Bibliography: Physical Modeling of Musical Instruments

[Julius O. Smith III]

[Center for Computer Research in Music and Acoustics (CCRMA)]
[Department of Music, Stanford University, Stanford, California 94305 USA]

January 6, 2011

Online Text for Music 420A

NOTE: The bibliography in PASP is far more up to date than that in this document. However, the older references are more usefully organized here by topic, and more information is given about them.

Most Recommended Musical Acoustics Books

• N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments, Springer-Verlag, 1998 (2nd ed.)—an excellent advanced musical acoustics text. Note that Prof. Rossing is at CCRMA this year teaching introductory musical acoustics (Music 150).

Other Recommended Books

Other Related Books

Related CCRMA PhD Theses

- Julius Smith, Techniques for Digital Filter Design & System Identification with Application to the Violin, PhD/EE/CCRMA Dissertation, Stanford University, June 1983. Also available as a CCRMA publication, Dept. of Music, Stanford University, Stanford CA.

See also the many related dissertations at the HUT Acoustics Lab: http://www.acoustics.hut.fi/ such as

References by Topic

This list of references can be used as a starting-point for further reading. The citations for each topic are generally listed in chronological order, except that the first reference cited may be my recommended best *single* reference (e.g., most recent and/or comprehensive).

Network Theory: [290] [175] [21]
Basic Circuit Theory: [61] [20]
Laplace Transform Analysis: [59] [40] [148] [82]
Finite Differences: 261 68 83
Use of Finite Differences in Instrument Modeling: 42 108 47
Modal Analysis: 156
Modal Synthesis: 5 60 274 275
Wave Digital Filters: 34 71 72 263 73 165 292
Digital Waveguide Filters and Models: 233 234 235 237 278 211 292 68
Ladder and Lattice Filters: 155 92 91 154 90 233 244
Virtual Analog Synthesis: 36 258 259 146 41
String Modeling: 206 101 229 125 112 267 45 46 120 97 235 121 145 286 305 283 119
307 124 281 13 147 69 26
Plucking-Point Estimation: 273 274 186
Nonlinear String Modeling: 272 284 197 138
Vacuum Tube Modeling: 19 207
Coupled Strings: 238 307 13
Psychoacoustics for String Modeling (Perception of Parameter Errors): 114
Piano String Modeling: 307 14 47 45 77 26 28
Piano Hammer Modeling: 270 39 96 37 266 88 27
Clavichord Modeling: 277
Bell Modeling: 118
Commuted Piano Synthesis: 249 287
Bowed Strings: 219 220 158 301 162 163 164 229 56 231 187 93 189 113 228 240 220 26
93 93 114 310
Woodwinds: 23 190 164 126 127 231 128 104 102 103 282 84 83 309 122 130 129 213
212 214 216 215 248
Horns: 24 192 31 32 11 227 30
Brass Instruments: 44 62 51 52 10 12 105 63 80 299 300 292 170 177 184
Brass Instrument Excitation: 2 3 4 262 296 297 298 311 55
Flue Instruments: 164 52 294 295
Conical Acoustic Tubes: 30 216 17 22 157 6 7 87 8 279 291
Artificial Reverberation: 221 222 223 167 255 224 203
Waveguide Mesh: 41 230 285 78 208 288 203 79 133 172 144 209 210 80 9 133 100
171 211 173
Feedback Delay Networks: 85 115 86 202 247 203
Voice: 132 15 16 195 182 254 76 74 25 58 50 53 75 81 109 116 131 136 141 149 150
155 205 204 225 253 263 268 269 280 66 151
Filter Design: 185 229 107
Filter Design in Digital Waveguide Models: 229 283 118
IIR Digital Filter Implementation: 57
Minimum Phase FIR Filter Design: 133 229
Linear Prediction: 15 16 154 159 213 100 134
Ladder and Lattice Digital Filters: 155 92 91 90 232
Audio Signal Processing: 99
Applications of Frequency-Warping in Audio Signal Processing: 243 123 229 142 263
302
References

