Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Spectral Roll-Off



Definition: A function $ W(\omega)$ is said to be of order $ 1/\omega^{n+1}$ if there exist $ \omega_0$ and some positive constant $ M<\infty$ such that $ \left\vert W(\omega)\right\vert<M/w^{n+1}$ for all $ \omega > \omega_0$ .



Theorem: (Riemann Lemma): If the derivatives up to order $ n$ of a function $ w(t)$ exist and are of bounded variation, then its Fourier Transform $ W(\omega)$ is asymptotically of order $ 1/\omega^{n+1}$ , i.e.,

$\displaystyle W(\omega) = {\cal O}\left(\frac{1}{\omega^{n+1}}\right), \quad(\hbox{as }\omega\to\infty)$ (3.42)



Proof: See §B.18.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2016-07-18 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA