
Digital Audio Resampling Home Page

Abstract

This document describes digital audio sampling-rate conversion and related concepts. Open-
source software is provided, and pointers are given to related projects and papers.

Contents

1 What is Bandlimited Interpolation? 2

2 Free Resampling Software 2

3 Theory of Operation 5

3.1 Abstract . 5
3.2 Introduction . 5
3.3 Theory of Ideal Bandlimited Interpolation . 5
3.4 From Theory to Practice . 7
3.5 Implementation . 10
3.6 Quantization Issues . 12

3.6.1 Choice of Table Size . 13
3.6.2 Linear Interpolation Error Bound . 13
3.6.3 Application to the Ideal Lowpass Filter . 14
3.6.4 Relation of Interpolation Error to Quantization Error 14
3.6.5 Error in the Absence of Interpolation . 15
3.6.6 Choice of Interpolation Resolution . 15
3.6.7 Quantized Interpolation Error Bound . 16
3.6.8 Ideal Lowpass Filter . 16

3.7 Conclusions . 16
3.8 Appendix: Periodic Sinc Interpolation . 17
3.9 Appendix: Relation between Sinc and Lagrange Interpolation 17

1

1 What is Bandlimited Interpolation?

Bandlimited interpolation of discrete-time signals is a basic tool having extensive application in
digital signal processing. In general, the problem is to correctly compute signal values at arbitrary
continuous times from a set of discrete-time samples of the signal amplitude. In other words,
we must be able to interpolate the signal between samples. Since the original signal is always
assumed to be bandlimited to half the sampling rate, (otherwise aliasing distortion would occur upon
sampling), Shannon’s sampling theorem tells us the signal can be exactly and uniquely reconstructed
for all time from its samples by bandlimited interpolation.

There are many methods for interpolating discrete points. For example, Lagrange interpolation

is the classical technique of finding an order N polynomial which passes through N+1 given points.
The technique known as cubic splines fits a third-order polynomial through two points so as

to achieve a certain slope at one of the points. (This allows for a smooth chain of third-order
polynomial passing through a set of points.)

You may also have heard of Bezier splines which interpolate a set of points using smooth curves
which don’t necessarily pass through the points. (Bezier curves are commonly used in graphics and
drawing programs, such as Adobe Illustrator.)

The above methods are suitable for graphics and other uses, but they are not ideal for digital
audio. In digital audio, what matters is the audibility of interpolation error between samples. Since
Shannon’s sampling theorem says it is possible to restore an audio signal exactly from its samples,
it makes sense that the best digital audio interpolators would be based on that theory. Such “ideal”
interpolation is called bandlimited interpolation.

A bandlimited interpolation algorithm designed along these lines is described in the theory
of operation tutorial.1 There is also free open-source software2 available in the C programming
language. An excellent online tool3 can be used to compare various sampling-rate conversion
implementations, both commercial and FOSS.

2 Free Resampling Software

• Note: libresample and sndfile-resample (from libsamplerate) are already included in
the Planet CCRMA Distribution.4 If you are running Red Hat Linux, check out the Planet.

• There is also SoX5 (which uses libsoxr, the SoX resampler library) to change sampling
rates by this method. Say port search sox (Mac), yum search sox (Linux), etc., to find
it. See also ssrc (from Shibatch) which is a fixed-point sampling-rate conversion library
installable packages6 for Debian and Ubuntu. There is a project combining ssrc and sox on
SourceForge:
https://sourceforge.net/projects/resamplerv/7

1http://ccrma.stanford.edu/~jos/resample/Theory_Operation.html
2http://ccrma.stanford.edu/~jos/resample/Available_Software.html
3http://src.infinitewave.ca/
4http://ccrma.stanford.edu/planetccrma/software/
5http://sox.sourceforge.net/
6http://lacocina.nl/2013/12/11/shibatch-ssrc-packages/
7https://sourceforge.net/projects/resamplerv/

2

http://ccrma.stanford.edu/~jos/resample/Theory_Operation.html
http://ccrma.stanford.edu/~jos/resample/Available_Software.html
http://src.infinitewave.ca/
http://ccrma.stanford.edu/planetccrma/software/
http://sox.sourceforge.net/
http://lacocina.nl/2013/12/11/shibatch-ssrc-packages/
https://sourceforge.net/projects/resamplerv/

• Check out http://src.infinitewave.ca/ for a large list of implementations and their rel-
ative performance. Seriously check it out—the coverage is amazing.

• ReSampler : https://github.com/jniemann66/ReSampler
High quality command-line audio sample rate converter - LGPL-2.1 License

• resampy : https://github.com/bmcfee/resampy
Python (Cython) implementation released under a BSD-style (ISC) license, since 2016

• Brick is an arbitrary-quality audio resampler, pitch-shifter, and format converter written and
maintained by William Andrew Burnson:
http://camil.music.illinois.edu/software/brick/

https://github.com/burnson/Brick

• Smarc describes itself as a fast and high quality audio rate converter, allowing conversion
between any two sampling rates, and optimized for standard audio rates, available as a
command-line program or C library:
http://audio-smarc.sourceforge.net/

• resample-1.8.1.tar.gz8 (502 Kbytes) (v1.8.1 released November 11, 2006)
The resample software package contains free sampling-rate conversion and filter design util-
ities written in C, including a stand-alone command-line sampling-rate conversion utility
called resample. The package compiles readily under Linux and most other UNIX operating
systems. It is released under the GNU Lesser General Public License (LGPL).

– Older Version for NeXT Computers (49 Kbytes)9

– Original 1983+ source for the PDP KL-1010 (Released under the Revised BSD License)

• Erik de Castro Lopo’s “SecretRabbitCode” libsamplerate11

– Same basic algorithm

– Floating-point (resample is fixed-point—sometimes needed on DSP chips)

– Configures for non-Linux platforms such as Mac OS X and Windows

– Includes the command-line program sndfile-resample which works like resample

– Uses Erik’s libsndfile (resample uses Bill Schottstaedt’s sndlib)

– License is either GPL or commercial (resample is LGPL)

• libresample12 (LGPL) (version 1.3 released Jan. 7, 2004) by Dominic Mazzoni (used in
Audacity) is a real-time library for sampling rate conversion providing several useful features
relative to resample-1.7 on which it is based:

– It should build “out of the box” on more platforms, including Linux, Solaris, and Mac
OS X (using the included configure script). There is also a Visual C++ project file for
building under Windows.

8http://ccrma.stanford.edu/~jos/gz/resample-1.8.1.tar.gz
9http://ccrma.stanford.edu/~jos/gz/resample-1.2.tar.gz

10./original-source.html
11http://www.mega-nerd.com/SRC/
12http://ftp.debian.org/pool/main/libr/libresample/

3

http://src.infinitewave.ca/
https://github.com/jniemann66/ReSampler/blob/master/README.md
https://github.com/jniemann66/ReSampler
http://resampy.readthedocs.io
https://github.com/bmcfee/resampy
http://camil.music.illinois.edu/software/brick/
https://github.com/burnson/Brick
http://audio-smarc.sourceforge.net/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://ccrma.stanford.edu/~jos/gz/resample-1.8.1.tar.gz
http://ccrma.stanford.edu/~jos/gz/resample-1.2.tar.gz
./original-source.html
http://www.mega-nerd.com/SRC/
http://ftp.debian.org/pool/main/libr/libresample/

– Input and output signals are in memory (as opposed to sound files).

– Computations are in floating-point (instead of fixed-point).

– Filter table increased by a factor of 32, yielding more accurate results, even without
linear interpolation (which also makes it faster).

– Data can be processed in small chunks, enabling time-varying resampling ratios (ideal
for time-warping applications and supporting an “external clock input” in software).

– Easily applied to any number of simultaneous data channels

• libresample4j13 is a Java port of libresample for real-time sampling-rate conversion by
dnault-laszlo.14

• The free Open Source Audio Library Project (OSALP)15 (LGPL) contains a C++ class based
on resample.

• The Speex 16 speech coder/decoder (based on CELP) contains a variation of the resample

algorithm in the file resample.c, is free and open-source, and is released under a BSD-style
license (i.e., free for both commercial and noncommercial uses). The code is characterized as
“working, but it’s in a very early stage, so it may have artifacts ... the API isn’t stable ...”.
However, this appears to be the best BSD-licensed starting point.

• SRDoubler17 (MIT License) is specialized for a factor of 2 stereo upsampling, allowing it to
achieve significant computational savings at a perceptually non-degraded quality level.

• Website comparing various sampling-rate converters: http://src.infinitewave.ca/

• Paper on optimal FIR interpolation filter design: (.pdf)18

To report bugs, or contribute enhancements, please send email to jos (jos@ccrma.stanford.edu).

13https://github.com/dnault/libresample4j/
14https://github.com/dnault
15http://sourceforge.net/projects/osalp/
16http://www.speex.org
17https://github.com/levmin/SRDoubler/
18http://ccrma.stanford.edu/~jos/pdf/optfir.pdf

4

http://www.gnu.org/copyleft/lesser.html
http://src.infinitewave.ca/
https://github.com/dnault/libresample4j/
https://github.com/dnault
http://sourceforge.net/projects/osalp/
http://www.speex.org
https://github.com/levmin/SRDoubler/
http://ccrma.stanford.edu/~jos/pdf/optfir.pdf

3 Theory of Operation

3.1 Abstract

This tutorial describes a technique for bandlimited interpolation of discrete-time signals which
supports signal evaluation at an “arbitrary” time, and which performs well for smoothly changing
sampling rates, such as needed for digital audio “scrubbing.” The method is based on interpolated
look-up in a table of filter coefficients, so as to make the filter impulse response available effectively
in continuous-time form. A single pre-computed filter table handles all interpolation times and
sampling-rate conversion ratios. Formulas are given for determining the look-up table size needed
for a given precision requirement. This tutorial is an expansion of the conference paper in [?].

3.2 Introduction

Bandlimited interpolation of discrete-time signals is a basic tool having extensive application in
digital signal processing. In general, the problem is to correctly compute signal values at arbitrary
continuous times from a set of discrete-time samples of the signal amplitude. In other words,
we must be able to interpolate the signal between samples. Since the original signal is always
assumed to be bandlimited to half the sampling rate, (otherwise aliasing distortion would occur upon
sampling), Shannon’s sampling theorem tells us the signal can be exactly and uniquely reconstructed
for all time from its samples by bandlimited interpolation.

Considerable research has been devoted to the problem of interpolating discrete points. A com-
prehensive survey of “fractional delay filter design” is provided in [?]. A comparison between clas-
sical (e.g., Lagrange) and bandlimited interpolation is given in [?]. The book Multirate Digital

Signal Processing [?] provides a comprehensive summary and review of classical signal process-
ing techniques for sampling-rate conversion. In these techniques, the signal is first interpolated
by an integer factor L and then decimated by an integer factor M . This provides sampling-rate
conversion by any rational factor L/M . The conversion requires a digital lowpass filter whose cutoff
frequency depends on max{L,M}. While sufficiently general, this formulation is less convenient
when it is desired to resample the signal at arbitrary times or change the sampling-rate conversion
factor smoothly over time.

In this tutorial, a public-domain resampling algorithm is described which will evaluate a signal
at any time specifiable by a fixed-point number [?]. In addition, one lowpass filter is used regardless
of the sampling-rate conversion factor. The algorithm effectively implements the “analog interpre-
tation” of rate conversion, as discussed in [?], in which a certain lowpass-filter impulse response
must be available as a continuous function. Continuity of the impulse response is simulated by lin-
early interpolating between samples of the impulse response stored in a table. Due to the relatively
low cost of memory, the method is quite practical for hardware implementation.

In section 2, the basic theory is presented, section 3 addresses practical issues, and implemen-
tation details are discussed in section 4. Finally, section 5 discusses numerical requirements on the
length, width, and interpolation accuracy of the filter coefficient table.

3.3 Theory of Ideal Bandlimited Interpolation

We review briefly the “analog interpretation” of sampling rate conversion [?] on which the present
method is based. Suppose we have samples x(nTs) of a continuous absolutely integrable signal x(t),
where t is time in seconds (real), n ranges over the integers, and Ts is the sampling period. We

5

assume x(t) is bandlimited to ±Fs/2, where Fs = 1/Ts is the sampling rate. If X(ω) denotes the
Fourier transform of x(t), i.e., X(ω) =

∫

∞

−∞
x(t)e−jωtdt, then we assume X(ω) = 0 for |ω| ≥ πFs.

Consequently, Shannon’s sampling theorem gives us that x(t) can be uniquely reconstructed from
the samples x(nTs) via

x̂(t)
∆
=

∞
∑

n=−∞

x(nTs)hs(t− nTs) ≡ x(t), (1)

where

hs(t)
∆
= sinc(Fst)

∆
=

sin(πFst)

πFst
. (2)

To resample x(t) at a new sampling rate F ′

s = 1/T ′

s, we need only evaluate Eq. (1) at integer
multiples of T ′

s.
When the new sampling rate F ′

s is less than the original rate Fs, the lowpass cutoff must be
placed below half the new lower sampling rate. Thus, in the case of an ideal lowpass, hs(t) =
min{1, F ′

s/Fs}sinc(min{Fs, F
′

s}t), where the scale factor maintains unity gain in the passband.
A plot of the sinc function sinc(t) ∆

= sin(πt)/(πt) to the left and right of the origin t = 0 is
shown in Fig. 1. Note that peak is at amplitude 1, and zero-crossings occur at all nonzero integers.
The sinc function can be seen as a hyperbolically weighted sine function with its zero at the origin
canceled out. The name sinc function derives from its classical name as the sine cardinal (or
cardinal sine) function.

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

1

. . .
. . .

. . .
. . .

Figure 1: The sinc function plotted for seven zero-crossings to the left and right.

If “∗” denotes the convolution operation for digital signals, then the summation in Eq. (1) can
be written as (x ∗ hs)(t).

Equation Eq. (1) can be interpreted as a superpositon of shifted and scaled sinc functions hs.
A sinc function instance is translated to each signal sample and scaled by that sample, and the
instances are all added together. Note that zero-crossings of sinc(z) occur at all integers except
z = 0. That means at time t = nTs, (i.e., on a sample instant), the only contribution to the sum
is the single sample x(nTs). All other samples contribute sinc functions which have a zero-crossing
at time t = nTs. Thus, the interpolation goes precisely through the existing samples, as it should.

A plot indicating how sinc functions sum together to reconstruct bandlimited signals is shown
in Fig. 2. The figure shows a superposition of five sinc functions, each at unit amplitude, and dis-
placed by one-sample intervals. These sinc functions would be used to reconstruct the bandlimited
interpolation of the discrete-time signal x = [. . . , 0, 1, 1, 1, 1, 1, 0, . . .]. Note that at each sampling
instant t = nTs, the solid line passes exactly through the tip of the sinc function for that sample;

6

this is just a restatement of the fact that the interpolation passes through the existing samples.
Since the nonzero samples of the digital signal are all 1, we might expect the interpolated signal to
be very close to 1 over the nonzero interval; however, this is far from being the case. The deviation
from unity between samples can be thought of as “overshoot” or “ringing” of the lowpass filter
which cuts off at half the sampling rate, or it can be considered a “Gibbs phenomenon” associated
with bandlimiting.

Figure 2: Bandlimited reconstruction of the signal The dots show the signal samples, the dashed
lines show the component sinc functions, and the solid line shows the unique bandlimited recon-
struction from the samples obtained by summing the component sinc functions.

A second interpretation of Eq. (1) is as follows: to obtain the interpolation at time t, shift the
signal samples under one sinc function so that time t in the signal is translated under the peak
of the sinc function, then create the output as a linear combination of signal samples where the
coefficient of each signal sample is given by the value of the sinc function at the location of each
sample. That this interpretation is equivalent to the first can be seen as a result of the fact that
convolution is commutative; in the first interpretation, all signal samples are used to form a linear
combination of shifted sinc functions, while in the second interpretation, samples from one sinc
function are used to form a linear combination of samples of the shifted input signal. The practical
bandlimited interpolation algorithm presented below is based on the second interpretation.

3.4 From Theory to Practice

The summation in Eq. (1) cannot be implemented in practice because the “ideal lowpass filter”
impulse response hs(t) actually extends from minus infinity to infinity. It is necessary in practice
to window the ideal impulse response so as to make it finite. This is the basis of the window method

for digital filter design [?, ?]. While many other filter design techniques exist, the window method
is simple and robust, especially for very long impulse responses. In the case of the algorithm
presented below, the filter impulse response is very long because it is heavily oversampled. Another
approach is to design optimal decimated “sub-phases” of the filter impulse response, which are then
interpolated to provide the “continuous” impulse response needed for the algorithm [?].

Figure 3 shows the frequency response of the ideal lowpass filter. This is just the Fourier
transform of hs(t).

If we truncate hs(t) at the fifth zero-crossing to the left and the right of the origin, we obtain
the frequency response shown in Fig. 4. Note that the stopband exhibits only slightly more than
20 dB rejection.

If we instead use the Kaiser window [?, ?] to taper hs(t) to zero by the fifth zero-crossing to the

7

Ideal Lowpass Filter Frequency Response

-0.4 -0.2 0 0.2 0.4

0.2

0.4

0.6

0.8

1

Figure 3: Frequency response of the ideal lowpass filter.

Frequency Response : Rectangular Window

-400 -200 200 400

-80

-60

-40

-20

Figure 4: Frequency response of the ideal lowpass filter after rectangularly windowing the ideal
(sinc) impulse response at the fifth zero crossing to the left and right of the time origin. The
vertical axis is in units of decibels (dB), and the horizontal axis is labeled in units of spectral
samples between plus and minus half the sampling rate.

8

left and the right of the origin, we obtain the frequency response shown in Fig. 5. Note that now
the stopband starts out close to −80 dB. The Kaiser window has a single parameter which can be
used to modify the stop-band attenuation, trading it against the transition width from pass-band
to stop-band.

Frequency Response : Kaiser Window

-400 -200 200 400

-140

-120

-100

-80

-60

-40

-20

Figure 5: Frequency response of the ideal lowpass filter Kaiser windowed at the fifth zero crossing
to the left and right.

9

3.5 Implementation

The implementation below provides signal evaluation at an arbitrary time, where time is specified
as an unsigned binary fixed-point number in units of the input sampling period (assumed constant).
Figure 6 shows the time register t, and Figure 7 shows an example configuration of the input signal
and lowpass filter at a given time. The time register is divided into three fields: The leftmost field
gives the number n of samples into the input signal buffer, the middle field is an initial index l
into the filter coefficient table h(l), and the rightmost field is interpreted as a number η between 0
and 1 for doing linear interpolation between samples l and l + 1 (initially) of the filter table. The
concatenation of l and η are called P ∈ [0, 1) which is interpreted as the position of the current
time between samples n and n+ 1 of the input signal.

Let the three fields have nn, nl, and nη bits, respectively. Then the input signal buffer contains
N = 2nn samples, and the filter table contains L = 2nl “samples per zero-crossing.” (The term
“zero-crossing” is precise only for the case of the ideal lowpass; to cover practical cases we generalize
“zero-crossing” to mean a multiple of time tc = 0.5/fc, where fc is the lowpass cutoff frequency
in cycles per sample.) For example, to use the ideal lowpass filter, the table would contain h(l) =
sinc(l/L).

Our implementation stores only the “right wing” of a symmetric finite-impulse-response (FIR)
filter (designed by the window method based on a Kaiser window [?]). Specifically, if h(l), l =
−LNz,−LNz + 1, . . . ,−1, 0, 1, 2, . . . , LNz, denotes a symmetric finite impulse response, then the
right wing of h is defined as the set of samples h(l) for l = 0, 1, 2, . . . , LNz. By symmetry, the left

wing can be reconstructed as h(−l) = h(l), l = 1, 2, . . . , LNz.
Our implementation also stores a table of differences h̄(l) = h(l + 1)− h(l) between successive

FIR sample values in order to speed up the linear interpolation. The length of each table is
Nh = LNz + 1, including the endpoint definition h̄(Nh) = 0.

Consider a sampling-rate conversion by the factor ρ = F ′

s/Fs. For each output sample, the basic
interpolation Eq. (1) is performed. The filter table is traversed twice—first to apply the left wing
of the FIR filter, and second to apply the right wing. After each output sample is computed, the
time register is incremented by 2nl+nη/ρ (i.e., time is incremented by 1/ρ in fixed-point format).
Suppose the time register t has just been updated, and an interpolated output y(t) is desired. For
ρ ≥ 1, output is computed via

v ←
h end
∑

i=0

x(n− i)
[

h(l + iL) + ηh(l + iL)
]

(3)

P ← 1− P (4)

y(t) ← v +
h end
∑

i=0

x(n+ 1 + i)
[

h(l + iL) + ηh(l + iL)
]

, (5)

where x(n) is the current input sample, and η ∈ [0, 1) is the interpolation factor. When ρ < 1,
the initial P is replaced by P ′ = ρP , 1− P becomes ρ− P ′ = ρ(1− P), and the step-size through
the filter table is reduced to ρL instead of L; this lowers the filter cutoff to avoid aliasing. Note
that η is fixed throughout the computation of an output sample when ρ ≥ 1 but changes when
ρ < 1.

10

Input

Signal

Index n

nηnlnn

Filter Table

Initial

Index l

Interpolation

Factor η

Binary Point [)P ∈ 1,0

Figure 6: Time register format.

.

.

Filter Coefficients

for Current Output

Current

Output Time
Lowpass Filter

Impulse Response

Input Signal Samples

. . .
. . .

()nx

()nx − 1 ()h 0

()lh

()Llh +

η

P

()nx + 1

Pn +

Time

Figure 7: Illustration of waveforms and parameters in the interpolator.

When ρ < 1, more input samples are required to reach the end of the filter table, thus pre-
serving the filtering quality. The number of multiply-adds per second is approximately (2Nz +
1)max{Fs, F

′

s}. Thus the higher sampling rate determines the work rate. Note that for ρ < 1 there
must be ⌈NzFs/F

′

s⌉ extra input samples available before the initial conversion time and after the
final conversion time in the input buffer. As ρ→ 0, the required extra input data becomes infinite,
and some limit must be chosen, thus setting a minimum supported ρ. For ρ ≥ 1, only Nz extra
input samples are required on the left and right of the data to be resampled, and the upper bound
for ρ is determined only by the fixed-point number format, viz., ρmax = 2nl+nη .

As shown below, if nc denotes the word-length of the stored impulse-response samples, then
one may choose nl = 1 + nc/2, and nη = nc/2 to obtain nc − 1 effective bits of precision in the
interpolated impulse response.

Note that rational conversion factors of the form ρ = L/M , where L = 2nl and M is an arbitrary

11

positive integer, do not use the linear interpolation feature (because η ≡ 0). In this case our method
reduces to the normal type of bandlimited interpolator [?]. With the availability of interpolated
lookup, however, the range of conversion factors is boosted to the order of 2nl+nη/M . E.g., for
ρ ≈ 1, nl = 9, nη = 8, this is about 5.1 decimal digits of accuracy in the conversion factor ρ.
Without interpolation, the number of significant figures in ρ is only about 2.7.

The number Nz of zero-crossings stored in the table is an independent design parameter. For a
given quality specification in terms of aliasing rejection, a trade-off exists between Nz and sacrificed
bandwidth. The lost bandwidth is due to the so-called “transition band” of the lowpass filter [?].
In general, for a given stop-band specification (such as “80 dB attenuation”), lowpass filters need
approximately twice as many multiply-adds per sample for each halving of the transition band
width.

As a practical design example, we use Nz = 13 in a system designed for high audio quality at
20% oversampling. Thus, the effective FIR filter is 27 zero crossings long. The sampling rate in
this case would be 50 kHz.19 In the most straightforward filter design, the lowpass filter pass-band
would stop and the transition-band would begin at 20 kHz, and the stop-band would begin (and
end) at 25 kHz. As a further refinement, which reduces the filter design requirements, the transition
band is really designed to extend from 20 kHz to 30 kHz, so that the half of it between 25 and
30 kHz aliases on top of the half between 20 and 25 kHz, thereby approximately halving the filter
length required. Since the entire transition band lies above the range of human hearing, aliasing
within it is not audible.

Using 512 samples per zero-crossing in the filter table for the above example (which is what we
use at CCRMA, and which is somewhat over designed) implies desiging a length 27× 512 = 13824
FIR filter having a cut-off frequency near π/512. It turns out that optimal Chebyshev design
procedures such as the Remez multiple exchange algorithm used in the Parks-McLellan software [?]
can only handle filter lengths up to a couple hundred or so. It is therefore necessary to use an FIR
filter design method which works well at such very high orders, and the window method employed
here is one such method.

It is worth noting that a given percentage increase in the original sampling rate (“oversampling”)
gives a larger percentage savings in filter computation time, for a given quality specification, because
the added bandwidth is a larger percentage of the filter transition bandwidth than it is of the
original sampling rate. For example, given a cut-off frequency of 20 kHz, (ideal for audio work),
the transition band available with a sampling rate of 44 kHz is about 2 kHz, while a 48 kHz sampling
rate provides a 4 kHz transition band. Thus, a 10% increase in sampling rate halves the work per
sample in the digital lowpass filter.

3.6 Quantization Issues

In this section, we investigate the requirements on the sampling density L = 2nl of the lowpass-
filter impulse response, and the number of bits nη required in the interpolation factor η. These
quantities are determined by computing the worst-case error and comparing it to the filter coefficient
quantization error.

19We arbitrarily define the 20% guard band as a percentage of half the sampling rate actually used, not as 20% of
the desired 20 kHz bandwidth which would call for a 48 kHz sampling rate.

12

3.6.1 Choice of Table Size

It is desirable that the stored filter impulse response be sampled sufficiently densely so that inter-
polating linearly between samples does not introduce error greater than the quantization error. We
will show that this condition is satisfied when the filter table contains at least L = 2nc/2 entries per
zero-crossing, where nc is the number of bits allocated to each table entry.

3.6.2 Linear Interpolation Error Bound

Let h(t) denote the lowpass filter impulse response, and assume it is twice continuously differentiable
for all t. By Taylor’s theorem [?, p. 119], we have

h(t0 + η) = h(t0) + ηh′(t0) +
1

2
η2h′′(t0 + λη), (6)

for some λ ∈ [0, 1], where h′(t0) denotes the time derivative of h(t) evaluated at t = t0, and h′′(t0)
is the second derivative at t0.

The linear interpolation error is

e(t)
∆
= h(t)− ĥ(t), (7)

where t = t0 + η, t0 = ⌊t⌋, η = t− t0, and ĥ(t) is the interpolated value given by

ĥ(t)
∆
= ηh(t0) + ηh(t1), (8)

where η
∆
= 1− η and t1

∆
= t0 + 1. Thus t0 and t1 are successive time instants for which samples of

h(t) are available, and η ∈ [0, 1) is the linear interpolation factor.
By definition, e(t0) = e(t1) = 0. That is, the interpolation error is zero at the known samples.

Let te denote any point at which |e(t)| reaches a maximum over the interval (t0, t1). Then we have

|e(te)| ≥ |e(t)|, ∀t ∈ [t0, t1].

Without loss of generality, assume te ≤ t0 + 1/2. (Otherwise, replace t0 with t1 in the following.)
Since both h(t) and ĥ(t) are twice differentiable for all t ∈ (t0, t1), then so is e(t), and therefore
e′(te) = 0. Expressing e(t0) = 0 as a Taylor expansion of e(t) about t = te, we obtain

0 = e(t0) = e(te) + (t0 − te)e
′(te) +

(t0 − te)
2

2!
e′′(ξ) = e(te) +

(t0 − te)
2

2
e′′(ξ)

for some ξ ∈ (t0, t1). Solving for e(te) gives

e(te) = −
(t0 − te)

2

2
e′′(ξ)

Defining

M2
∆
= max

t

∣

∣h′′(t)
∣

∣ = max
t

∣

∣e′′(t)
∣

∣ ,

where the maximum is taken over t ∈ (t0, t1), and noting that |t0 − te| ≤ 1/2, we obtain the upper
bound20

|e(te)| ≤
M2

8
(9)

20Thanks to Magnus Lundin for contributing this formulation, which sharpens the bound derived in [?].

13

3.6.3 Application to the Ideal Lowpass Filter

For the ideal lowpass filter, we have

h(t) = sinc(ωLt/π)
∆
=

sin(ωLt)

ωLt
=

1

ωL

∫ ωL

0
cos(ωt), (10)

where ωL = π/L, and L = 2nl is the number of table entries per zero-crossing. Note that the right-
most form in Eq. (10) is simply the inverse Fourier transform of the ideal lowpass-filter frequency
response. Twice differentiating with respect to t, we obtain

h′′(t) = −
1

ωL

∫ ωL

0
ω2 cos(ωt), (11)

from which it follows that the maximum magnitude is

M2 =
ω2
L

3
=

π2

3L2
. (12)

Note that this bound is attained at t = 0. Substituting Eq. (12) into Eq. (9), we obtain the error
bound

|e(te)| ≤
π2

24L2
<

0.412

L2
= 0.412 · 2−2nl . (13)

Thus for the ideal lowpass filter h(t) = sinc(t/L), the pointwise error in the interpolated lookup of
h(t) is bounded by 0.412/L2. This means that nl must be about half the coefficient word-length
nc used for the filter coefficients. For example, if h(t) is quantized to 16 bits, L must be on the
order of 216/2 = 256. In contrast, we will show that without linear interpolation, nl must increase
proportional to nc for nc-bit samples of h(t). In the 16-bit case, this gives L ∼ 216 = 65536. The
use of linear interpolation of the filter coefficients reduces the memory requirements considerably.

The error bounds obtained for the ideal lowpass filter are typically accurate also for lowpass
filters used in practice. This is because the error bound is a function of M2, the maximum curvature
of the impulse response h(t), and most lowpass designs will have a value of M2 very close to that
of the ideal case. The maximum curvature is determined primarily by the bandwidth of the filter
since, generalizing equations Eq. (10) and Eq. (11),

h′′(0) = −
1

π

∫ π

0
ω2H(ω),

which is just the second moment of the lowpass-filter frequency response H(ω) (which is real for
symmetric FIR filters obtained by symmetrically windowing the ideal sinc function [?]). A lowpass-
filter design will move the cut-off frequency slightly below that of the ideal lowpass filter in order to
provide a “transition band” which allows the filter response to give sufficient rejection at the ideal
cut-off frequency which is where aliasing begins. Therefore, in a well designed practical lowpass
filter, the error bound M2 should be lower than in the ideal case.

3.6.4 Relation of Interpolation Error to Quantization Error

If h(t) ∈ [−1, 1 − 2−nc] is approximated by hq(t) which is represented in two’s complement fixed-
point arithmetic, then

hq(t0) = −b0 +
nc−1
∑

i=1

bi2
−i,

14

where bi ∈ {0, 1} is the ith bit, and the worst-case rounding error is

|h(t)− hq(t)| ≤ 2−nc .

Letting hq(ti) = h(ti) + ǫi, where |ǫi| ≤ 2−nc , the interpolated look-up becomes

ĥq(t0 + η) = ηhq(t0) + ηhq(t1) = ĥ(t0 + η) + ηǫ0 + ηǫ1.

Thus the error in the interpolated lookup between quantized filter coefficients is bounded by

|eq(t)| ≤
M2

8
+ 2−nc ,

which, in the case of h(t) = sinc(t/L), can be written

|eq(t)| <
0.412

L2
+ 2−nc = 0.412 · 2−2nl + 2−nc .

If L = 2nc/2, then |eq(t)| < 1.5 · 2−nc .

3.6.5 Error in the Absence of Interpolation

For comparison purposes, we derive the error incurred when no interpolation of the filter table is
performed. In this case, assuming rounding to the nearest table entry, we have

t = t0 + η, |η| ≤
1

2

ĥ(t) = h(t0)

e(t) = h(t)− h(t0)

= ηh′(t0) +
1

2
η2h′′(t0 + λη)

|e(t)| ≤
M1

2
+

M2

8
,

where M1
∆
= maxt |h

′(t)|. For the ideal lowpass, we have

h′(t) = −
1

ωL

∫ ωL

0
ω sin(ωt)dω =

ωLt cos(ωLt)− sin(ωLt)

ωLt2
.

Note that h′(L) = −1/L and |h′(t)| < ωL/2 = π/2L. Thus M1 = a/L where 1 ≤ a < π/2. The
no-interpolation error bound is then

∣

∣h′(t)
∣

∣ ≤
a

2L
+

π2

24L2
<

0.7854

L
+

0.4113

L2
.

3.6.6 Choice of Interpolation Resolution

We now consider the error due to finite precision in the linear interpolation between stored filter
coefficients. We will find that the number of bits nη in the interpolation factor should be about
half the filter coefficient word-length nc.

15

3.6.7 Quantized Interpolation Error Bound

The quantized interpolation factor and its complement are representable as

ηq = η + ν

ηq = η − ν

where, since η, η are unsigned, |ν| ≤ 2−(nη+1). The interpolated coefficient look-up then gives

ĥqq(t) = (η − ν)[h(t0) + ǫ0] + (η + ν)[h(t1) + ǫ1]

= ĥ(t) + ηǫ0 + ηǫ1 + ν[h(t1)− h(t0)],

where second-order errors νǫ0 and νǫ1 are dropped. Since |h(t1)−h(t0)| ≤M1, we obtain the error
bound

|eqq(t)| ≤ 2−nc + 2−(nη+1)M1 +
1

8
M2. (14)

The three terms in Eq. (14) are caused by coefficient quantization, interpolation quantization, and
linear-approximation error, respectively.

3.6.8 Ideal Lowpass Filter

For the ideal lowpass, the error bound is

|eqq(t)| ≤ 2−nc + a2−(nl+nη+1) +
π2

8
2−nl .

Let nl = 1 + nc/2 and require that the added error is at most 1
22

−nc . Then we arrive at the
requirement

nη ≥
nc

2
.

3.7 Conclusions

A digital resampling method has been described which is convenient for bandlimited interpolation
at arbitrary times and for smoothly varying sampling rates, and which is attractive for hardware
implementation. We have presented the case which assumes uniform sampling of the input signal;
however, extensions to variable sampling rates and isolated-point evaluation are straightforward.

A quantization error analysis led to the conclusion that for nc-bit filter coefficients, the number
of impulse-response samples stored in the filter lookup table should be on the order of 2nc/2 times
the number of “zero-crossings” in the impulse response, and the number of bits in the interpolation
between impulse-response samples should be about nc/2. With these choices, the linear interpola-
tion error and the error due to quantized interpolation factors are each about equal to the coefficient
quantization error. A signal resampler designed according to these rules will typically be limited
primarily by the lowpass filter design, rather than by quantization effects.

We note that the error analysis presented here is pessimistic in the sense that it assumes worst-
case input signal conditions (e.g., a sinusoid at half the sampling rate or white noise). A different
type of error analysis is possible by treating the filter coefficients as exact but subject to time jitter.
In this approach, the error can be expressed in terms of the input signal Taylor series expansion,

16

and consequently in terms of the input signal bandwidth (or maximum slope). Such an analysis
reveals that for most practical signals, the quantization error is considerably less than the levels
derived here.

3.8 Appendix: Periodic Sinc Interpolation

It is interesting to note that all periodic sampled signals can be sinc-interpolated exactly using the
following formula [?]:

x(t) =
sin(πt)

2N

M−1
∑

n=−L

xn(−1)
n
[

(−1)N+1 tan

(

π
t− n

2N

)

+ cot

(

π
t− n

2N

)]

, N = L+M

where the sampling rate is normalized to be T = 1, and the period is N = L+M samples.
The first step in the derivation is the exact general formula

x(t) =
∞
∑

n=−∞

xn
sin[π(t− n)]

π(t− n)
(15)

=
sin(πt)

π

∞
∑

n=−∞

xn
(−1)n

t− n
(16)

which follows immediately from the identity sin[π(t−n)] = (−1)n sin(πt). This form can be used to
develop a table-based sinc interpolation algorithm in which the function 1/t is sampled, windowed,
and stored in a table over a small range of t. (Reverting to the weighted sinc table is advisable
near an argument of zero where there is a pole-zero cancellation in the definition of sinc, i.e., when
|t− n| ≪ 1.) Note that when t crosses 2, the 1/t table can be implemented as (1/2)(1/(t/2)). In
other words, the table between t = 2 and t = 4 can be computed from the table between t = 1 and
t = 2 using a simple one-bit right-shift on the table address and the table output. If this trick is
used, the table window must be applied separately, but there ways to synthesize simple windows
(e.g., the Hanning or Hamming windows which consist of a single sinusoidal component) using
waveform synthesis techniques, avoiding a separate table for the interpolated window function.

3.9 Appendix: Relation between Sinc and Lagrange Interpolation

Lagrange interpolation is a well known, classical technique for interpolation [?]. It is also called
Waring-Lagrange interpolation, since Waring actually published it 16 years before Lagrange [?, p.
323]. Given a set of n+1 known samples f(xk), k = 0, 1, 2, . . . , n, the problem is to find the unique
order n polynomial y(x) which interpolates the samples. The solution can be expressed as a linear
combination of elementary nth order polynomials:

y(x) =
n
∑

k=0

lk(x)f(xk) (17)

where

lk(x)
∆
=

(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(18)

17

From the numerator of the above definition, we see that lk(x) is an order n polynomial having zeros
at all of the samples except the kth. The denominator is simply the constant which normalizes its
value to 1 at xk. Thus, we have

lk(xj) = δkj
∆
=

{

1, j = k
0, j 6= k

(19)

In other words, the polynomial lk is the kth basis polynomial for constructing a polynomial inter-
polation of order n over the n+ 1 sample points xk.

In the case of an infinite number of equally spaced samples, with spacing xk+1 − xk = ∆, the
Lagrangian basis polynomials converge to shifts of the sinc function, i.e.,

lk(x) = sinc

(

x− k∆

∆

)

, k = . . . ,−2,−1, 0, 1, 2, . . . (20)

where

sinc(x)
∆
=

sin(πx)

πx

A simple argument is based on the fact that any analytic function is determined by its zeros and
its value at one point. Since sinc(x) is zero on all the integers except 0, and since sinc(0) = 1, it
must coincide with the infinite-order Lagrangian basis polynomial for the sample at x = 0 which
also has its zeros on the nonzero integers and equals 1 at x = 0.

The equivalence of sinc interpolation to Lagrange interpolation was apparently first published
by the mathematician Borel in 1899, and has been rediscovered many times since [?, p. 325].

A direct proof can be based on the equivalance between Lagrange interpolation and windowed-
sinc interpolation using a “scaled binomial window” [?, ?]. That is, for a fractional sample delay
of D samples, multiply the shifted-by-D, sampled, sinc function

hs(n) = sinc(n−D) =
sin[π(n−D)]

π(n−D)

by a binomial window

w(n) =

(

N
n

)

, n = 0, 1, 2, . . . N

and normalize by [?]

C(D) = (−1)N
π(N + 1)

sin(πD)

(

D
N + 1

)

,

which scales the interpolating filter to have a unit L2 norm, to obtain the Nth-order Lagrange
interpolating filter

hD(n) = C(D)w(n)hs(n), n = 0, 1, 2, . . . , N

Since the binomial window converges to the Gaussian window as N → ∞, and since the window
gets wider and wider, approaching a unit constant in the limit, the convergence of Lagrange to sinc
interpolation can be seen.

A more recent alternate proof appears in [?].

18

	What is Bandlimited Interpolation?
	Free Resampling Software
	Theory of Operation
	Abstract
	Introduction
	Theory of Ideal Bandlimited Interpolation
	From Theory to Practice
	Implementation
	Quantization Issues
	Choice of Table Size
	Linear Interpolation Error Bound
	Application to the Ideal Lowpass Filter
	Relation of Interpolation Error to Quantization Error
	Error in the Absence of Interpolation
	Choice of Interpolation Resolution
	Quantized Interpolation Error Bound
	Ideal Lowpass Filter

	Conclusions
	Appendix: Periodic Sinc Interpolation
	Appendix: Relation between Sinc and Lagrange Interpolation

