Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

State Space Formulation

Rewriting the filter in state-space form,2we have

$\displaystyle \left[\begin{array}{c} x(n+1) \\ [2pt] y(n+1) \end{array}\right]
...
...ray}\right]
+
\left[\begin{array}{c} b_1 \\ [2pt] b_2 \end{array}\right] u(n)
$

or
$\displaystyle \underline{x}(n+1)$ $\displaystyle =$ $\displaystyle \mbox{\boldmath$A$}$$\displaystyle \underline{x}+$   $\displaystyle \mbox{\boldmath$B$}$$\displaystyle u(n)$ (21)
$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle \mbox{\boldmath$C$}$$\displaystyle ^T \underline{x}(n) + D u(n)$ (22)

where $ C$$ ^T=[c_1,c_2]=[0, 1]$ and $ D=0$. As is well known, the transfer function of a state-space model (A,B,C,D) is given by
$\displaystyle H(z)$ $\displaystyle =$ $\displaystyle \mbox{\boldmath$C$}$$\displaystyle ^T (z$$\displaystyle \mbox{\boldmath$I$}$$\displaystyle -$$\displaystyle \mbox{\boldmath$A$}$$\displaystyle )^{-1}$$\displaystyle \mbox{\boldmath$B$}$$\displaystyle + D$ (23)
  $\displaystyle =$ $\displaystyle \frac{e_1z^{-1}+ e_2z^{-2}}%
{1-2r_1\cos(\theta_1)z^{-1}+ r_1^2z^{-2}},$ (24)

where
$\displaystyle e_1$ $\displaystyle =$ $\displaystyle c_1 b_1 + c_2 b_2$ (25)
$\displaystyle e_2$ $\displaystyle =$ $\displaystyle -c_1 (b_1x_1 +b_2y_1) + c_2 (b_1y_1-b_2x_1).$ (26)

Thus, under all choices of input or output, there is at most one real finite zero at $ z=-e_2/e_1$.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download smac03maxjos.pdf

``Methods for Synthesizing Very High Q Parametrically Well Behaved Two Pole Filters'', by Max Mathews and Julius Smith, Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), pp. 405-408, August 6-9, 2003.
Copyright © 2008-03-12 by Max Mathews and Julius Smith
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [About the Automatic Links]