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Abstract

The 2D digital waveguide mesh [7, 8] has proven to be

e�ective and e�cient in the modeling of musical mem-

branes and plates, particularly in combination with

recent simpli�cations in modeling sti�ness [6], nonlin-

earities [5], and felt mallet excitations [5]. The recti-

linear 3D extension to the mesh had been suggested

[8], and has been applied to the case of room acous-

tics [2]. However, it requires the use of 6-port scatter-

ing junctions, which make a multiply-free implemen-

tation impossible in the isotropic case. The 4-port

scattering junctions of the 2D mesh required only an

internal divide by 2, which could be implemented as

a right shift in binary arithmetic. However, the 6-

port junction requires a divide by 3. The multiply-

free cases occur for N -port junctions in which N is a

power of two [3].

We propose here a tetrahedral distribution of

multiply-free 4-port scattering junctions �lling space

much like the molecular structure of the diamond

crystal, where the placement of the scattering junc-

tions corresponds to the placement of the carbon nu-

clei, and the bi-directional delay units correspond

to the four tetrahedrally spaced single bonds be-

tween each pair of nuclei. We show that the tetra-

hedral mesh is mathematically equivalent to a �-

nite di�erence scheme (FDS) which approximates the

3D lossless wave equation. We further compute the

frequency- and direction-dependent plane wave prop-

agation speed dispersion error.

1 FDS View of the Mesh

Rectilinear meshes compute an FDS approximation

of the lossless wave equation [2, 8]. It is less obvi-

ous in the tetrahedral case. Figure 1 shows a small

chunk of the tetrahedral mesh. We take the dis-

tance between adjacent junctions to be 1, and the

junction point marked A to lie at the origin of an

(x; y; z) cartesian coordinate system. We arrange the

junctions B(0; 2
p
2=3; 1=3), C(

p
2=3;�

p
2=3; 1=3),
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Figure 1: 3D Tetrahedral Mesh Structure

D(0; 0;�1), and E(�
p
2=3;�

p
2=3; 1=3) tetrahe-

drally about point A(0; 0; 0). The line segments be-

tween these junction points represent bi-directional

delay units of the form shown in Figure 2.
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Figure 2: Bi-Directional Delay Unit

The equations describing the computation of the loss-

less 4-port scattering junctions are [3, 7, 8],

VA =
1

2

X
�

V �+
A (1)

V ��
A = VA � V �+

A (2)

where � ranges over the four junction points sur-

rounding A, namely � 2 fB;C;D;Eg. VA represents

the junction velocity at junction A. V �+
A and V ��

A

represent the input and output signals, respectively,

of junction A in the direction of junction �.

Since the junctions are interconnected with bi-

directional delay units, the input to junction A from

the direction of � is equal to the output from � de-

layed by one sample. In the Z-transform domain we

my write this relationships as,

V �+
A = z�1V A�

� (3)
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Using (2) and (3), we obtain an expression for the

input signal to junction A from the � direction in

terms of the junction velocities A and � only,

V �+
A = z�1V A�

� = z�1
�
V� � V A+

�

�
(4)

= z�1
�
V� � z�1

�
VA � V �+

A

��
(5)

which implies,

V �+
A =

�
z�1

1� z�2

��
V� � z�1VA

�
(6)

We substitute (6) into (1) to get an expression for the

junction velocity VA in terms of the four surrounding

junction velocities V�,

VA =
1

2

�
z�1

1 + z�2

�X
�

V� (7)

Unfortunately, the orientations of the tetrahedra vary

from point to point. Notice in Figure 1 that the

tetrahedron around point A and that around point B

are in vertically opposite orientations. However, con-

sider the relationship between the center point A and

the twelve equally spaced junctions marked 1 through

12, which are all equidistant from A, and which are

two time steps away from A. With some imagina-

tion, one can see that the directional relationships

between point A and the outer twelve points repeats

itself around every point in the mesh, regardless of

orientation of the inner four points, B, C, D, and E.

Therefore, we take note of the following relationships,

which may be derived in a manner similar to (7),

V� =
1

2

�
z�1

1 + z�2

�0
@VA +

X


�

V

�

1
A (8)

where � 2 fB;C;D;Eg and 
B 2 f2; 8; 9g, 
C 2
f3; 4; 5g, 
D 2 f10; 11; 12g and 
E 2 f1; 6; 7g. Plug-
ging (8) back into (7), we get an expression for VA
in terms of the junction velocities of the twelve junc-

tions, Vi:

VA =
1

4

�
z�2

1 + z�2 + z�4

� 12X
i=1

Vi (9)

To see that this partial di�erence equation approx-

imates the continuous time wave equation, we �rst

multiply through by the denominator in (9), inverse

Z-transform, and gather all the terms onto the left

hand side. Then we view the equation as a continu-

ous time and space expression of the form F(t; p) = 0,

where F(t; p) is,

2X
k=0

v(t� 2k"; p)�
1

4

12X
i=1

v(t� 2"; p+ P i") (10)

and p is now the arbitrary spatial position of junction

A, and the P i represent the twelve directional vectors

from point A to the junction points marked 1 through

12 in Figure 1, respectively. The unit time and space

steps are taken to be ".

We may expand (10) in a four dimensional Taylor

series about the point p = (0; 0; 0) at time t = 0,

replacing each term of (10) with something of the

form,

1X
nt

1X
nx

1X
ny

1X
nz

v
(nt;nx;ny;nz)
0 tntxnxynyznz

nt!nx!ny!nz!
(11)

Collecting terms and computing the limit reveals that

lim
"!0

F
(2")2

= utt �
1

3
[uxx + uyy + uzz] (12)

Evidently, the tetrahedral waveguide mesh is equiv-

alent to an FDS approximating the continuous

wave equation. The apparent wave speed is c =p
1=3, which is the numerically optimal speed in the

Courant-Friedrichs-Lewy sense [1, 4]. (Incidentally,

we found it convenient to use the symbol manipulat-

ing feature of the mathematics processing language

Mathematica to verify the algebra.)

2 Dispersion Analysis

To quantify dispersion error in the tetrahedral mesh,

we apply a von Neumann analysis directly on the FDS

[4, 7]. Essentially, we transform the FDS into the

frequency domain in both time and space, replacing

spatial shifts with their corresponding spatial linear

phase terms. Then we observe how the spatial spec-

trum updates after one time sample. With this infor-

mation, we can determine how fast the various plane

waves travel in the mesh at each frequency. There

can be no attenuation since the mesh is constructed

from lossless scattering junctions. Therefore, the only

departure from ideal behavior, aside from round-o�

error, is traveling-wave dispersion.

In order to avoid the di�culty of de�ning a discrete

Fourier transform over a tetrahedrally sampled space,

we consider the discrete-time/discrete-space di�er-

ence scheme to be in continuous space by replacing

the sample points in space by their corresponding

generalized impulse functions, �lling the regions in

between them with zeros. In this formulation, the

tetrahedral di�erence scheme applies to all points in

space continuously; however, since there shall only be

initial conditions at the tetrahedral mesh sampling

points, the zero regions will remain at zero as the

di�erence scheme progresses through time.
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Figure 3: Tetrahedral Dispersion: !x = 0
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Figure 4: Tetrahedral Dispersion: !y = 0
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Figure 5: Tetrahedral Dispersion: !z = 0
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Figure 6: Tetrahedral Dispersion: j!j = �=2

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

ωx

ωy

Figure 7: Rectilinear Dispersion: !z = 0
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Figure 8: Rectilinear Dispersion: !z = !x

We may now take the spatial Fourier transform of

(9) and replace the spatial positions of the twelve

outer junction points with their corresponding lin-

ear phase terms, Vi  ! V (!)ejP
T

i
�!, where ! is the

three-dimensional spatial frequency vector, to obtain

the following quadratic expression in z�2:

1 + bz�2 + z�4 = 0; b
�
= 1�

1

4

12X
i=1

ejP
T

i
�! (13)

where z�2 represents two time samples of delay. Due

to the symmetrical orientation of vectors P i, as indi-

cated in Figure 1, it may be shown, rather remark-

ably, that the value of b remains a real number be-

ωx

ωy
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Figure 9: Rectilinear Dispersion: j!j = �=2
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tween �2 and 2 for all values of !. Hence, we may

de�ne

G2(!) �
= �

b

2
� j

p
4� b2

2
(14)

where G is the spectral ampli�cation factor of the spa-

tial spectrum after one time sample.

It is easy to show that jGj � 1, hence plane waves

propagate losslessly. We note that the phase of G
corresponds to the spatial phase shift of a plane wave

in the direction of travel in one time sample, where

6 G =
1

2
arctan

�
p
4� b2

b
(15)

Hence, the phase distance traveled in one time sample

by a spatial plane wave of frequency j!j and direction
! is c0(!) = 6 G= j!j, where c0(!) is the frequency

dependent speed of plane wave travel measured in

space samples per time sample. (Phase distance cor-

responds to phase advance in time domain language.)

3 Dispersion Results

Figures 3, 4 and 5 show contour plot slices along the

planes !x = 0, !y = 0, and !z = 0, respectively, of

the normalized plane wave speed c0(!)=c in the tetra-

hedral mesh. The innermost contour line is drawn at

99% of full speed and subsequent lines are drawn at

1% intervals. Because of the spatial sampling inter-

val, there is a Nyquist limit on the spatial frequen-

cies which may be supported on the mesh, namely

j!j < �. In addition, all transfer functions de�n-

able at any one junction, and the denominators of

all transfer functions de�nable between any pair of

junctions, are functions of z�2, as may be seen from

Figure 2. Therefore, frequencies above �=2 are not

independent, and are constrained to be a copy of

the frequencies below �=2. We have superimposed

a circle marking this limit in the contour plots. The

central area of each plot corresponds to lower spa-

tial frequencies, and the outer regions correspond to

higher spatial frequency. The angular position of a

point on each plot indicates the direction of the wave

travel in the planar slice being shown. Figure 6 shows

the response on the hemispherical surface, j!j = �=2,

where !z =
q
(�=2)2 � !2x � !2y.

By way of comparison, we show dispersion plots for

the 6-port rectilinear 3D waveguide mesh [8, 2] with

the same contour line settings. We computed these

following a similar procedure as that outlined above

for the tetrahedral case. Figure 7 shows a horizontal

slice through the origin, and Figure 8 shows a diago-

nal slice through !x = !z. Figure 9, again, shows the

response on the hemispherical surface, j!j = �=2.

Both the rectilinear and the tetrahedral mesh have

reasonable dispersion characteristics. And both

model a wave speed of c =
p
1=3 space samples per

time sample. We compute that the number of tetra-

hedrally arranged junctions required to �ll a given

volume is 35% less than that required for the rec-

tilinear mesh; and the number of bi-directional de-

lay units required for the tetrahedral mesh is 57%

less than that required for the rectilinear mesh to �ll

the same given volume, thus saving substantial mem-

ory. Furthermore, the tetrahedral mesh is multiply-

free and may be implemented e�ciently in high-speed

hardware.
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