spectra of the two grid functions (at time steps n = 0
and n = 1) used to initialize the two-step method. It is easy to show that the L2 norm of Um(n)
can be bounded in terms of the norms of the initial conditions if the spectral amplification factors
are distinct and bounded by 1 in magnitude at all wavenumbers.

It is important to realize, however, that the condition that these roots Gβ,± be bounded by
unity is necessary, but not sufficient to ensure no growth in the L2 norm of the solution; this point
has not been addressed in the finite difference treatment of waveguide meshes. In fact, as shown
in [2], the simple centered difference approximation to the wave equation admits linearly growing
solutions.
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This behavior can be examined in the spectral domain as we will now show, as per [8]. Notice
that the solutions (6) of the amplification polynomial equation for the two-step scheme can coincide
if, and only if at some frequency β = β0, Bβ0

= ±2, in which case we have Gβ0,+ = Gβ0,− = ∓1.
The evolution of the particular spatial frequency component at frequency β0 can be written as

Ûβ0
(n) = (∓1)nÛβ0,0 + n(∓1)n−1

(

Ûβ0,1 ± Ûβ0,0

)

We can thus expect some linear growth at any such frequency β0 if we do not properly initialize
the algorithm, so as to cancel the linearly growing part of the solution. It also follows that in
employing such a method, one may need to be particularly careful when applying an excitation
which contains such frequency components, and that nonlinear signal quantization may pump
energy into such modes, even if none is originally present there.

Strikwerda does not classify such linear growth as unstable, because the wave equation itself
admits, in addition to traveling wave solutions, a solution which grows linearly with time2. For
the physical modelling of musical instruments and acoustic spaces, however (the problems to which
finite difference schemes of the form to be discussed shortly are usually applied), such solutions are
nonphysical and definitely not acceptable. These comments concerning this mild linear instability
apply to schemes in unbounded domains; when boundary conditions are present, further analysis
will be required.

In order to simplify the analysis of these schemes, we mention that for difference schemes for
the wave equation, it is often possible to write

Bβ = −2λ2Fβ − 2 (7)

where λ2 , γ2/v2
0 and Fβ is independent of λ. In this case, the stability condition can be rewritten

as
max

β
|Bβ| ≤ 2 ⇐⇒ max

β
|λ2Fβ + 1| ≤ 1

This new condition on Fβ is easier to analyze: we first require

max
β

Fβ ≤ 0 (8)

and if (8) holds, we get a further bound on λ, namely

λ ≤
√

−2

minβ Fβ

=⇒ T ≤ ∆

γ

√

−2

minβ Fβ

(9)

Thus the stability of these schemes can be simply analyzed in terms of the global maximum and
minimum of Fβ.

For certain schemes (in particular, the interpolated schemes to be discussed in §3.2 and §4.3),
the function Fβ depends on several parameters. Condition (8) tells us the the range of parameters
over which our scheme is stable, and over the stability region, condition (9) gives us a maximum
time step T , in terms of the grid spacing ∆.

2u = t, for instance, satisfies (1).
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2.3 Vector Schemes

For two of the schemes that we will examine (hexagonal and tetrahedral), it will be necessary
to analyze a vectorized system of difference equations. In general, the analysis of vector forms
is considerably more difficult; the typical approach will invoke the Kreiss Matrix Theorem [8],
which is a set of equivalent conditions which can be used to check the boundedness of a particular
amplification matrix. In the general vector case we will be analyzing the evolution of a q-element
vector Ûβ(n) = [Û1,β(n), . . . , Ûq,β(n)]T of spatially Fourier-transformed functions of β. The L2

norm is defined by

‖Û(n)‖2 =

(

∫

[π/∆,π/∆]N
Û∗

β(n)Ûβ(n)dβ1dβ2 . . . dβN

)1/2

where ∗ denotes transpose conjugation.
The schemes for the wave equation that we will examine, however, have a relatively simple

form. The column vector of grid spatial frequency spectra Ûβ(n) satisfies an equation of the form

Ûβ(n+ 1) + BβÛβ(n) + Ûβ(n− 1) = 0 (10)

for some Hermitian matrix function of β, Bβ. Because Bβ is Hermitian, we may write Bβ =
J∗

βΛβJβ, for some unitary matrix Jβ, and a real diagonal matrix Λβ containing the eigenvalues of

Bβ. As such, we may change variables via V̂β(n) = JβÛβ(n), to get

V̂β(n+ 1) + ΛβV̂β(n) + V̂β(n− 1) = 0 (11)

The system thus decouples into a system of scalar two-step spectral update equations; because
Ûβ(n) and V̂β(n) are related by a unitary transformation, we have ‖Û(n)‖2 = ‖V̂(n)‖2, and we
may apply stability tests to the uncoupled system (11). We thus require that the eigenvalues of
Bβ, namely Λβ,j for j = 1, . . . , q, which are the elements on the diagonal of Λβ, all satisfy

max
β

|Λβ,j | ≤ 2 (12)

At frequencies β0 for which any of the eigenvalues satisfies (12) with equality, then we may again
have the same problem with mild linear growth in the solution.

2.4 Numerical Phase Velocity

For a given amplification factor Gβ, the numerical phase velocity at frequency β is defined by

vβ,phase =

∣

∣

∣

∣

log(Gβ/|Gβ|)
i‖β‖2T

∣

∣

∣

∣

where ‖β‖2 is the Euclidean norm of the vector β. This expression gives the speed of propagation for
a plane wave of wavenumber β, according to the numerical scheme of which Gβ is an amplification
factor. For the wave equation model problem, the speed of any plane wave solution will simply be
γ, but the numerical phase velocity will in general be different, and in particular, wave speeds will
be directionally dependent to a certain degree, depending on the type of scheme used. For all these
schemes, the numerical phase velocity for at least one of the amplification factors will approach
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the correct physical velocity near the spatial DC frequency, by consistency of the numerical scheme
with the wave equation2.

3 Finite Difference Schemes for the (2+1)D Wave Equation

Waveguide meshes of rectilinear [10], interpolated rectilinear [4], triangular [4, 11] and hexagonal
[11] forms have all been applied to solve the (2+1)D wave equation. Though they have often
been written as scattering forms, we showed in Chapter 4 of [2] that such meshes can also be
written as finite difference schemes. There are quite a few computational issues that arise which
serve to distinguish between these difference schemes. Among them are the density of grid points,
the possibility of decomposing a given scheme into more computationally efficient subschemes,
the operation count, spectral characteristics, the ease with which boundary conditions can be
implemented, as well as the maximum allowable time step. The stability issue discussed in §2.2 may
also be a concern, and thus favor a waveguide mesh implementation instead of a straightforward
difference scheme. It is, of course, impossible to say which is best, without knowing problem
specifics. The following is intended partly as a catalogue, as well as an indication of certain
features which probably deserve more attention, in particular the distinction between passivity and
stability which becomes apparent in the cases of the triangular and interpolated meshes.

It is worthwhile introducing two new quantities at this point. In addition to ∆, the “nearest-
neighbor” grid spacing, or inter-junction spacing, T the time step, v0, which will always be equal
to ∆/T , and λ = γ/v0, we also define ρS , the computational density of a particular scheme S to
be number of grid points at which the the difference scheme is operative, per unit volume and per
unit time. Thus if the N -dimensional volume of the spatial domain D of a particular problem is
|D| and the total time over which it operates is T , then the total number of grid point calculations
which will need to be made will be |D|T ρS . Similarly, we can define the add density σS to be ASρS

if scheme S requires AS adds in order to update at any given grid point. A multiply density could
be defined similarly, though we will not, for reasons of space, do so here.

3.1 The Rectilinear Scheme

The finite difference scheme corresponding to a rectilinear mesh is obtained by applying centered
differences to the wave equation, over a rectangular grid with indices i and j (which refer to points
with spatial coordinates x = i∆ and y = j∆). The difference scheme is (see Equation (4.53) of [2])

Ui,j(n+ 1) + Ui,j(n− 1) = λ2
(

Ui+1,j(n) + Ui−1,j(n) + Ui,j+1(n) + Ui,j−1(n)
)

+
(

2 − 4λ2
)

Ui,j(n)
(13)

and the amplification polynomial equation is of the form (5), with

Bβ = −2
(

1 + λ2 (cos(βx∆) + cos(βy∆) − 2)
)

2Regrettably, a full discussion of consistency of difference schemes would take us too far afield, and we refer to [8]
for a full exposition. The idea, grossly speaking, is that for a stable difference scheme, consistency is our guarantee
that the numerical solution to the difference scheme converges to the solution of the continuous model problem as
the grid spacing and time step are decreased. It is usually checked via a Taylor expansion of the difference scheme.
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for β = [βx, βy]
T . From (7), we thus have

Fβ = cos(βx∆) + cos(βy∆) − 2

and we have
max

β
Fβ = 0 min

β
Fβ = −4

Condition (8) is thus satisfied, and condition (9) gives the bound

λ ≤ 1√
2

for stability

which implies that the amplification factor |Gβ,±| = 1 for such values of λ. Because λ = γ/v0,
this bound is the same as the bound for passivity of the associated mesh scheme, given in (4.63)
of [2]. The amplification factors, however, are distinct at all spatial frequencies only for λ < 1/

√
2.

If λ = 1/
√

2, then the factors are degenerate for βx = βy = 0, and for βx = βy = ±π/∆ and
we are then in the situation discussed in §2.2 where linear growth of the solution may occur.
This is an important special case, because it corresponds to the standard finite difference scheme
for the rectilinear waveguide mesh (i.e. the realization without self-loops). The waveguide mesh
implementation does not allow such growth at these frequencies2. As far as assessing the

− π
∆

− π
∆

π
∆

π
∆

0 0

βx βx

− π
∆

− π
∆

π
∆

π
∆

0 0βy βy

(j − 1)∆

j∆

(j + 1)∆

(i − 1)∆ i∆ (i + 1)∆

(a) (b) (c)

Figure 1: The rectilinear scheme (13)— (a) grid, of spacing ∆, where grey/white coloring indicates
a subgrid decomposition possible when λ = 1/

√
2. (b) vβ,phase/γ for λ = 1/

√
2. Contour lines are

drawn, representing successive deviations of 2 per cent from the ideal value of 1 which is obtained
at spatial DC. (c) vβ,phase/γ away from the stability bound, for λ = 1/2.

computational requirements of the finite difference scheme, first consider the case λ < 1/
√

2. Five

2As an example of such growth at the spatial DC frequency, consider initializing the scheme (14) using Ui,j(0) = 1
for i + j even and Ui,j(1) = −1 for i + j odd. Then we will have Ui,j(n) = 2n − 1, for i + j + n even. It is simple to
show that a waveguide implementation does not allow us to choose bounded wave variable initial conditions which
yield these values for Ui,j(0) and Ui,j(1).
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adds are required at each grid point in order to update. Given that T = ∆/v0, we can write the
computational and add densities for the scheme as

ρrect =
v0
∆3

σrect =
5v0

∆3
for v0 >

√
2γ

For λ = 1/
√

2, however, scheme (13) simplifies to

Ui,j(n+ 1) + Ui,j(n− 1) =
1

2

(

Ui+1,j(n) + Ui−1,j(n) + Ui,j+1(n) + Ui,j−1(n)
)

(14)

which may be operated on alternating grids, i.e., Ui,j(n) need only be calculated for i+ j + n even
(or odd). The computational and add densities, for λ = 1/

√
2 are then

ρs
rect =

v0
2∆3

σs
rect =

2v0

∆3
for v0 =

√
2γ

where we note that the reduced scheme (14) requires only four adds for updating at a given grid
point; in addition, the multiplies by 1/2 may be accomplished, in a fixed-point implementation, by
simple bit-shifting operations. The increased efficiency of this scheme must be weighed against the
danger of instability, and the fact that because grid density is reduced, the scheme is now applicable
over a smaller range of spatial frequencies. The numerical phase velocities of the schemes, at the
stability limit, and away from it, at λ = 1/2, are plotted in Figure 1. It is interesting to note that
away from the stability limit, the numerical dispersion is somewhat less directionally dependent;
this important factor may be useful from the point of view of frequency-warping techniques [4] which
may be used to reduce numerical dispersion effects for schemes which are relatively directionally-
independent. This idea has been discussed in the waveguide mesh context (where self-loops will be
present) in [7].

3.2 The Interpolated Rectilinear Scheme

This scheme, like the standard rectilinear scheme, is defined over a grid with indices i and j, for
points with x = i∆ and y = j∆. Updating, in this case, at a given point, requires access to values
of the grid function at the previous time step at nearest-neighbor grid points to the north, east,
west and south, as well as those to the north-east, north-west, south-east and south-west, which
are more distant by a factor of

√
2. The scheme is referred to as “interpolated” in [4] because it

is derived as an approximation to a hypothetical (and non-realizable) multi-directional difference
scheme with minimally directionally-dependent numerical dispersion. (It is perhaps more useful
to think of the scheme as interpolating between two rectilinear schemes operating on grids with a
relative angle of 45 degrees.) The difference scheme will have the form

Ui,j(n+ 1) + Ui,j(n− 1) = λ2a
(

Ui,j+1(n) + Ui,j−1(n) + Ui+1,j(n) + Ui−1,j(n)
)

+ λ2b
(

Ui+1,j+1(n) + Ui+1,j−1(n) + Ui−1,j+1(n) + Ui−1,j−1(n)
)

+ λ2cUi,j(n)

(15)

for constants a, b and c which satisfy the constraints

a+ 2b = 1 4a+ 4b+ c =
2

λ2
(16)
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for consistency with the wave equation. If b = 0, we get the standard rectilinear scheme, and
if a = 0, we get a rectilinear scheme operating on a grid of spacing

√
2∆, which is rotated by 45

degrees with respect to that of the standard scheme. This general form was put forth in [4], and the
free parameter a may be adjusted to give a less directionally dependent numerical phase velocity;
it may thus be used in conjunction with frequency-warping methods for reducing dispersion error.
In general, the interpolated scheme cannot be decomposed into mutually exclusive subschemes.

− π
∆

− π
∆

π
∆

π
∆

0 0

βx βx

− π
∆

− π
∆

π
∆

π
∆

0 0βy βy

(j − 1)∆

j∆

(j + 1)∆

(i − 1)∆ i∆ (i + 1)∆

(a) (b) (c)

Figure 2: The interpolated rectilinear scheme (15)— (a) numerical grid and connections for the
interpolated rectilinear scheme (15); (b) vβ,phase/γ of the scheme for a = 0.62 at the “passivity”
bound, λ = 1/

√
1 + a; (c) vβ,phase/γ for a = 0.62, at the stability bound, for λ = 1/

√
2a.

It is possible to examine the stability of this method as in the previous case. We again have an
amplification polynomial equation of the form of (5), with

Bβ = −2λ2
(

a(cos(βx∆) + cos(βy∆)) + (1 − a) cos(βx∆) cos(βy∆) − 1 − a
)

− 2

and thus
Fβ = a

(

cos(βx∆) + cos(βy∆)
)

+ (1 − a) cos(βx∆) cos(βy∆) − 1 − a

Note that Fβ is multilinear [1] in cos(βx∆) and cos(βy∆), so that any extrema must occur at the
corners of the region in the spatial frequency plane defined by | cos(βx∆)| ≤ 1, and | cos(βy∆)| ≤ 1.
Thus, we need evaluate Fβ only for βT = [βx, βy] = [0, 0], [π/∆, 0], [0, π/∆] and [π/∆, π/∆]:

FβT =[0,0] = 0 FβT =[π/∆,0] = FβT =[0,π/∆] = −2 FβT =[π/∆,π/∆] = −4a

The global maximum of Fβ is non-positive (and thus condition (8) is satisfied) only if a ≥ 0. The
global minimum of Fβ, over this range of a will then be

min
β
Fβ =

{

−2, 0 ≤ a ≤ 1
2

−4a, a ≥ 1
2
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and the stability bound on λ will be

λ ≤
{

1, 0 ≤ a ≤ 1
2

1√
2a
, a ≥ 1

2
(for Von Neumann stability) (17)

It is interesting to look at the interpolated scheme from a waveguide mesh point of view (see
Chapter 4 of [2] for details). At each grid point we will have a nine-port parallel scattering junction;
four connections are made to neighboring points to the north, south, east and west, through a unit-
delay bidirectional delay line of admittance Ya, four more connections are made to the points to the
north-east, south-east, north-west and south-west using waveguides of admittance Yb, and there
will be a self-loop of admittance Yc. If the junction voltage is written as Ui,j(n), then the difference
scheme corresponding to this waveguide mesh will be exactly (15), with

λ2a =
2Ya

YJ
λ2b =

2Yb

YJ
λ2c =

2Yc

YJ

where the junction admittance YJ (assumed positive) will be given by

YJ = 4Ya + 4Yb + Yc

The passivity condition will then be a condition on the positivity of Ya, Yb and Yc. From the
previous discussion, we already require a ≥ 0, so this ensures that Ya ≥ 0. Requiring Yb ≥ 0 is
equivalent to requiring b ≥ 0; from the first of constraints (16), this is true only for a ≤ 1. Requiring
Yc ≥ 0 is equivalent to requiring finally, from the second of constraints (16), that

λ ≤ 1√
1 + a

, 0 ≤ a ≤ 1 (for passivity)

The difference between the constraints for stability from (17) and the passivity constraint above
is striking; these bounds are graphed in Figure 3. This is not the last time that we will find a

0 0.5 1 2 3
0

0.5

1

a

maxλ
Passive Not Passive

Figure 3: Stability bounds for the interpolated rectilinear scheme, as a function of the free parameter
a. The solid line indicates the maximum value of λ for a given value of a, and the dashed line the
maximum value of λ allowed in a passive waveguide mesh implementation. Note that there is a
passive realization only for 0 ≤ a ≤ 1.

discrepancy between Von Neumann stability of a scheme and passivity of the related mesh structure;
it will come up again in the following section during a discussion of the triangular scheme, and in
§4.3 when we look at the (3+1)D interpolated scheme. It is interesting to note that for a given
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value of a, with 0 ≤ a ≤ 1, the numerical dispersion properties can always be improved if we are
willing to forego passivity (and a mesh implementation). We have plotted the numerical phase
velocities of this scheme for a = 0.62, at both the stability limit and the passivity limit in Figure 2.

Finally, we mention that the computational and add densities for this scheme will be, in general,

ρinterp =
v0
∆3

σinterp =
10v0

∆3

over the range of v0 allowed by the stability constraint (17). For the scheme at the passivity bound
(for λ = 1/

√
1 + a, with 0 < a < 1), we have

ρp
interp =

γ
√

1 + a

∆3
σp

interp =
9γ

√
1 + a

∆3

We recall that for a = 0 or a = 1, at the stability limit, we again have the standard rectilinear
scheme, for which a grid decomposition is possible; this was discussed in the previous section.

3.2.1 Optimally direction-independent numerical dispersion

Although the choice of the free parameter a which gives a maximally direction-independent numer-
ical dispersion profile has been made, in the past, through computerized optimization procedures
[4], we note here that it is possible to make a theoretical choice as well, based on a Taylor series
expansion of the spectrum.

The spectral amplification factors for the interpolated scheme can be written in terms of the
function Bβ, or, equivalently, in terms of the function Fβ. It should be clear, then, that if Fβ

is directionally independent, then so are the amplification factors, and thus the numerical phase
velocity (see §2.4) as well. Ideally, we would like Fβ to be a function of the spectral radius ‖β‖2 =
(β2

x + β2
y)1/2 alone. Now examine the Taylor expansion of Fβ about β= 0:

Fβ = −∆2‖β‖2
2 + ∆4

(

1

4!

(

β4
x + β4

y

)

+
1 − a

4
β2

xβ
2
y

)

+O(∆6)

The directionally-independent O(∆2) term reflects the fact that the scheme is consistent with the
wave equation; higher order terms in general show directional dependence. The choice of a = 2/3,
however, gives

Fβ = −∆2‖β‖2
2 +

1

4!
∆4‖β‖4

2 +O(∆6) for a = 2/3

and the directional dependence is confined to higher-order powers of ∆. Thus for this choice of a,
the numerical scheme is maximally direction independent about spatial DC. Note that this value
of a does fall within the required bounds for a passive waveguide mesh implementation. The value
of 0.62 (for which the numerical dispersion profile is plotted in Figure 2), which is very close to
2/3, was chosen by visual inspection of dispersion profiles for various values of a.

3.3 The Triangular Scheme

The simplest difference scheme which can be used to solve the wave equation on a triangular grid,
and which corresponds to the waveguide mesh discussed in [2] in the constant-coefficient case, is

12



given by

Ui,j(n+ 1) + Ui,j(n− 1) =
2

3
λ2
(

Ui,j+2(n) + Ui,j−2(n) + Ui+1,j+1(n) + Ui+1,j−1(n)

+ Ui−1,j+1(n) + Ui−1,j−1(n)
)

+ 2
(

1 − 2λ2
)

Ui,j(n)

(18)

for a grid defined by points at indices (i, j), for integer i and j such that i + j is even. These
coordinates refer to grid points at locations x =

√
3i∆/2 and y = j∆/2, so that a given grid

point is equidistant from its six neighbors. This arrangement is shown in Figure 4(a) and can be
considered to be a rectilinear grid under a coordinate transformation; we refer to [9] for a discussion
of the range of allowable spatial frequencies for such a grid.

In this case, we will again have an amplification polynomial of the form (5), with

Bβ = −2

(

1 +
2

3
λ2

(

cos(βy∆) + 2 cos(
βy∆

2
) cos(

√
3βx∆

2
) − 3

))

Fβ =
2

3

(

cos(βy∆) + 2 cos(
βy∆

2
) cos(

√
3βx∆

2
) − 3

)

Because Fβ is not multilinear (see §3.2) in the cosines, finding the extrema is not as simple as in
the interpolated case—one can proceed either through some tedious algebra, change to stretched
rectilinear coordinates, in which Fβ becomes multilinear again, or make use of a computer. In any
case, these extrema can be shown to be

max
β

Fβ = 0 min
β
Fβ = −3

and thus, from (9),

λ ≤
√

2

3
for stability

This is surprising, because the bound for passivity, from Eqn. (4.80) of [2], of the triangular mesh
is λ ≤ 1/

√
2. That is to say, for a given inter-junction spacing of ∆, a triangular waveguide mesh

is concretely passive for time steps T with T ≤ ∆/(
√

2γ). The corresponding difference equation,
namely (18), is stable (in the sense of Von Neumann), for T ≤

√
2∆/(

√
3γ). The waveguide mesh

can of course operate in a non-passive mode for 1/
√

2 < λ ≤
√

2/3 (where we will require negative
self-loop immittances, and will not have a simple positive definite energy measure for the network
in terms of the wave quantities). The numerical dispersion characteristics of the scheme at the two
bounds are considerably different, and are plotted in Figure 4(b) and (c); the phase velocities are
near the correct physical velocity over a much wider range of spatial frequencies at the stability
bound, though the dispersion is also more directional.

The question which arises here is of the distinction between passive and stable numerical meth-
ods (this was also seen for the mesh for the transmission line equations in the previous section on
the interpolated rectilinear scheme). Is it always possible to find a passive realization of a stable
numerical method? The discussion on the hexagonal mesh will help to answer this question. To
this end, we note that at the stability limit, we can rewrite Bβ as

Bβ = 2(1 − 2

9
|ψβ|2) for λ =

√

2

3

13



for a function ψβ whose squared magnitude is given by

|ψβ|2 = 1 + 4 cos2(
βy∆

2
) + 4 cos(

βy∆

2
) cos(

√
3βx∆

2
)

The spectral amplification factors at the stability limit will then be, from (6),

Gβ,± = −1 +
2

9
|ψβ|2 ±

2

3
|ψβ|

(

1

9
|ψβ|2 − 1

) 1
2

(19)

For λ =
√

2/3 (its limiting value), the triangular scheme has the same potential for instability
as the rectilinear scheme. Linear growth may occur for this scheme at the seven spatial frequency
pairs

βT = [0, 0], [0,±4π/3∆], [2π/
√

3∆,±2π/3∆], [−2π/
√

3∆,±2π/3∆]

The computational and add densities for the triangular scheme in general, and at the stability

− π
∆

− π
∆

π
∆

π
∆

0 0

βx βx

− π
∆

− π
∆

π
∆

π
∆

0 0βy βy

(j − 2)∆
2

(j − 1)∆
2

(j + 1) ∆
2

j ∆
2

(j + 2) ∆
2

√

3
2

(i−1)∆
√

3
2

i∆
√

3
2

(i+1)∆

(a) (b) (c)

Figure 4: The triangular scheme (18)— (a) numerical grid and connections; (b) vβ,phase/γ for the
scheme at the passivity bound, λ = 1/

√
2; (c) vβ,phase/γ at the stability bound, for λ =

√

2/3.

(λ =
√

2/3) and passivity bounds (λ = 1/
√

2) will be

ρtri =
2v0√
3∆3

σtri =
14v0√
3∆3

ρs
tri =

√
2γ

∆3
σs

tri =
7
√

2γ

∆3

ρp
tri =

2
√

2γ√
3∆3

σp
tri =

4
√

6γ

∆3

Here we have taken into account the fact that at the passivity bound, we require one less add
per point (in the waveguide mesh implementation, the self-loop disappears). We also mention
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that the triangular difference scheme is doubly pathological, in the sense that not only do its
passivity and stability regimes not coincide (and aside from the interpolated rectilinear schemes,
it is the only scheme examined in this appendix that exhibits this behavior), but it also can not
be decomposed into even/odd mutually exclusive subschemes, as can all the other schemes to be
discussed here (again, excepting the interpolated scheme). It seems reasonable to conjecture that
these two “symptoms” are related (somehow).

3.4 The Hexagonal Scheme

The hexagonal scheme is different from those previously discussed in that updating is not the same
at every point on the grid. Indeed, one-half the grid points have a “mirror-image” orientation
with respect to the other half, as shown in Figure 5(a). For this reason, we will take special care
in the analysis of this system; first suppose that we have two grid functions U1(n) and U2(n)
defined over the two sub grids (labelled 1 and 2, in Figure 5). We index these two grid functions
as U1,i,j(n) and U2,i+2,j(n), for i and j integer such that i = 3m, for integer m, and j + i/3
is even. U1,i,j(n) will serve as an approximation to some continuous function u1 at the point
(x = ∆i/2, y =

√
3j∆/2, t = nT ), and U2,i+2,j(n) will approximate a function u2 at a point with

coordinates (x = ∆i/2 + ∆, y =
√

3j∆/2, t = nT ). As before the distance between any grid
point and its nearest neighbors (three in this case) is ∆. The difference scheme for the hexagonal
waveguide mesh can then be written as the system

U1,i,j(n+ 1) + U1,i,j(n− 1) =
4

3
λ2
(

U2,i+2,j(n) + U2,i−1,j+1(n) + U2,i−1,j−1(n)
)

+2
(

1 − 2λ2
)

U1,i,j(n) (20a)

U2,i+2,j(n+ 1) + U2,i+2,j(n− 1) =
4

3
λ2
(

U1,i,j(n) + U1,i+3,j+1(n) + U1,i+3,j−1(n)
)

+2
(

1 − 2λ2
)

U2,i+2,j(n) (20b)

Consistency of (20) with the wave equation is not immediately apparent. We can check it as
follows. First expand (20) in a Taylor series in terms of the continuous functions u1 and u2 to get

(

T 2 ∂
2

∂t2
+ 4λ2

)

u1 = λ2
(

4 + ∆2∇2
)

u2

(

T 2 ∂
2

∂t2
+ 4λ2

)

u2 = λ2
(

4 + ∆2∇2
)

u1

to O(∆4, T 4). This system can then be reduced to

(

T 2 ∂
2

∂t2
+ 4λ2

)2

u = λ4
(

4 + ∆2∇2
)2
u

where u is either of u1 or u2. Discarding higher order terms in T and ∆ gives the wave equation.
In terms of the spatial Fourier spectra of the grid functions U1 and U2, we may write the

differencing system (20) in the vector form of (10) with

Ûβ =

[

Û1,β

Û2,β

]

Bβ =

[−2(1 − 2λ2) −4
3λ

2ψβ

−4
3λ

2ψ∗
β −2(1 − 2λ2)

]
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where
ψβ = eiβx∆ + 2e−iβx∆/2 cos(

√
3βy∆/2)

Because Bβ is Hermitian, we can then change variables so that the system is the form of (11), with

Λβ =

[

−2(1 − 2λ2) + 4
3λ

2|ψβ| 0
0 −2(1 − 2λ2) − 4

3λ
2|ψβ|

]

The necessary stability condition, from (12) will then be

max
β

| − 2(1 − 2λ2) ± 4

3
λ2|ψβ|| ≤ 2 (21)

It is easy to check that |ψβ| takes on a maximum of 3 when βx = βy = 0, and is minimized for
βx = 0, |βy| = 4π/(3

√
3∆) and for |βx| = 2π/3, |βy| = 2π/(3

√
3∆), where it takes on the value 0.

It is then easy to show that we require λ ≤ 1/
√

2 in order to satisfy (21). This coincides with the
passivity bound, from Eqn. (4.79) of [2].

An analysis of numerical dispersion is more complex in the vector case. Beginning from the
uncoupled system defined by Λβ, whose upper and lower diagonal entries we will call Λβ,1 and Λβ,2

respectively, we can see that we will thus have two pairs of spectral amplification factors, one for
each uncoupled scalar equation. These will be given by

Gβ,1,± =
1

2

(

−Λβ,1 ±
√

Λ2
β,1 − 4

)

Gβ,2,± =
1

2

(

−Λβ,2 ±
√

Λ2
β,2 − 4

)

It is useful to check the values of the amplification factors at the spatial DC frequency, and at the
stability bound, where we have Λβ,1 = 2, Λβ,2 = −2. At this frequency, the spectral amplification
factors take on the values

Gβ=0,1,± = −1 Gβ=0,2,± = 1 (22)

Clearly, the pair of spectral amplification factors Gβ=0,2,± correctly represents wave propagation at
spatial DC, but the factors Gβ=0,1,± will be responsible for parasitic oscillations [8] in the hexagonal
scheme; they will not, in general, be overly problematic, since the energy allowed into such modes
must vanish as the grid spacing ∆ is decreased; this is a result of the consistency of the numerical
scheme (20) with the wave equation, as was shown earlier in this subsection. In order to clarify
this point, it is useful to examine the diagonalizing transformation defined by Jβ, which takes the

Fourier-transformed hexagonal scheme in the form of (10), in the variable Ûβ, to that of (11), in

V̂β. At β = 0, and for λ = 1/
√

2, we have

Bβ=0 =

[

0 −2
−2 0

]

Λβ=0 =

[

2 0
0 −2

]

Jβ=0 =
1√
2

[

−1 1
1 1

]

and thus V̂1,β=0 = (−Û1,β=0 + Û2,β=0)/
√

2 and V̂2,β=0 = (Û1,β=0 + Û2,β=0)/
√

2. Because scheme
(20) is consistent with the wave equation, then for any reasonable choice of initial conditions, we
must have that Û1,β=0 ≈ Û2,β=0, as ∆ becomes small. Thus V̂1,β=0, the component of the numerical
solution whose spectral amplification is governed by the parasitic factor Gβ=0,1,± must vanish in
this limit as well.
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Figure 5: The hexagonal scheme (20)— (a) numerical grid and connections, where grey/white
coloration of points indicates a division into mutually exclusive sub schemes at the stability bound;
(b) vβ,phase/γ for the scheme at the passivity bound, λ = 1/

√
2, for the dominant mode.

The computational and add densities, for the general scheme (20), and at the stability limit for
λ = 1/

√
2 will be given by

ρhex =
4v0

3
√

3∆3
σhex =

16v0

3
√

3∆3

ρs
hex =

2
√

2γ

3
√

3∆3
σs

hex =
2
√

2γ√
3∆3

As in the rectilinear scheme, we have used the fact that the hexagonal scheme decouples into two
independent subschemes at the stability limit.

One other point is worthy of comment. Consider again the vector equation which describes
the time evolution of the spatial spectra for the hexagonal scheme, which, in diagonalized form, is
exactly (11). At the stability limit, then, for λ = 1/

√
2, we will have

Λβ =

[

2
3 |ψβ| 0

0 −2
3 |ψβ|

]

Let us examine the second uncoupled subsystem. From (22), the spectral amplification factors will
then be

Gβ,2,± =
1

3
|ψβ| ±

(

1

9
|ψβ|2 − 1

) 1
2

It is of interest to see the effect of the amplification factors after two time steps; these will simply
be the squares of Gβ,2,±, which are

G2
β,2,± = −1 +

2

9
|ψβ|2 ±

2

3
|ψβ|

(

1

9
|ψβ|2 − 1

) 1
2

(23)
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The important point here is that the two-step spectral amplification factors for scheme (20) are
identical to the one-step factor for the triangular scheme with grid spacing

√
3∆ at its own stability

limit; these factors were given in (19). This is perhaps not surprising, given that, from Figure 5(a),
it is clear that that either of the two sub grids for the hexagonal scheme forms a triangular grid of
spacing

√
3∆. What is surprising is that a triangular waveguide mesh at the stability limit is not a

concretely passive structure (see previous section). That is to say, it will still operate stably (in the
Von Neumann sense), but will require negative self-loop immittances. Thus a hexagonal waveguide
mesh, at its passivity/stability bound can be seen as a passive realization of the stable difference
scheme on a triangular grid. The question as to whether there is always a passive realization for
any stable difference scheme remains open2.

3.5 A Fourth-order Scheme

The schemes examined so far have all been spatially accurate to second-order. That is, at any
time step, the L2 norm of the difference between the numerical solution and the solution to the
model problem will be proportional to ∆2. In this section, we examine a family of explicit two-step
schemes which are fourth-order spatially accurate. This family is more computationally intensive,
due to the fact that updating the grid function requires access to past values which are two grid
points away; in addition, we will see that a passive waveguide mesh implementation will not be
possible in this case. These disadvantages are mitigated by the fact that the numerical dispersion
is greatly reduced, so that the use of a coarse grid may be possible.

This scheme is, like the standard rectilinear scheme, defined over a grid with indices i and j
which refer to a location with coordinates x = i∆ and y = j∆. Updating, in this case, at a given
point, requires access to values of the grid function at the previous time step at the set of 25 grid
points which are located at most 2∆ away in either the x or y directions, as shown in Figure 7(a).
The difference scheme will have the general form

Ui,j(n+ 1) + Ui,j(n− 1) = λ2a
(

Ui,j+1(n) + Ui,j−1(n) + Ui+1,j(n) + Ui−1,j(n)
)

+ λ2b
(

Ui+1,j+1(n) + Ui+1,j−1(n) + Ui−1,j+1(n) + Ui−1,j−1(n)
)

+ λ2c
(

Ui+2,j(n) + Ui−2,j(n) + Ui,j+2(n) + Ui,j−2(n)
)

+ λ2d
(

Ui+2,j+1(n) + Ui+2,j−1(n) + Ui−2,j+1(n) + Ui−2,j−1(n)

+ Ui+1,j+2(n) + Ui+1,j−2(n) + Ui−1,j+2(n) + Ui−1,j−2(n)
)

+ λ2e
(

Ui+2,j+2(n) + Ui+2,j−2(n) + Ui−2,j+2(n) + Ui−2,j−2(n)
)

+ λ2fUi,j(n)

(24)

In order for (24) to approximate the wave equation, we first require that the constants a, b, c, d, e
and f satisfy the constraints

a+ 2b+ 4c+ 10d+ 8e = 1 4a+ 4b+ 4c+ 8d+ 4e+ f =
2

λ2
(25)

Then, to ensure that the scheme is fourth-order spatially accurate, we additionally require

b+ 8d+ 16e = 0 a+ 2b+ 16c+ 34d+ 32e = 0 (26)

2We consider this to be the single most important issue raised in this thesis.
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We can then write all the parameters in terms of d, e and λ, as

a = 14d+ 32e+ 4/3 (27a)

b = −8d− 16e (27b)

c = −2d− 2e− 1/12 (27c)

f = 2/λ2 − 24d− 60e− 5 (27d)

These constraints are all arrived at through a tedious but straightforward Taylor series expansion
of the scheme. As for the interpolated scheme discussed in §3.2, passivity is guaranteed by a simple
positivity condition on the scheme parameters, in this case a, . . . , f . From (27c), it should be clear
that if d ≥ 0 and e ≥ 0, then we must necessarily have c ≤ −1/12, and a passive waveguide
mesh implementation for this scheme is ruled out. This is not to say that fourth-order spatially
accurate DWNs do not exist; we showed, in [2] that such a network does exist, at least in the
case of the (1+1)D transmission line system (the wave equation is a special case of this system).
The conclusion is that the topology of the form discussed in this section does not permit a mesh
realization, but there are other forms that do.

The amplification polynomial for this scheme is of the form of (5), with Bβ = −2λ2Fβ − 2 and

Fβ = (14d+ 32e+ 4/3)
(

cos(βx∆) + cos(βy∆)
)

+ (−16d− 32e) cos(βx∆) cos(βy∆)

+ (−2d− 2e− 1/12)
(

cos(2βx∆) + cos(2βy∆)
)

+ 2d
(

cos(βx∆) cos(2βy∆) + cos(2βx∆) cos(βy∆)
)

+ 2e cos(2βx∆) cos(2βy∆) − 12d− 30e− 5/2

In order to determine stability bounds, we are faced with finding the extrema of Fβ in terms of the
parameters d and e. Because Fβ is not multilinear in the cosines, finding these extrema explicitly
is a challenging problem.

Let us first simplify the class of difference schemes by looking for those which exhibit maximally
direction-independent numerical dispersion. As in §3.2, we expand Fβ in a Taylor series about
β = 0, to get

Fβ = −∆2

2
‖β‖2

2 + ∆6
( 1

180

(

β6
x + β6

y

)

− (d/2 + 2e)
(

β2
xβ

4
y + β4

xβ
2
y

)

)

+O(∆8)

The absence of a term in ∆4 reflects the fourth-order accuracy of the scheme. If we choose d/2+2e =
−1/60, however, we get

Fβ = −∆2

2
‖β‖2

2 +
∆6

180
‖β‖6

2 +O(∆8) for d/2 + 2e = −1/60

and the scheme is direction-independent to sixth order in ∆.
Making use of this setting for e in terms of d, Fβ now depends only on the free parameter d;

through a computer analysis, it is possible to show that condition (8) is satisfied for d > −0.134.
The upper bound on λ, from condition (9) is plotted as a function of d in Figure 6.

We have plotted a numerical dispersion profile in Figure 7(b). It is interesting to note that the
maximum value of vβ,phase/γ for this family of schemes would always appear to be slightly greater
than 1, although the numerical phase velocity does indeed approach the physical velocity at spatial
DC (as it will for any consistent scheme).
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Figure 6: Stability bound for the fourth-order scheme (24), as a function of the free parameter d,
in the optimally direction-independent case. The solid line indicates the maximum value of λ for a
given value of d. The scheme is stable only for d > −0.134.

The computational and add densities for this scheme are, in general,

ρfourth =
v0
∆3

σfourth =
25v0

∆3

There are several ways of cutting down on computational costs; for example, because d and e are
free parameters, we may simply set them to zero, and the add density is significantly reduced.
There is, however, no decomposition of this scheme into mutually exclusive subschemes.

4 Finite Difference Schemes for the (3+1)D Wave Equation

We now look at several difference schemes which solve the wave equation in (3+1)D, in particular
schemes which operate on a rectilinear grid; all the schemes which have appeared in the DWN
literature are of this type. We will pay special attention to the interpolated scheme, for which the
requirements for stability and passivity become even more distinct than they were in the (2+1)D
case (see §3.2).

4.1 The Cubic Rectilinear Scheme

This is the simplest scheme for the (3+1)D wave equation. The grid points, indexed by i, j and k
are located at coordinates (x, y, z) = (i∆, j∆, k∆). The finite difference scheme is written as

Ui,j,k(n+ 1) + Ui,j,k(n− 1) = λ2
(

Ui+1,j,k(n) + Ui−1,j,k(n) + Ui,j+1,k(n) + Ui,j−1,k(n)

+ Ui,j,k+1(n) + Ui,j,k−1(n)
)

+
(

2 − 6λ2
)

Ui,j,k(n)

(28)

If the grid points are located at the corners of a cubic lattice, then updating the scheme requires
access to the grid function at the six neighboring corners; see Figure 8(a). The stability analysis is
very similar to that of the (2+1)D rectilinear scheme, except that we now have a 3-tuple of spatial
frequencies, β = [βx, βy, βz]

T . The amplification polynomial equation is again of the form of (5),
with

Bβ = −2
(

1 + λ2 (cos(βx∆) + cos(βy∆) + cos(βx∆) − 3)
)
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Figure 7: The fourth-order spatially accurate scheme (24)— (a) numerical grid, where the letters a
through f refer to the related coefficients from (24); (b) vβ,phase/γ for the scheme at for d = −0.044
and λ = 0.6174, which is away from the bound shown in Figure 6. vβ,phase/γ takes on a maximum
of 1.0144 (not shown).

and thus
Fβ = cos(βx∆) + cos(βy∆) + cos(βx∆) − 3

Because Fβ is multilinear in the cosines, it is simple to show that

max
β

Fβ = 0 min
β
Fβ = −6

and so, from (9),

λ ≤ 1√
3

(for Von Neumann stability)

When λ = 1/
√

3, the amplification factors become degenerate and linear growth of the solution
may occur for βx = βy = βz = 0, and for |βx| = |βy| = |βz| = π/∆. The computational and add
densities are

ρcub =
v0
∆4

σcub =
7v0

∆4

for v0 >
√

3γ, and

ρs
cub =

γ

2∆4
σs

cub =
3γ

∆4

at the stability limit v0 =
√

3γ. At this limit, the scheme may, like the (2+1)D scheme, be
divided into two mutually exclusive subschemes. See Figure 8(b) and (c) for plots of the numerical
dispersion properties of the cubic rectilinear scheme.
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4.2 The Octahedral Scheme

The grid for an octahedral scheme is constructed from two superimposed rectilinear grids; if the
points of the first grid are located at cube corners, then the points of the second will occur at the
centers of the cubes defined by the first. The relevant difference scheme on an octahedral grid can
be written as

Ui,j,k(n+ 1) + Ui,j,k(n− 1) =
3

4
λ2
(

Ui−1,j+1,k+1(n) + Ui+1,j+1,k+1(n) + Ui−1,j−1,k+1(n)

+ Ui+1,j−1,k+1(n) + Ui−1,j−1,k−1(n) + Ui−1,j+1,k−1(n)

+ Ui+1,j+1,k−1(n) + Ui+1,j−1,k−1(n)
)

+
(

2 − 8λ2
)

Ui,j,k(n)

(29)

for i, j and k which are either all even or all odd integers. Now, we have taken the spacing between
nearest neighbors to be ∆, so the indices i, j and k refer to a point with coordinates x = i∆/

√
3,

y = j∆/
√

3 and z = k∆/
√

3. The amplification polynomial equation is again of the form (5), with

Bβ = −2

(

1 + 3λ2

(

cos(
βx∆√

3
) cos(

βy∆√
3

) cos(
βx∆√

3
) − 1

))

and

Fβ = 3

(

cos(
βx∆√

3
) cos(

βy∆√
3

) cos(
βx∆√

3
) − 1

)

and it is again easy to determine that

max
β

Fβ = 0 min
β
Fβ = −6

which are the same as the bounds in the cubic rectilinear case. We again have that

λ ≤ 1√
3

(for Von Neumann stability)

Thus the stability bound coincides with the passivity bound for the mesh implementation. For
λ = 1/

√
3, instabilities may appear at any spatial frequency triplets β = [βx, βy, βz]

T where each
component is either 0 or ±

√
3π/∆.

The computational and add densities are given by

ρoct =
3
√

3v0

4∆4
σoct =

27
√

3v0

4∆4

for v0 >
√

3γ, and

ρs
oct =

9γ

8∆4
σs

oct =
9γ

∆4

at the stability limit v0 =
√

3γ.
At the stability limit, the scheme can be divided into two mutually exclusive subschemes; plots

of numerical dispersion are shown in Figure 9(b) and (c). It is interesting to note that there is no
dispersion error along the six axial directions; this should be compared with the cubic rectilinear
scheme, for which wave propagation is dispersionless along the diagonal directions (there are eight
such directions).
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4.3 The (3+1)D Interpolated Rectilinear Scheme

In the interest of achieving a more uniform numerical dispersion profile in (3+1)D, it is of course
possible to define an interpolated scheme, in the same way as was done in (2+1)D in §3.2. We will
again have a two-step scheme, and updating at a given grid point is performed with reference to, at
the previous time step, the grid point at the same location, as well as the 26 nearest neighbors: the
six points a distance ∆ away, twelve points at a distance of

√
2∆, and eight points that are

√
3∆

away (see Figure 11(a)). This (3+1)D rectilinear scheme has been discussed recently in [3, 5]; we
present here a complete analysis of the relevant stability conditions, as well as the conditions under
which a waveguide mesh implementation exists. We also look at a means of minimizing directional
dependence of the numerical dispersion.

Like the cubic rectilinear and octahedral schemes, this scheme will be defined over a rectilinear
grid indexed by i, j and k and will have the general form

Ui,j,k(n+ 1) + Ui,j,k(n− 1) = λ2a
(

Ui+1,j,k(n) + Ui−1,j,k(n) + Ui,j+1,k(n) + Ui,j−1,k(n)

+ Ui,j,k+1(n) + Ui,j,k−1(n)
)

+ λ2b
(

Ui+1,j+1,k(n) + Ui+1,j−1,k(n) + Ui−1,j+1,k(n) + Ui−1,j−1,k(n)

+ Ui+1,j,k+1(n) + Ui−1,j,k+1(n) + Ui,j+1,k+1(n) + Ui,j−1,k+1(n)

+ Ui+1,j,k−1(n) + Ui−1,j,k−1(n) + Ui,j+1,k−1(n) + Ui,j−1,k−1(n)
)

+ λ2c
(

Ui+1,j+1,k+1(n) + Ui+1,j+1,k−1(n) + Ui−1,j−1,k+1(n)

+ Ui−1,j−1,k−1(n) + Ui+1,j−1,k+1(n) + Ui+1,j−1,k−1(n)

+ Ui−1,j+1,k+1(n) + Ui−1,j+1,k−1(n)
)

+ λ2dUi,j(n)

(30)

In order for scheme (30) to satisfy the wave equation, we require the constants a, b, c and d to
satisfy the constraints

a+ 4b+ 4c = 1 6a+ 12b+ 8c+ d =
2

λ2

We can then rewrite

c =
1 − a− 4b

4
d =

2

λ2
− 4a− 4b− 2 (31)

and a family of difference schemes parametrized by a, b and λ results.
The stability analysis of this scheme proceeds along the same lines as that of the (2+1)D

scheme, though as we shall see, the stability condition on the parameters a and b is considerably
more complex. As before, we have an amplification polynomial of the form of (5), now with

Bβ = −2λ2
(

a
(

cos(βx∆) + cos(βy∆) + cos(βz∆)
)

+ 2b
(

cos(βx∆) cos(βy∆) + cos(βx∆) cos(βz∆) + cos(βy∆) cos(βz∆)
)

+ (1 − a− 4b) cos(βx∆) cos(βy∆) cos(βz∆) − 2a− 2b− 1
)

− 2
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and

Fβ = a
(

cos(βx∆) + cos(βy∆) + cos(βz∆)
)

+ 2b
(

cos(βx∆) cos(βy∆) + cos(βx∆) cos(βz∆) + cos(βy∆) cos(βz∆)
)

+ (1 − a− 4b) cos(βx∆) cos(βy∆) cos(βz∆) − 2a− 2b− 1

Because Fβ is again multilinear in the three cosines, its extrema can only occur at the eight corners
of the cubic region defined by | cos(βx∆)| ≤ 1, | cos(βy∆)| ≤ 1 and | cos(βz∆)| ≤ 1. These extrema
are

FβT =[0,0,0] = 0

FβT =[π/∆,0,0] = FβT =[0,π/∆,0] = FβT =[0,0,π/∆] = −2

FβT =[π/∆,π/∆,0] = FβT =[π/∆,0,π/∆] = FβT =[π/∆,π/∆,0] = −4a− 8b

FβT =[π/∆,π/∆,π/∆] = −4a+ 8b− 2

The non-positivity requirement on Fβ then amounts to requiring that these extreme values be
non-positive. The resulting stability region in the (a, b) plane is shown in grey in Figure 10(a).

Assuming that a and b fall in this region, we then must have

λ2 ≤ −2/min
β
Fβ

The minimum value of Fβ depends on a and b in a non-trivial way; referring to Figure 10(a), the
stability domain can be divided into three regions, and in each there is a different closed form
expression for the upper bound on λ. These bounds are given explicitly in the caption to Figure
10(a).

In order to examine the directional dependence of the dispersion error, we may expand Fβ in a
Taylor series about β= 0, as was done in the (2+1)D case. We have

Fβ = −∆2‖β‖2
2 + ∆4

( 1

4!

(

β4
x + β4

y + β4
z

)

+
1 − a− 2b

4

(

β2
xβ

2
y + β2

xβ
2
z + β2

yβ
2
z

)

)

+O(∆6)

which implies that

Fβ = −∆2‖β‖2
2 + ∆4 1

4!
‖β‖4

2 +O(∆6) for b = −a/2 + 1/3

and the dispersion error is directionally independent to fourth order. This special choice of the
parameters a and b is plotted as a dotted line in Figure 10(a). It is well worth comparing this
optimization method with the computer-based techniques applied to the same problem in [5].

The computational and add densities for the scheme will be

ρ3Dinterp =
v0
∆4

σ3Dinterp =
27v0

∆4

Considerable computational savings are possible if any of a, b, c or d is zero. Finally, we remark
that the (3+1)D interpolated scheme can be realized as a waveguide mesh, where, at any given
junction, we will have four types of waveguide connections: those of admittances Ya, Yb and Yc are
connected to the neighboring junctions located at gridpoints at distances ∆,

√
2∆ and

√
3∆ away
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respectively, and a self-loop of admittance Yd is also connected to every junction. We end up with
exactly difference scheme (30), with

λ2a =
2Ya

YJ
λ2b =

2Yb

YJ
λ2c =

2Yc

YJ
λ2d =

2Yd

YJ

where the junction admittance YJ will be given by

YJ = 6Ya + 12Yb + 8Yc + Yd

The passivity condition is then a positivity condition on these admittances, and thus on the pa-
rameters a, b, c and d. Recalling the expression for c in terms of a and b from (31), we must
have

a ≥ 0 b ≥ 0 b ≤ 1 − a

4

This region is shown, in dark grey, in Figure 10(b). The positivity condition on d (expressed in
terms of a, b and λ as per (31)) gives the bound on λ, which is

λ ≤
√

1

2a+ 2b+ 1
(for passivity)

4.4 The Tetrahedral Scheme

The tetrahedral scheme in (3+1)D [11] is somewhat similar to the hexagonal scheme in (2+1)D, in
that the grid is divided evenly into two sets of points, at which updating is performed using “mirror-
image” stencils. It is different, however, because grid points can easily be indexed with reference
to a regular cubic lattice; the hexagonal scheme operates on a rectangular grid in stretched or
transformed coordinates. In fact, a tetrahedral scheme can be obtained directly from an octahedral
scheme simply by removing half of the grid points it employs; as such, any given grid point in
the tetrahedral scheme has four nearest neighbors. As usual, we assume the nearest-neighbor grid
spacing to be ∆. See Figure 12(a) for a representation of the numerical grid.

As per the hexagonal scheme, we will view this as a vectorized scheme operating on two distinct
sub grids, labelled 1 and 2 in Figure 12(a). The two grid functions U1,i,j,k(n) and U2,i+1,j+1,k+1(n)
are defined for integers i, j and k all even such that (i+ j+k)/2 is also even. U1,i,j,k will be used to
approximate a continuous function u1 at the point with coordinates x = i∆/

√
3, y = j∆/

√
3 and

z = k∆/
√

3, and U2,i+1,j+1,k+1 approximates u2 at coordinates x = (i+ 1)∆/
√

3, y = (j+ 1)∆/
√

3
and z = (k + 1)∆/

√
3. The numerical scheme can then be written as

U1,i,j,k(n+ 1) + U1,i,j,k(n− 1) =
3

2
λ2
(

U2,i+1,j+1,k+1(n) + U2,i+1,j−1,k−1(n)

+U2,i−1,j−1,k+1(n) + U2,i−1,j+1,k−1(n)
)

+2
(

1 − 3λ2
)

U1,i,j,k(n) (32a)

U2,i+1,j+1,k+1(n+ 1) + U2,i+1,j+1,k+1(n− 1) =
3

2
λ2
(

U1,i,j,k(n) + U1,i,j+2,k+2(n)

+U1,i+2,j+2,k(n) + U1,i+2,j,k+2(n)
)

+2
(

1 − 3λ2
)

U2,i+1,j+1,k+1(n) (32b)
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As for the hexagonal scheme, we may check consistency of this system with the wave equation
by treating the grid functions as samples of continuous functions u1 and u2 and expanding (32) in
terms of partial derivatives; both grid functions updated according to this scheme will approximate
the solution to the wave equation on their respective grids.

Determining the stability condition proceeds as in the hexagonal scheme; taking spatial Fourier
transforms of (32) gives a vector spectral update equation of the form (10), with Bβ given by

Bβ =

[

−2(1 − 3λ2) −3
2λ

2ψβ

−3
2λ

2ψ∗
β −2(1 − 3λ2)

]

with
ψβ = 2

(

ej∆βx/
√

3 cos(∆(βy + βz)/
√

3) + e−j∆βx/
√

3 cos(∆(βy − βz)/
√

3)
)

Bβ is again Hermitian, and has eigenvalues

Λβ,1 = −2
(

1 − 3λ2
)

+
3

2
λ2|ψβ|

Λβ,2 = −2
(

1 − 3λ2
)

− 3

2
λ2|ψβ|

The stability condition can thus be written as

∣

∣

∣

∣

−2
(

1 − 3λ2
)

± 3

2
λ2|ψβ|

∣

∣

∣

∣

≤ 2 (33)

ψβ can be shown to take on a maximum of 4, and a minimum of 0, and it then follows that (33)
will be satisfied if and only if λ ≤ 1/

√
3, the same bound as obtained for the cubic rectilinear

and octahedral schemes. The bound is the same as the bound for passivity of a tetrahedral mesh.
We note that as for these other schemes, the grid permits a subdivision into mutually exclusive
subschemes at this stability limit—see Figure 12(a). By a simple comparison with the hexagonal
scheme, we can obtain the four spectral amplification factors by

Gβ,1,± =
1

2

(

−Λβ,1 ±
√

Λ2
β,1 − 4

)

Gβ,2,± =
1

2

(

−Λβ,2 ±
√

Λ2
β,2 − 4

)

it is easy to see that parasitic modes (characterized by the amplification factors Gβ,1,±) will be
present in the tetrahedral scheme, due to the nonuniformity of updating on the numerical grid.
The numerical dispersion characteristics of the dominant modes with amplification factors Gβ,2,±
are shown in planar and spherical cross-sections in Figure 12(b) and (c).

The computational and add densities of this scheme, in general, are

ρtetr =
3
√

3v0

8∆4
σtetr =

15
√

3v0

8∆4

for v0 >
√

3γ, and

ρs
tetr =

9γ

16∆4
σs

tetr =
9γ

4∆4

at the stability limit v0 =
√

3γ.
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Figure 8: The cubic rectilinear scheme (28)— (a) numerical grid and connections, where grey/white
coloring of points indicates a division into mutually exclusive subschemes at the stability bound; (b)
vβ,phase/γ for the scheme at the stability bound λ = 1/

√
3, for a spherical surface with ‖β‖2 =

π/(2∆)—the shading is normalized over the surface so that white corresponds to no dispersion
error, and black to the maximum error over the surface (which is 7 per cent in this case). (c)
Contour plots of vβ,phase/γ for various cross-sections of the space of spatial frequencies β; contours
indicate successive deviations of 2 per cent from the ideal value of 1 which is obtained at spatial
DC.
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Figure 9: The octahedral scheme (29)— (a) numerical grid and connections, where grey/white
coloring of points indicates a division into mutually exclusive subschemes at the stability bound;
(b) vβ,phase/γ for the scheme at the stability bound λ = 1/

√
3, for a spherical surface with ‖β‖2 =

π/(2∆)—the shading is normalized over the surface so that white corresponds to no dispersion error,
and black to the maximum error over the surface (which is 5 per cent in this case). (c) Contour
plots of the vβ,phase/γ for various cross-sections of the space of spatial frequencies β; contours
indicate successive deviations of 2 per cent from the ideal value of 1 which is obtained at spatial
DC.
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Figure 10: (a) Stability region, in grey, for the interpolated rectilinear scheme, plotted in the (a, b)
plane. This region can be divided into three sub-regions, labelled I, II, and III separated by dashed
lines, over which different stability conditions on λ apply. In region I, we must have λ ≤ 1, in region
II λ ≤ 1/

√
2a+ 4b, and in region III λ ≤ 1/

√
2a− 4b+ 1. The dotted line indicates choices of a

and b for which numerical dispersion is optimally direction-independent. (b) The subset of stable
schemes for which a passive waveguide mesh implementation exists is shown in dark grey. Over
this region, we require λ ≤ 1/

√
2a+ 2b+ 1. This bound is more strict than the stability conditions

mentioned above in the same region. We also remark that this interpolated scheme reduces to other
simpler schemes under particular choices of a and b. At point P , we have the cubic rectilinear
scheme (see §4.1), at point Q we have the octahedral scheme (see §4.2), and at point R we have
what might be called a “dodecahedral” scheme. Notice in particular that none of these schemes is
optimally direction-independent (i.e., P , Q and R do not lie on the dotted line).
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Figure 11: The (3+1)D interpolated rectilinear scheme (30)— (a) numerical grid and connections,
from a central grid point (labelled P) to its neighbors in one octant. (b) vβ,phase/γ for the scheme
with a = 0.42 and b = 0.1233 at the stability bound λ = 0.8617, for a spherical surface with
‖β‖2 = π/(2∆)—the shading is normalized over the surface so that white and black refer to minimal
and maximal dispersion error, respectively. Here, unlike for the cubic rectilinear and octahedral
schemes, there are no dispersionless directions. The variation in the numerical phase velocity is,
however, quite small, ranging from 96.81 to 97.32 per cent of the correct wave speed. (c) Contour
plots of vβ,phase/γ for various cross-sections of the space of spatial frequencies β; contours indicate
successive deviations of 2 per cent from the ideal value of 1 which is obtained at spatial DC.
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Figure 12: The tetrahedral scheme (32)— (a) numerical grid and connections, where grey/white
coloring of points indicates a division into mutually exclusive subschemes at the stability bound.
The scheme can be indexed similarly to the octahedral scheme (see Figure 9). The two sub grids
with mutually inverse orientations are labelled 1 and 2. (b) vβ,phase/γ for the scheme at the stability
bound λ = 1/

√
3, for a spherical surface with ‖β‖2 = π/(2∆)—the shading is normalized over the

surface so that white corresponds to no dispersion error, and black to the maximum error over the
surface (which is 6 per cent in this case). (c) Contour plots of vβ,phase/γ for various cross-sections
of the space of spatial frequencies β; contours indicate successive deviations of 2 per cent from the
ideal value of 1 which is obtained at spatial DC. Here we have only plotted spatial frequencies to
|βx|, |βy|, and |βz| all less than π/(2∆).
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