Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Wavetable Synthesis

For periodic sounds, the sinusoidal components are all harmonics of some fundamental frequency. If in addition they can be constrained to vary together in amplitude over time, then they can be implemented using a single wavetable containing one period of the sound. Amplitude shaping is handled by multiplying the output of the wavetable look-up by an amplitude-envelope generated separately [186,167]. Using interpolation (typically linear, but sometimes better), the table may be played back at any fundamental frequency, and its output is then multiplied by the amplitude envelope shared by all harmonics. (The harmonics may still have arbitrary relative levels.) This form of ``wavetable synthesis'' was commonly used in the early days of computer music. This method is still commonly used for synthesizing harmonic spectra.G.8

Note that sometimes the term ``wavetable synthesis'' is used to refer to what was originally called sampling synthesis: playback of sampled tones from memory, with looping of the steady-state portion to create an arbitrarily long sustain [165,27,107,193]. This book adheres to the original terminology. For sampling synthesis, spectral phase-modifications (Chapter 8) can be used to provide perfectly seamless loops [165].


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]
[Lecture Video]  [Exercises]  [Examination]  
``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2014-03-23 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA