
Physical Modeling with the 2-D Digital Waveguide Mesh
Scott A. Van Duyne                              Julius O. Smith III

savd@ccrma.stanford.edu                     jos@ccrma.stanford.edu

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University, Stanford, CA  94305

Abstract

An extremely efficient method for modeling wave
propagation in a membrane is provided by the multi-
dimensional extension of the digital waveguide.  The
2-D digital waveguide mesh is constructed out of bi-
directional delay units and scattering junctions.  We
show that it coincides with the standard finite
difference approximation scheme for the 2-D wave
equation, and we derive the dispersion error.
Applications may be found in physical models of
drums, soundboards, cymbals, gongs, small-box
reverberators, and other acoustic constructs where a
one-dimensional model is less desirable.

1 Background Theory

There are many musical applications of the one-
dimensional digital waveguide ranging from the
generation of wind and string instrument tones, to
flanging effects [Van Duyne and Smith, 1992], to
reverberation [Smith, 1987].  We review the
theoretical derivation of one-dimensional traveling
waves as a basis for development of the two-
dimensional digital waveguide mesh.

1.1 The 1-D Wave Equation

The one-dimensional wave equation for displacement
of an ideal vibrating string may be written as follows,

utt(t,x) = c2uxx(t,x),

where t is time, x is longitudinal position along the
string, u(x,t) is transverse displacement of the string
as a function of time and position, utt is the second
partial time derivative of u corresponding to the
transverse acceleration of a point on the string, and
uxx is the second partial space derivative of u
corresponding the “curvature” of the string at a point.
The equation says that the force which accelerates a
point on the string back toward its rest position is
proportional to how tightly the string is curved at that
point [Morse and Ingard, 1968].

It is easy to verify by substitution that this equation is
solved by the sum of two arbitrary traveling waves,

u(t,x) = g+(x – ct) + g–(x + ct),
where  g+(x – ct) represents an arbitrary fixed wave

shape traveling to the right, and g–(x + ct) represents
an arbitrary fixed wave shape traveling to the left.
To see that these waves travel at speed c, note that, as
t  is increased by 1 in the expression, g+(x – ct), x
must be increased by c for the function argument to
remain unchanged.  The wave speed is given by c =
(T/ε)0.5, where T is the constant tension on the string
and ε is the mass per unit length.  Intuitively, we may
check that increased tension should speed up wave
travel and increased mass should slow it down.

1.2 The Digital Waveguide

The traveling wave solution to the one-dimensional
wave equation may be implemented digitally with a
pair of bi-directional delay lines as shown in Figure
1.  The upper rail contains a signal traveling to the
right and the lower rail contains a signal traveling to
the left.  This structure is known as the digital
waveguide.  Two arbitrary traveling waves propagate
independently in their respective left and right
directions, while the physical wave amplitude at any
point may be obtained by summing the left- and
right-going waves.  

N sample delay

N sample delay

Figure 1.  The Digital Waveguide

1.3 Force, Velocity, and Impedance

We need not choose displacement as our wave
variable.  By taking the time derivative of
displacement waves, we may obtain velocity waves.
In this case, the physical transverse velocity at a point
on the string is the sum of its two traveling
components, v = v+ + v–.    The transverse force
component on a string is proportional to the slope of
the string at a given point for small displacements.
Therefore, force waves may be obtained by properly
scaling the position derivative of the displacement
waves to obtain, f = f+ + f–.  See [Smith, 1992] and
[Smith, 1993] for a full derivation of all these wave
relationships and their digital implementation.
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Force and velocity are a convenient choice of wave
variables as there is a well understood impedance
relation between force and velocity in mechanical
systems which is analogous to the impedance relation
between voltage and current in electrical systems.
There is also a wave impedance relation between
force and velocity waves on strings which is
analogous to the wave impedance relation between
voltage and current waves on electrical transmission
lines.  The acoustical system of the vibrating air
column is also mathematically equivalent to both the
vibrating string and the electrical transmission line.

The wave impedance relationship between the
traveling components of force and velocity for the
string can be written,

f+ = Rv+,

f– = –Rv–,
where R = (Tε)0.5.  Intuitively, when a force is
applied transversely to a string, the resultant
transverse velocity should be slower for greater string
mass and also slower for greater string tension.

1.4 The Lossless Scattering Junction

It is useful to be able to interconnect waveguides of
possibly varying wave impedance at junctions which
may be lossless, or which may be loaded with
impedances of their own, or be driven by external
forces.  For example, driving a violin string with a
pulsed noise signal representing the bow requires a
scattering junction on the string where the bow
divides it [Chafe, 1990].  Tone holes in wind
instrument models may take advantage of scattering
junctions.  Strings may be coupled together at a
bridge via scattering junctions [Smith, 1993].
Scattering junctions may be used to build up acoustic
tubes of varying diameter by joining segments of
cylindrical tubes [Cook, 1990].  Julius Smith [1987]
has developed a reverberation algorithm which
depends on interconnecting any number of varying
length and varying impedance waveguides into an
arbitrarily elaborate network.  The membrane model
presented in this paper may be viewed as a canonical
form of this reverberation structure.

When several strings, say N of them, intersect at a
single point, or junction, without loss of energy, we
have a “series” junction and require two conditions:
(1) that the velocities of all the strings at the junction
be equal since they are all moving together at that
point,

v1 = v2 =  ...  = vN,

and (2) that the forces exerted by all the strings must

balance each other at that point, i.e., they must sum to
zero,

f1 + f2 +  ...  + fN  
= 0.

Note that the acoustic tube junction is “parallel” and
has the dual constraints, i.e., that the pressures must
all be equal and the flows must sum to zero.  Figure 2
shows a schematic representation of waveguides
intersecting in a lossless scattering junction.  The line
segments with opposing arrows on them represent the
bi-directional delay lines of the digital waveguide
shown in Figure 1, with their associated wave
impedance, Ri .  The circumscribed S represents the
junction.

R3

R4

R5

R1

R2

S

Figure 2.  Scattering Junction for N=5 case.

Combining the two series junction constraints with
the wave variable definitions, vi = v+

i + vi
– and fi =

f+i + f–i , and with the wave impedance relations, f+i  =
Riv

+
i  and f–i  = –Riv

–
i , we can derive the lossless

scattering equations for the interconnection of several
strings,

vJ = (2 Σ
i
 Riv

+
i ) / Σ

i
 Ri

v–
i = vJ – v+

i,

where vJ represents the junction velocity, the v+
i are

the incoming waves at the junction, and the v–
i  are

the outgoing waves.  These equations say that, as a
wave is coming into a junction along a string, some
portion of the wave reflects off the junction and
travels back where it came from, while the rest of it
travels into the junction and is divided among the
outgoing waves along the other strings.  The relative
proportions of this scattering effect is dependent only
on the relative impedances of the strings and not on
their length. 

2 The Two-Dimensional Case

2.1 The 2-D Wave Equation

The two-dimensional wave equation for displacement
of an ideal membrane may be written as follows,

utt(t,x,y) = c2 [uxx(t,x,y) + uyy(t,x,y)],
where t is time, x and y are spatial coordinates on the
membrane, u(t,x,y) is transverse displacement of the



membrane as a function of time and spatial position
[Morse and Ingard, 1968].

In the one-dimensional string case, we could solve
and implement the wave equation as two bi-
directional traveling waves.  In the 2-D membrane
case, the traveling wave solution involves the integral
sum of an infinite number of arbitrary plane waves
traveling in all directions,

u(t,x,y) = ∫ gα(x cosα + y sinα – ct) dα

Since assigning one waveguide to each of the infinite
plane waves is not feasible, we need an alternative
approach.

2.2 The 2-D Digital Waveguide Mesh

Proposed in this paper is a formulation of the 2-
dimensional wave equation in terms of a network of
bi-directional delay elements and 4-port scattering
junctions.  This structure can be viewed as a layer of
parallel vertical waveguides superimposed on a layer
of parallel horizontal waveguides intersecting each
other at 4-port scattering junctions between each bi-
directional delay unit.  Figure 3 shows such a mesh.
In the canonical case, the scattering junctions are
taken to be equal impedance lossless junctions and
the interconnecting waveguides are of unit length.
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Figure 3.  The 2-D Digital Waveguide Mesh

If we view the mesh as a lattice of interconnected
vibrating strings, the displacement velocities at the
four ports of each junction must be equal, and the
forces at each junction must sum to zero; in this case,
we have series scattering junctions with force or

velocity waves traveling in the two-port, bi-
directional, delay units.  On the other hand, if we
view the mesh as a lattice of interconnected acoustic
tubes, the pressures at each junction must be equal,
and the flows into each junction must sum to zero;  in
this case, we have parallel scattering junctions with
pressure or volume velocity waves traveling through
the delay units. 

3 Empirical Analysis

It is evident that, given an initial excitation at some
point on the digital waveguide mesh, that energy
from that excitation will tend to spread out from the
excitation point more and more as the traveling
waves scatter through the junctions.  It is not,
however, easy to see that the wave propagation on
the mesh converges to that on the ideal membrane.

Figure 4.  Wave Propagation on the Mesh

3.1 Animation of the Mesh

A visual verification of the waveguide mesh
algorithm can be seen in Figure 4, which shows three
separate time frames of an animation computed
directly from the algorithm.  The top frame shows the
initial deflection loaded into the mesh.  Each
intersecting grid point represents a scattering
junction.  The next two frames show the circular
propagation outward of the initial excitation in a way
consistent wave propagation on the ideal membrane.



3.2 Sounds from the Mesh

As another check of the mesh algorithm, we can
compare the expected modal frequencies on an ideal
membrane with those generated from the mesh
model.  The allowed frequencies in a theoretical ideal
square membrane with clamped edges are
proportional to (m2 + n2)0.5, for m = 1,2,..., and n =
1,2,...[Morse and Ingard, 1968].  These modes may
be labeled (m,n) for any given m and n.  In Table 1 is
computed a list of the normalized frequencies of the
first few of these modes given as multiples of the
lowest allowed frequency.

Table 1.  Modes on Ideal Square Membrane
(1,1) → 1.00 (1,5) → 3.60
(1,2) → 1.58 (2,5) → 3.80
(2,2) → 2.00 (4,4) → 4.00
(1,3) → 2.24 (3,5) → 4.12
(2,3) → 2.55 (1,6) → 4.30
(1,4) → 2.92 (2,6) → 4.47
(3,3) → 3.00 (4,5) → 4.50
(2,4) → 3.16 (3,6) → 4.74
(3,4) → 3.54 (5,5) → 5.00

Figure 5 is a spectral analysis of a sound generated
by a square 10 junction by 10 junction digital
waveguide mesh reflectively terminated at the
boundaries.  A careful inspection of the plot will
reveal that the theoretical modal frequencies listed in
Table 1 are all present and accounted for in the sound
generated by the model.  This would indicate that the
mesh is doing the right thing.

Figure 5.  Measured Modes on the Square Mesh
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Frequencies up to half the sampling rate are shown in
Figure 5.  However, notice that the spectrum mirrors
around one quarter of the sampling rate.  This
symmetry, which  also occurs in the one dimensional
waveguide case, is a result of the fact that, when the
waveguide or waveguide mesh is reflectively
terminated, all the unit delays on the upper rails can
be commuted down to the lower rails making the
system a function of z-2, in effect, over-sampling the
system by a factor of two.

4 Mathematical Analysis

Given the the function f(x), one may approximate its
first derivative by the difference,

 f(x + ∆x) – f(x)
  f '(x)  ≈                                    

∆x

By applying this expression to itself we may arrive at
the standard difference scheme approximation for the
second derivative,

 f(x + ∆x) – 2f(x) + f(x – ∆x)    f ''(x)  ≈                                                    
∆x2

Computable and numerically stable difference
schemes can be found for many partial differential
equations by substituting approximations of this kind
into the equation.  The digital waveguide mesh
algorithm, in fact, may be interpreted as a difference
scheme for computation of the two-dimensional wave
equation.

4.1 The Mesh as a Difference Scheme

In the digital waveguide mesh, we require that the
impedances in all directions be equal, as we would
desire for the isotropic membrane case.  Setting the
wave impedances of the four unit waveguides
attached to each junction point in the mesh equal, i.e.,
R1 = R2 = R3 = R4, the scattering equations then
reduce to,

          v+
1l,m(n)+v+

2l,m(n)+v+
3l,m(n)+v+

4l,m(n)
 vJl,m(n) =                                                                    ,
                                                   2

v–
il,m(n) = vJl,m(n) – v+

il,m(n),

where the l,m indices represent the spatial position of
the junction in the mesh and the n index represents
the current time sample.  vJl,m(n) represents the
velocity of the junction at position l,m at time n;
v+

il,m(n) and v–
il,m(n) represent the four input and

output waves to that junction, respectively.  As an
implementation note, observe that this junction
computation may be performed with 7 adds (or
subtracts), 1 shift (to divide by 2), and no multiplies.

In addition to these scattering equations, we may also
note that the sum of the inputs to a junction equals
the sum of the outputs,

Σ
i
 v+

i l,m(n) = Σ
i
 v–

il,m(n),

and that, since the junctions are interconnected by
unit delay elements, the input at one port of one
junction is equal to the output at the opposing port of
the adjacent junction at the previous time sample,

v+
opposite(n) = v–

opposite(n-1).

With a little perseverance, one may manipulate all
these relations algebraically into the following
difference equation,

   vJl,m(n) – 2vJl,m(n–1) + vJl,m(n–2) =

0.5[vJl,m+1(n–1) – 2vJl,m(n–1) + vJl,m-1(n–1)] 
      +0.5[vJl+1,m(n–1) – 2vJl,m(n–1) + vJl-1,m(n–1)].



A comparison of this difference scheme with the
two-dimensional wave equation,

utt(t,x,y) = c2(uxx(t,x,y) + uyy(t,x,y)),
reveals that it  is the standard second-order difference
scheme for the hyperbolic partial differential wave
equation for the ideal membrane, with wave
propagation speed c = 2–0.5 ≈ 0.7, and the time and
spatial sampling intervals (X=∆x, Y=∆y, T=∆t) taken
to be equal to each other.  The mesh implements a
wave propagation speed of one-half unit diagonal
distance per time sample.  Intuitively, when we
superimposed the perpendicular layer of parallel
waveguide strings to form the mesh, we doubled the
mass density per unit area, thereby reducing the wave
speed by one over the square root of two.

Defining, λ = TX-1 = 1, we observe that the Courant-
Friedrichs-Lewy stability condition, |cλ| ≤ 2–0.5, is
satisfied by this difference scheme [Strikwerda,
1989].  This condition says that for a difference
scheme to track the solution of a hyperbolic equation
with two space dimensions, the cone of dependence
for each point of the continuous solution must lie
within the pyramid of dependence for each point of
the difference scheme solution.  Since the condition
is satisfied in the equality, the lowest possible
dissipation and dispersion error for this particular
scheme is obtained.

The numerical approximation schemes for initial
value problems involving second-order hyperbolic
partial difference equations usually require a multi-
step time scheme which retains values for at least two
previous time frames.  This is to cope with the
second partial time derivative in the equation.  The
waveguide mesh reduces this structure to a one-step
time scheme where each new time frame may be
computed wholly from the previous time frame.  This
is made possible by the use of traveling wave
components in place of physical wave variables.

4.2 Von Neumann Error Analysis

Von Neumann analysis of finite difference scheme
approximations of partial differential equations uses
Fourier transform theory to compare the evolution
over time of the spatial spectrum in the continuous
time solution to that in the discrete time
approximation [Strikwerda, 1989].  Recall that to
solve an ordinary linear differential equation, we may
reduce the problem to a polynomial in s by taking the
Laplace transform and replacing orders of derivatives
with powers of s.  Similarly, we can take a spatial
transform of a partial differential equation with

independent time and space variables to obtain an
ordinary differential equation describing the
evolution of spatial spectra over time.  From here,
we can check how the spatial spectrum evolves after
a time delay of T seconds.  The ratio of the spatial
spectrum at time t + T to the spatial spectrum at time
t is known as the spectral amplification factor.

Recall that in the discrete case, to solve a time-
indexed difference equation, we may reduce the
problem to a polynomial in z-1 by taking the Z -
transform and replacing samples of time delay in the
index with powers of z-1.  If we have a time- and
space-indexed difference scheme approximation to
compare with our partial differential equation, we
may perform a similar spectral evolution analysis on
the difference equation using discrete Fourier
transforms to obtain a discrete spectral amplification
factor.

In the case of the ideal membrane equation, we
already know the solution is an integral sum of plane
waves all moving at constant speed c.  The speed of
wave travel is independent of spatial frequency, i.e.,
smooth low spatial frequency waves travel at the
same speed as jagged or ripply-looking high spatial
frequency waves.  This means that there is no
frequency dispersion in the ideal membrane.  After T
seconds, the position of a plane wave of spatial
frequency ξ, traveling in direction α, would have
moved forward a distance of cT, corresponding to a
spatial phase shift of –cξT. The spectral
amplification factor would then be e–jcξT.

In the difference scheme derived in Section 4.1,
computation of a discrete spectral amplification
factor is a little messier.  Unfortunately, the speed of
plane wave travel on the digital waveguide mesh is
dependent on both the direction of travel, α, and on
the spatial frequency of the wave, ξ.  The discrete
spectral amplification factor may be written in the
form e–jc′(α,ξ)ξT, where c′(α,ξ) represents the
direction and frequency dependent speed of plane
wave travel on the waveguide mesh.

When making two-dimensional spatial transforms,
we take x ↔ ξ1 and y ↔ ξ2.  The coordinate
frequencies, ξ1 and ξ2, are hard to understand
conceptually, but viewing the transform in polar
coordinates, we see that the point (ξ2,ξ1) in the two-
dimensional frequency space is referring to a plane
wave of spatial frequency ξ = (ξ1

2 + ξ2
2)0.5, oriented

in the radial direction, α = tan-1  ξ2/ξ1.

Using the procedure outlined above, a closed-form



expression for the normalized speed of plane wave
travel in the waveguide mesh may be found,

c′(ξ1,ξ2) / c = 20.5 (ξT)-1  tan-1 (4 – b2)0.5 b-1,

where b = cos ξ1T + cos ξ2T.
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Figure 6.  Wave Travel Speed vs. Frequency

Figure 6 shows a plot of the normalized wave travel
speed on the mesh versus spatial frequency.  The
center region of the plot corresponds to low spatial
frequencies; the outer regions of the plot correspond
to higher spatial frequencies.  The angular position
on the plot, as seen from the frequency plane origin,
corresponds exactly to the direction of plane wave
travel on the mesh.  Notice that near the center of the
plot, corresponding to smooth, low frequency plane
waves, the c′/ c ratio is fairly close to 1.  Also, c′/ c =
1 exactly along the diagonals, corresponding to no
dispersion at any spatial frequencies when traveling
in a direction diagonal to the mesh coordinate
system.  In waves traveling along the coordinate axes
of the mesh, we see a fall off in travel speed in the
higher spatial frequencies.

Figure 7. Wavefront Dispersion on Mesh

Figure 7 shows three time frames of the mesh
initialized with a deflection containing high spatial
frequencies.  Notice how the wavefront smooths out
along the mesh coordinate directions, corresponding
to high frequency dispersion, while it remains sharp
along the diagonal directions, corresponding to no
dispersion.  In a bounded mesh, speed distortion
results in a mistuning of resonant modes.  This
distortion can be reduced by allpass filtering and/or
warping of the membrane boundary in a
compensating manner.  Oversampling the mesh and
low-passing can eliminate the effect to arbitrary
accuracy.  We note that the high frequency modes of
a membrane become so dense that, in audio contexts,
this error may not be important. 

5 Implementation Features

The digital waveguide mesh may be computed in
parallel, and without multiplies.  In addition
numerical round off loss may be redistributed back
into the mesh to create a zero-loss system.

5.1 Two Pass Parallel Computation

The network elements in the 2-D digital waveguide
mesh are of two types: 4-port scattering junctions and
2-port bi-directional unit delays.  If the unit delays
are double buffered, so that each delay has its own
input and output buffers, the computation of all the
elements in the mesh can be segregated and
computed in any arbitrary order or in parallel,
according to the following two pass computation
scheme:  (1) The scattering junction outputs are
computed from their known inputs and placed at the
junction outputs.  This constitutes the scattering pass.
(2) The outputs from each scattering junction are
placed at the inputs of the adjacent scattering
junctions, thereby implementing the bi-directional
delay units.  This constitutes the delay pass.

Due to the possibility of arbitrary ordering of the
scattering computations, implementation on a parallel
computing architecture with local four-sided
connectivity between processors is ideal for the mesh
algorithm.  In this implementation, the junction
equations are computed in the processors; and then
the data transfer cycle is used to transfer data from
the outputs of each processor to the appropriate
inputs of the adjacent processors.

Since the equal impedance 4-port lossless scattering
junction is multiply-free, as pointed out in Section



4.2, a VLSI implementation may be constructed with
a handful of gates with no need for hardware
multipliers.  Since the junctions may be computed in
parallel, the whole mesh may be computed in the
time it takes to do 7 adds (i.e., 3 adds and 4 subtracts)
and one shift.  In fact, the four subtracts may be
performed in parallel.

5.2 Energy Preserving Junctions

When performing the multiply-free junction
computation, one divide by two is required.  If a
simple sign-preserving right shift and truncation is
used for this operation, the junction value is rounded
toward zero in the case of positive numbers and
rounded away from zero in the case of negative
numbers.  This is a round down in both cases, which
could introduce a negative offset into the values of
the mesh which may eventually lead to numerical
instability or reduced dynamic range, if there is no
loss in the system somewhere else.

The usual solution to such a problem would be to
make a conservative rounding toward zero in both the
positive and negative cases.  This way no energy and
no DC drift will be introduced into the system.  This
method is known to work quite well in one-
dimensional feedback loops.  Unfortunately, in the
two-dimensional mesh case, there are so many
junctions that the cumulative losses in all the
junctions add up to a noticeable amount.

An energy preserving method of junction
computation may be constructed as follows.  When
shifting a binary number to the right, there are
exactly two cases: (1) the low-order bit which is
shifted off the end of the word is zero, and the
computation is exact, or (2) the low-order bit is one,
and the error is exactly 0.5.  When the junction inputs
are subtracted off vJ in computing the scattering
junction outputs, this error is magnified by 4 and the
0.5 error propagates into the four output signals
equally.  Note that the error is in the same direction
in all four cases so the total error is 4 · 0.5 = 2 full
bits.  To preserve energy in the mesh, round two
output signals down (i.e., just truncate) and round the
other two output signals up (i.e., add the low-order
bit back in after truncating).  This re-distribution of
the error produces a numerically exact lossless
scattering junction.  In effect, the slight numerical
error has been converted into a slight scattering
dispersion error.  Whereas the numerical error was
problematic, the dispersion adjustment is vanishingly
small.

6 Modeling with the Mesh

To build a model of a drum membrane, we need to
clamp down the boundary of the mesh, corresponding
to terminating the mesh reflectively, inverting the
traveling waves at the edges.  Since the 2-D digital
waveguide mesh is just a big linear system, filters
representing loss in the system are easily
interconnected, and may be consolidated as desired
around the rim due to commutativity of linear
systems.

Modeling a stiff plate might be accomplished by
letting the waves reflect off the boundary with out
inversion (for an unclamped plate).  To help out with
the greater spacing of higher modes in the plate
caused by stiffness, some appropriate allpass filtering
might be introduced.   

Figure 8 suggests the possibility of modeling a
harpsichord by connecting an array of waveguide
plucked string models to a waveguide mesh
representing the sounding board via 5-port junctions.
The soundboard mesh would have appropriate
boundary filters with low pass characteristics to
represent loss and allpass characteristics to represent
stiffness effects in the board.  In this model the mesh
is used as a resonant coupling connection which both
reverberates the string outputs and scatters energy
into strings which have not been plucked, thereby
inducing sympathetic vibrations.
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Figure 8.  The 8-String Harpsichord.

6.1 Extensions of the Mesh

The mesh algorithm assumes nothing about its
boundary conditions.  There is nothing to stop one
from connecting one edge of the mesh to the opposite
edge to produce a cylindrical topology, as shown in
Figure 9.  Furthermore, it is straight forward to
extend the algorithm into three dimensions by
layering several 2-D meshes above each other,
replacing all the 4-port junctions with 6-ports and



connecting up the layers.  This topology is shown in
Figure 10.

Figure 9. The Cylindrical Mesh

Figure 10. The 3-D Digital Waveguide Mesh
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Figure 11.  The 3-D Drum Model.
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Figure 12. The 3-D, One-String Guitar.

With constructs such as these, fully physical models
of musical instruments can me made.  For example,
Figure 11 shows the 3-D drum model with a mesh
modeling the drum head, connected to a stiff

cylindrical mesh modeling the sides of the drum and
3-D mesh inside the drum modeling the air cushion.
Figure 12 shows a guitar model with 2-D mesh
material modeling the bridge and body shell and 3-D
mesh material modeling the resonant body cavity.

7 Summary
Although finite element and difference scheme
approximation methods are known which can help
with the numerical solution of the 2-D wave
equation, these methods have two drawbacks: (1)
their heavy computational time is orders of
magnitude beyond reach of real time, and (2)
traditional problem formulations fit poorly into the
physical model arena of linear systems, filters, and
network interactions.  On the other hand, the 2-D
digital waveguide mesh formulation proposed in this
paper, while corresponding exactly with the standard
difference scheme approximation, may be
implemented in a fully parallel, multiply-free
formulation; the energy preserving, digitally exact
round-off method eliminates numerical problems; the
mesh extends simply to 3- or N-dimensions; and,
finally, the algorithm is  a linear network which
connects up easily to other physical models.
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