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1 Sinusoidal Modulation of Sinusoids

1.1 Sinusoid Magnitude Spectra

A sinusoid’s frequency content may be graphed in the frequency domain as shown in Fig. 1.
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Figure 1: Spectral magnitude representation of a unit-amplitude sinusoid at frequency 100 Hz
such as cos(200πt) or sin(200πt). (Phase is not shown.)

An example of a particular sinusoid graphed in Fig. 1 is given by

x(t) = cos(ωxt) =
1

2
ejωxt +

1

2
e−jωxt

where
ωx = 2π100.

That is, this sinusoid has amplitude 1, frequency 100 Hz, and phase zero (or π/2, if sin(ωxt) is
defined as the zero-phase case).

∗This is a new section slated for the second edition of Mathematics of the DFT [7].
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Figure 1 can be viewed as a graph of the magnitude spectrum of x(t), or its spectral magnitude
representation [4]. Note that the spectrum consists of two components with amplitude 1/2, one at
frequency 100 Hz and the other at frequency −100 Hz.

Phase is not shown in Fig. 1 at all. The phase of the components could be written simply as
labels next to the magnitude arrows, or the magnitude arrows can be rotated “into or out of the
page” by the appropriate phase angle as illustrated in [7, Fig. 4.8 on p. 43].

1.2 Sinusoidal Amplitude Modulation (AM)

It is instructive to study the modulation of one sinusoid by another. In this section, we will look
at sinusoidal Amplitude Modulation (AM). The general AM formula is given by

xα(t) = [1 + α · am(t)] · Ac sin(ωct + φc),

where (Ac, ωc, φc) are parameters of the sinusoidal carrier wave, α ∈ [0, 1] is called the modulation
index (or AM index ), and am(t) ∈ [−1, 1] is the amplitude modulation signal. In AM radio broad-
casts, am(t) is the audio signal being transmitted (usually bandlimited to less than 10 kHz), and ωc

is the channel center frequency that one dials up on a radio receiver. The modulated signal xα(t)
can be written as the sum of the unmodulated carrier wave plus the product of the carrier wave
and the modulating wave:

xα(t) = x0(t) + α · am(t) · Ac sin(ωct + φc) (1)

In the case of sinusoidal AM, we have

am(t) = sin(ωmt + φm). (2)

Periodic amplitude modulation of this nature is often called the tremolo effect when ωm < 20π or
so (< 10 Hz).

Let’s analyze the second term of Eq. (1) for the case of sinusoidal AM with α = 1 and φm =
φc = 0:

xm(t)
∆
= sin(ωmt) sin(ωct) (3)

An example waveform is shown in Fig. 2 for fc = 100 Hz and fm = 10 Hz. Such a signal may be
produced on an analog synthesizer by feeding two differently tuned sinusoids to a ring modulator ,
which is simply a “four-quadrant multiplier” for analog signals.

When ωm is small (say less than 20π radians per second, or 10 Hz), the signal xm(t) is heard
as a “beating sine wave” with ωm/π = 2fm beats per second. The beat rate is twice the modula-
tion frequency because both the positive and negative peaks of the modulating sinusoid cause an
“amplitude swell” in xm(t). (One period of modulation—1/fm seconds—is shown in Fig. 2.) The
sign inversion during the negative peaks is not normally audible.

Recall the trigonometric identity for a sum of angles:

cos(A + B) = cos(A) cos(B) − sin(A) sin(B)

Subtracting this from cos(A − B) = cos(A) cos(B) + sin(A) sin(B) leads to the identity

sin(A) sin(B) =
cos(A − B) − cos(A + B)
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Figure 2: Sinusoidal amplitude modulation as in Eq. (3)—time waveform.

Setting A = ωmt and B = ωct gives us an alternate form for our “ring-modulator output signal”:

xm(t)
∆
= sin(ωmt) sin(ωct) =

cos[(ωm − ωc)t] − cos[(ωm + ωc)t]

2
(4)

These two sinusoidal components at the sum and difference frequencies of the modulator and carrier
are called side bands of the carrier wave at frequency ωc (since typically ωc � ωm > 0).

Equation (3) expresses xm(t) as a “beating sinusoid”, while Eq. (4) expresses as it two unmod-
ulated sinusoids at frequencies ωc ± ωm. Which case do we hear?

It turns out we hear xm(t) as two separate tones (Eq. (4)) whenever the side bands are resolved
by the ear. As mentioned in [7, Section 4.1.2], the ear performs a “short time Fourier analysis”
of incoming sound (the basilar membrane in the cochlea acts as a mechanical filter bank). The
resolution of this filterbank—its ability to discern two separate spectral peaks for two sinusoids
closely spaced in frequency—is determined by the critical bandwidth of hearing [5, 9, 11]. A critical
bandwidth is roughly 15-20% of the band’s center-frequency, over most of the audio range [8]. Thus,
the side bands in sinusoidal AM are heard as separate tones when they are both in the audio range
and separated by at least one critical bandwidth. When they are well inside the same critical band,
“beating” is heard. In between these extremes, near separation by a critical-band, the sensation is
often described as “roughness” [3].

1.2.1 Example AM Spectra

Equation (4) can be used to write down the spectral representation of xm(t) by inspection, as
shown in Fig. 3. In the example of Fig. 3, we have fc = 100 Hz and fm = 20 Hz, where, as
always, ω = 2πf . For comparison, the spectral magnitude of an unmodulated 100 Hz sinusoid is
shown in Fig. 1 on page 1. Note in Fig. 3 how each of the two sinusoidal components at ±100
Hz have been “split” into two “side bands”, one 20 Hz higher and the other 20 Hz lower, that is,
±100 ± 20 = {−120,−80, 80, 120}. Note also how the amplitude of the split component is divided
equally among its two side bands.
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Figure 3: Spectral magnitude representation of the sinusoidally modulated sinusoid
sin(40πt) sin(200πt) defined in Eq. (3). Phase is not shown.

Recall that xm(t) was defined as the second term of Eq. (1). The first term is simply the
original unmodulated signal. Therefore, we have effectively been considering AM with a “very
large” modulation index. In the more general case of Eq. (1) with am(t) given by Eq. (2), the
magnitude of the spectral representation appears as shown in Fig. 4.
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Figure 4: Spectral representation of the sinusoidally modulated sinusoid [1+sin(40πt)] sin(200πt)
from Eq. (1), with α = 1, and am(t) given by Eq. (2).
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1.3 Sinusoidal Frequency Modulation (FM)

Frequency Modulation (FM) is well known as the broadcast signal format for FM radio. It is also
the basis of the first commercially successful method for digital sound synthesis. Invented by John
Chowning [1], it was the method used in the the highly successful Yamaha DX-7 synthesizer, and
later the Yamaha OPL chip series, which was used in all “SoundBlaster compatible” multimedia
sound cards for many years. At the time of this writing, descendants of the OPL chips remain the
dominant synthesis technology for “ring tones” in cellular telephones.

A general formula for frequency modulation of one sinusoid by another can be written as

x(t) = Ac cos[ωct + φc + Am sin(ωmt + φm)], (5)

where the parameters (Ac, ωc, φc) describe the carrier sinusoid, while (Am, ωm, φm) specify the
modulator sinusoid. Note that, strictly speaking, it is not the frequency of the carrier that is mod-
ulated sinusoidally, but rather the instantaneous phase of the carrier. Therefore, phase modulation
would be a better term (which is in fact used). Potential confusion aside, any modulation of phase
implies a modulation of frequency, and vice versa, since the instantaneous frequency is always de-
fined as the time-derivative of the instantaneous phase. In this course, only phase modulation will
be considered, and we will call it FM, following common practice.1

It is well known that sinusoidal FM has a harmonic spectrum with harmonic amplitudes given
by Bessel functions of the first kind [1]. We will derive this in the next section.2

1.3.1 Bessel Functions

The Bessel functions of the first kind may be defined as the coefficients Jk(β) in the two-sided
Laurent expansion of the so-called generating function [10, p. 14],3

e
1

2
β(z− 1

z
) =

∞
∑

k=−∞

Jk(β)zk (6)

where k is the integer order of the Bessel function, and β is its argument (which can be complex, but
we will only consider real β). Setting z = ejωmt, where ωm will interpreted as the FM modulation
frequency and t as time in seconds, we obtain

xm(t)
∆
= ejβ sin(ωmt) =

∞
∑

k=−∞

Jk(β)ejkωmt. (7)

1An important variant of FM called feedback FM , in which a single oscillator phase-modulates itself, simply does
not work if true frequency modulation is implemented.

2The mathematical derivation of FM spectra is included here as a side note. No further use will be made of it in
this course.

3Existence of the Laurent expansion follows from the fact that the generating function is a product of an exponential
function, exp(βz/2), and an exponential function inverted with respect to the unit circle, exp(−0.5β/z). It is readily
verified by direct differentiation in the complex plane that the exponential is an entire function of z (analytic at all
finite points in the complex plane) [2], and therefore the inverted exponential is analytic everywhere except at z = 0.
The desired Laurent expansion may be obtained, in principle, by multiplying one-sided series for the exponential and
inverted exponential together. The exponential series has the well known form exp(z) = 1 + z + z2/2! + z3/3! + · · · .
The series for the inverted exponential can be obtained by inverting again (z ← 1/z), obtaining the appropriate
exponential series, and inverting each term.
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The last expression can be interpreted as the Fourier superposition of the sinusoidal harmonics of
exp[jβ sin(ωmt)], i.e., an inverse Fourier series sum. In other words, Jk(β) is the amplitude of the
kth harmonic in the Fourier-series expansion of the periodic signal xm(t).

Note that Jk(β) is real when β is real. This can be seen by viewing Eq. (6) as the product of the
series expansion for exp[(β/2)z] times that for exp[−(β/2)/z] (see footnote pertaining to Eq. (6)).

Figure 5 illustrates the first eleven Bessel functions of the first kind for arguments up to β = 30.
It can be seen in the figure that when the FM index β is zero, J0(0) = 1 and Jk(0) = 0 for all
k > 0. Since J0(β) is the amplitude of the carrier frequency, there are no side bands when β = 0.
As the FM index increases, the sidebands begin to grow while the carrier term diminishes. This is
how FM synthesis produces an expanded, brighter bandwidth as the FM index is increased.
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Figure 5: Bessel functions of the first kind for a range of orders k and argument β.
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1.3.2 FM Spectra

Using the expansion in Eq. (7), it is now easy to determine the spectrum of sinusoidal FM. Elimi-
nating scaling and phase offsets for simplicity in Eq. (5) yields

x(t) = cos[ωct + β sin(ωmt)]. (8)

where we have changed the modulator amplitude Am to the more traditional symbol β, called the
FM index in FM sound synthesis contexts. Using phasor analysis,

x(t) = re
{

ej[ωct+β sin(ωmt)]
}

= re
{

ejωctejβ sin(ωmt)
}

= re

{

ejωct

∞
∑

k=−∞

Jk(β)ejkωmt

}

= re

{

∞
∑

k=−∞

Jk(β)ej(ωc+kωm)t

}

=
∞

∑

k=−∞

Jk(β) cos[(ωc + kωm)t] (9)

where we used the fact that Jk(β) is real when β is real. We can now see clearly that the sinusoidal
FM spectrum consists of an infinite number of side-bands about the carrier frequency ωc (when
β 6= 0). The side bands occur at multiples of the modulating frequency ωm away from the carrier
frequency ωc
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