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• Sequence Models, such as Large Language Models (LLMs), arose from a blend of

principle-based design and empirical discovery, spanning several fields.

• This talk describes how the ideas could have emerged from an elementary

signal-processing approach.

• This viewpoint offers some features:

1. Signal processing folks can quickly learn what is happening in a motivated way

2. Machine-learning experts might benefit from signal-processing insights

3. Obvious suggestions for things to try next naturally arise

Plan: “Invent” the components of modern sequence models from basic signal processing

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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These Overheads and More at the JOS Home Page:

https://ccrma.stanford.edu/∼jos/Welcome.html#dsponline24

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
https://ccrma.stanford.edu/~jos/Welcome.html#dsponline24
https://ccrma.stanford.edu/~jos/Welcome.html#dsponline24
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Verma and Schafer, Interspeech 2016

• “Audio filter bank” learned in the first layer for the F0-estimation task

• Filter bands more dense in the F0 range

• Suggests: Replace first layer with a pre-structured auditory filter bank having a

differentiable and convex parameterization, for data and task adaptation (see LEAF)

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
https://github.com/google-research/leaf-audio
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p

x(n) y(n)
g

z−1

One Pole at z = p

y(n) = g x(n) + p y(n− 1), n = 0, 1, 2, . . . [difference equation]

H(z) =
Y (z)
X(z)

=
g

1− p z−1 [transfer function]

A Unit Delay (for Vectors) can be an Associative Memory:

• Generalize x(n) to a long vector x(n) ∈ R
N representing any “label”

• Set g = 1 and p = 1 to make y(n) a sum of all input vectors (“integrator”)

• Choose the dimension N so large that vectors in the sum are mostly orthogonal

• Let x(n) be embedding vectors (e.g., word2vec) so that closeness = similarity

• Retrieve similar vectors using a matched inner product wTx > b,

for some suitable threshold b (Hey! That’s a simulated neuron! (“Perceptron” [1957]))

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Given the sum of vectors

y(n) =

n
∑

m=0

x(m)

and a “query vector” w = x(k),
find the query in the sum using an inner product:

wT y(n) =
n
∑

m=0

wTx(m) ≈ xT (k)x(k) = ‖x(k)‖2 > b(k)

or “found” if wT y(n)− b(k) > 0, where b(k) is the detection threshold for x(k)

• This works because the spatial dimension is so large that xT (j)x(k) ≈ ǫ for j 6= k
• Retrieval threshold b(k) depends on ‖x(k)‖2

⇒ suggestion: reserve the radial dimension for similarity scoring

• I.e., only populate the hypersphere in R
N : ‖x(k) ‖2 = 1 (or N ), ∀k

• We just invented RMSNorm, used extensively in neural networks (not LayerNorm)

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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RNNs typically have a forgetting factor p < 1.

Given the sum of vectors

y(n) =
n
∑

m=0

pn−mx(m)

and a “query vector” w = x(k),
the inner product now gives

wT y(n) =
n
∑

m=0

wT pn−mx(m) ≈ pn−kxT (k)x(k) = pn−k > b

where b is the detection threshold for x(k), independent of k if ‖x(k)‖ = 1

• Cannot retrieve when pn−k < b, setting an upper limit on n
• We need p > b1/n or nmax ≤ log(b)/ log(p)
• Lower b⇒ more memory, but also more false detections from “interference”

(“other vectors in the sum”)

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Let a ∈ R
N and b ∈ R

N be two normally random, real, unit-norm vectors in N
dimensions, with ‖a‖ = ‖b‖ = 1
The dot-product (inner product) of aT = [a1, a2, . . . , aN ] and b

T = [b1, b2, . . . , bN ] is

defined as

a · b = a
T
b =

N
∑

i=1

aibi.

The squared dot product is

(a · b)2 =
(

N
∑

i=1

aibi

)2

=

N
∑

i=1

N
∑

j=1

aiajbibj .

Expected value (average):

E
[

(a · b)2
]

=
N
∑

i=1

N
∑

j=1

E[aiaj ]E[bibj ] =
N
∑

i=1

1

N

1

N
=

1

N

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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We just showed the expected squared dot product of two normally random unit vectors in

R
N is 1/N , i.e.,

E
[

(a · b)2
]

=
1

N

since E[aibj ] = 0 for i 6= j, E[a2i ] = E[bi]
2 = 1/N , and a and b are independent.

Suggestions for Training:

• Initialize biases (detection thresholds) near 1/N
• Divide the sum of M vectors by

√
M :

◦ “power normalization”

◦ “RMSNorm-preserving”

◦ “Keep vector sums near the unit sphere”

• Apply RMSNorm when training the initial vocabulary embedding (“word2sphere”)

• Set the model dimension just sufficient for the layer width at each level

• Caveat: We are only considering associative recall as one mechanism here.

Other mechanisms are definitely learned, such as “attention sinks” and “induction

heads”, . . . )

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Similarly,

E

[

(

wT y
n

)2
]

= E





(

n
∑

m=0

wTxm

)2


 =
n
∑

l=0

n
∑

m=0

E
[

wTxlx
T
mw
]

=

n
∑

m=0

E
[

wTxmxTmw
]

=

n
∑

m=0

E
[

(

wTxm
)2
]

=
n

N

assuming w /∈ y and ‖w‖ = ‖xm‖ = 1 for all m. Thus, retrieval becomes unreliable

when the number of summed vectors n nears the model dimension N .

• N is of course the number of exactly orthogonal vectors possible in N dimensions

• If L vectors are typically in the sum, our Perceptron “bias” (detection threshold) should

be higher than L/N
• Suggestion: Keep the number of active vectors in memory well below N

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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It is well known that phone numbers were limited to 7 digits due to our limited short-term

memory for unrelated objects. Can language be parsed using 7 vectors or less at each

level? [Original Transformer paper had 8 attention heads and 6 layers (like neocortex)]

Layers (e.g.):

1. Base vocabulary = characters

(26 for English)

2. Syllable in 7 chars or less

(44 syllables in English;

107 in Int’l Phonetic Alphabet)

3. Word in 7 syllables or less

4. Noun + 6 or less modifying adjectives

5. Verb + up to 6 adverbs

6. Noun phrase

7. Direct or indirect object

8. Prepositional phrase

9. Subject, verb, [indirect object], object

10. Sentence

11. Paragraph

12. Section

13. Chapter

14. Book

15. Subject Area Hierarchy . . .

Different cortical areas (6 layers each) needed for this many levels.

Complex Sentence Diagram Examples:

https://www.quora.com/In-regards-to-diagramming-sentences-which-one-is-the-most-difficult-youve-ever-come-across

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
https://www.quora.com/In-regards-to-diagramming-sentences-which-one-is-the-most-difficult-youve-ever-come-across
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• 6 dot-patterns on a die

• 7 LED segments for numbers

• 4 or fewer strokes to draw a letter

Hierarchy used to keep the number of components per concept small

Suggestions:

• Ready signal when symbol is recognized (whole letter, word, phrase, etc.)

• Reset memory after symbol recognition

• Memory can be small!

Maybe these signals are happening in the layers already?

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
https://www.opledtw.com/wp-content/uploads/2021/11/7segment_display_arabic_numeral_7段顯示器數字顯示.png
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RNNs typically have a forgetting factor p < 1, in which case we have,

defining µ = n−m and λ = n− l:

E

[

(

wT y
n

)2
]

= E





(

n
∑

m=0

wT pµxm

)2


 =
n
∑

l=0

n
∑

m=0

E
[

wT pλxlp
µxTmw

]

=

n
∑

m=0

p2µE
[

wTxmxTmw
]

=

n
∑

m=0

p2µE
[

(

wTxm
)2
]

=
1

N

1− p2(n+1)

1− p2
→ 1

N

1

1− p2
(as n → ∞)

• For 1/(1− p2) < N , keep p <
√

(N − 1)/N
• For 1/(1− p2) < N/2, keep p <

√

(N − 2)/N

and so on. This gives us one way to calculate a maximum feedback coefficient p in RNNs

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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x(n) y(n)

z−1

MidJourney

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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x(n) y(n)

z−1

Input Vector Summer

• Problem: Need a memory reset

• Solution: Set feedback gain to zero for one step to clear the memory

• Problem: Need an input gate to suppress unimportant inputs

• Solution: Set input gain to zero for unimportant inputs

• We just invented gating, used extensively in neural sequence models

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Idea: Learn the input and feedback gates as functions of input xn
based on many input-output examples (xn, yn) (“training data”):

xn

g(xn)

p(xn)

y
n

z−1

Vector Memory with Learned Input and Feedback Gates

Suggestions:

• Use learned, input-based, activations for gating (LSTM, GRU, Mamba)

• While activated, optionally set memory duration via p magnitude (SSMs, Mamba)

◦ Initialize p for desired initial memory duration (exponential fade time)

◦ Learn p(xn) as I · e−∆ ≈ I− I∆, where ∆ = softPlus(parameter(xn, yn))
(guaranteed stable — no “exploding gradients”) [Also multiply g(xn) by ∆]

◦ Consider separate meaning-driven activation multiplying feedback: σ(Lx)p(x)

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Idea: Learn a full matrix for the input to provide arbitrary projection as well as gating

G(xn)

p(xn)

y
n

xn

z−1

Vector Memory with Learned Input Projection and Gating

The added linear transformation can

• further optimize the input embedding for the current task and training data,

• change the spatial layout to make room for things like temporal encoding,

• up-project to a higher internal model dimension (“state expansion” discussed later).

In state-space models such as S4 and H3,

• full feedback matrices P(xn) were investigated, but

• diagonal p(xn) were found to be sufficient (even a constant diagonal in Mamba-2).

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Idea: Since we have input and feedback gates, why not an output gate and bypass?

Bn(xn)

y
n

xn

p(xn)

Cn(xn)

z−1

Gated RNN with Skip Connection

Output gating allows network to be “bypassed” when not helpful.

• “Obvious” Suggestion: The bypass path should be scaled for power normalization

• Better yet: Don’t scale the bypass and use RMSNorm at the input of the next layer

(prevents a “bad layer” from isolating deeper layers from the input with garbage,

and equalizes gradient backpropagation to all layers)

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Idea: Expand vector-memory dimension to an integer multiple of the model dimension:

hn

y
n

xn

.
.
.

z−1

z−1

A(xn)

B(xn)

D(xn)

C(xn)

“Structured State-Space Models” (SSM) look like this (e.g., Mamba)

• Increased storage capacity (more vectors can be summed and later retrieved)

• Feedback matrix A typically diagonal since 2022 (see “S4D”)

⇒ Parallel bank of vector one-poles (“linearly” gated, state-expanded RNNs)

• In Mamba-2, A = p I, i.e., shared memory duration across expanded state

• Gating matrices in Mamba[-2] are simple linear input projections:

[B(xn),C(xn)] = Lxn

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Idea: Also use FIR Filtering (SSM State Expansion Factor M , A subdiagonal):

x(n− 1)

dk

x(n−M)

y
k
(n)

x(n− 3)

h(n)
ck2ck1 ck3

x(n)

. . .

. . .

. . .

ckM

z−1z−1z−1 z−1

Separately learnable FIR coefficient matrices dk[x(n)], cj [x(n− j), k], depending on:

1. input position j in the input sequence (“context buffer” or “expanded state” + [W]RoPE)

2. input vector x(n− j), j = 0, 1, 2, . . . ,M
3. output-position k being computed, k = 0, 1, 2, . . . ,M (M + 1 outputs)

Idea: Add relevance gating suppressing unimportant inputs to each output (“attention”)

Idea: Create new embedding vectors as sums of relevant input vectors (“attention”)

Idea: Measure relevance using an inner product between the output and input positions

(“dot-product attention”)

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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x(n− 1)

dk

x(n−M)

y
k
(n)

x(n− 3)

h(n)
ck2ck1 ck3

x(n)

. . .

. . .

. . .

ckM

z−1z−1z−1 z−1

Relevance Gating

Let xk denote x(n− k)
The contribution from input xj to the nonlinear FIR sum for output y

k
can be calculated as

ckjxj =

[

(

∑

m∈R(x
k
) xm

)T
xj

]

xj

or more generally ckj = qT
k
xj , where

q
k

is called the query vector for position k in the output sequence

The query q
k

can be for example a sum of vectors allowed in the attention sum:

q
k
= xk + xm1

+ · · ·+ xmk

⇒ (qT
k
xj)xj ≈ xj , if xj is similar to any vector in the query sum.

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Idea: To support multiple meaning possibilities, partition the model space into

parallel independent attention calculations (“multi-head attention”)

• Each attention head can form an independent input interpretation

• Useful for ambiguous sequences, especially in the lower layers

• Also introduced in the Transformer paper (2017)

Now we need down-projections of the relevance-calculation components

⇒ relevance of input j to output k in attention-head l becomes proportional to

ckjxj = (qT
k
xj)xj −→ clkjxlj =

[

qT
lk
(xk)klj(xj)

]

vlj(xj)

where q
lk

(“query”), klj (“key”), and vlj (“value”) vectors are learned down-projections of

the input xj for each attention-head l and for all sequence indices j and k in the context

buffer (“Transformer”)

Other useful generalizations can be imagined for these learned (Q,K,V) vectors, such as

grouping grammatical functions, creating new model-space regions, etc.

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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Consider
1

√

∑NT

j=1
(QT

kKj)2
⇒

NT
∑

j=1

c2lkj = 1

dlk

cl,NT+1

clkNT

bNM

clk1 clk2

b1 = 1 z−1 includes RoPE

y
l
(n)

. . .

k = 1, 2, . . . , NT , l = 1, 2, . . . , Nh

∀k(no Softmax yet)

x(n)

. . .

. . .

. . .

p
NM

b1

cl,NT+NM

p
1

z−1 z−1 z−1z−1

z−1

http://ccrma.stanford.edu/~jos/
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Xformer (FIR)Xformer (FIR) Mamba (IIR) Mamba (IIR)

XMamba (“DF-I”) versus MambaX (“DF-II”)

• Perfect short-term memory

• Fuzzy, fading, long-term memory

• Like Infini-Attention

• Both memories see latest input

• IIR part less efficiently used

Direct Form I looks preferable because it separates short and longer-term memory

functions.

http://ccrma.stanford.edu/~jos/
https://www.dsponlineconference.com
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