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� Fourier's theorem (1822)
� Telharmonium (1898)
� Voder (1920s)
� Vocoder (1920s)
� Hammond Organ (1930s)
� Phase Vocoder (1966)
� Digital Organ (1968)
� Additive Synthesis (1969)
� FM Brass Synthesis (1970)
� Synclavier 8-bit FM/Additive synthesizer (1975)
� FM singing voice (1978)
� Sinusoidal Modeling (1985)
� Sines + Noise (1988)
� Sines + Noise + Transients (1988,1996,1998,2000)
� Inverse FFT synthesis (1992)
� Future Directions



Telharmonium (1898)
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Telharmonium (Cahill 1898)
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U.S. patent 580,035:
“Art of and Apparatus for Generating and Distributing Music Electrically”



Telharmonium Rheotomes
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Forerunner of the Hammond Organ Tone Wheels



Telharmonium Rotor: Forerunner of Hammond Organ Tone
Wheels
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The Voder (1939)
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The Voder (Homer Dudley — 1939 Worlds Fair)
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http://davidszondy.com/future/robot/voder.htm
[<



Voder Keyboard
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http://www.acoustics.hut.fi/publications/files/thes es/
lemmetty mst/chap2.html — (from Klatt 1987)



Voder Schematic
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http://ptolemy.eecs.berkeley.edu/~eal/audio/voder.h tml



Voder Demos
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� Video
� Audio



The Channel Vocoder (1928)

(“Voice Coder”)
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Vocoder Analysis & Resynthesis (Dudley 1928)
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Analysis:

� Ten analog bandpass �lters between 250 and 3000 Hz:
Bandpass ! recti�er ! lowpass �lter ! amplitude envelope

� Voiced/Unvoiced decision made
� Fundamental frequency F0 measured for voiced case

Synthesis:

� Ten matching bandpass �lters driven by a

� “buzz source” (voiced), or
� “hiss source” (unvoiced)

� Bands were scaled by amplitude envelopes and summed
� Said to have an “unpleasant electrical accent”

Related Speech Models:

� The Vocoder is an early source-�lter model for speech
� Linear Predictive Coding (LPC) of speech is another



Vocoder Filter Bank Analysis/Resynthesis
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Channel Vocoder Sound Examples
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� Original

� 10 channels, sine carriers
� 10 channels, narrowband-noise carriers

� 26 channels, sine carriers
� 26 channels, narrowband-noise carriers
� 26 channels, narrowband-noise carriers, channels reversed

� Phase Vocoder: Identity system in absence of modi�cations

� The FFT Phase Vocoder next transitioned to the Short-Time
Fourier Transform (STFT) (Allen and Rabiner 1977)



The Phase Vocoder (1966)
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Phase Vocoder Analysis for Additive Synthesis (1976)
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wk w0

Channel Filter
Response

ak

Dwk

Analysis Model Synthesis Model

ak(t) wk+Dwk(t)

A F

Out

Sine Osc

� Early “channel vocoder” implementations (hardware) only
measured amplitude ak (t) (Dudley 1939)

� The “phase vocoder” (Flanagan and Golden 1966) added phase
tracking in each channel

� Portnoff (1976) developed the FFT phase vocoder,
which replaced the heterodyne comb in computer-music
additive-synthesis analysis (James A. Moorer)

� Inverse FFT synthesis (Rodet and Depalle 1992) gave faster
sinusoidal oscillator banks



Amplitude and Frequency Envelopes
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ak (t)

� ! k (t) = _� k (t)
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Additive Synthesis (1969)
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Classic Additive-Synthesis Analysis (Heterodyne Comb)
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John Grey 1975 — CCRMA Tech. Reports 1 & 2
(CCRMA “STANM” reports — available online)



Classic Additive-Synthesis (Sinusoidal Oscillator Envelopes)
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John Grey 1975 — CCRMA Tech. Reports 1 & 2
(CCRMA “STANM” reports — available online)



Classic Additive Synthesis Diagram (Computer Music, 1960s)
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noise

FIR

A1(t) A2(t) A3(t) A4(t)f 1(t) f 2(t) f 3(t) f 4(t)
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Classic Additive-Synthesis Examples
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� Bb Clarinet
� Eb Clarinet
� Oboe
� Bassoon
� Tenor Saxophone
� Trumpet
� English Horn
� French Horn
� Flute

� All of the above
� Independently synthesized set

(Synthesized from original John Grey data)



Frequency Modulation Synthesis

(1973)
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Frequency Modulation (FM) Synthesis
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FM synthesis is normally used as a spectral modeling technique

� Discovered and developed (1970s) by John M. Chowning
(CCRMA Founding Director)

� Key paper: JAES 1973 (vol. 21, no. 7)
� Commercialized by Yamaha Corporation:

� DX-7 synthesizer (1983)
� OPL chipset (SoundBlaster PC sound card)
� Cell phone ring tones

� On the physical modeling front, synthesis of vibrating-string
waveforms using �nite differences started around this time:
Hiller & Ruiz, JAES 1971 (vol. 19, no. 6)



Frequency Modulation (FM) Synthesis
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FM Formula
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x(t) = Ac sin[! ct + � c + Am sin(! m t + � m )]

where

(Ac; ! c; � c) specify the carrier sinusoid
(Am ; ! m ; � m ) specify the modulator sinusoid

Can also be called phase modulation



Simple FM “Brass” Patch (Chowning 1970–)
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Jean-Claude Risset observation (1964–1969):
Brass bandwidth / amplitude

g
A F

FA

Out

f c = f 0

f m = f 0



FM Harmonic Amplitudes (Bessel Function of First Kind)
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Harmonic number k, FM index � :
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Frequency Modulation (FM) Examples
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All examples by John Chowning unless otherwise noted:

� FM brass synthesis

� Low Brass example
� Dexter Morril's FM Trumpet

� FM singing voice (1978)
Each formant synthesized using an FM operator pair
(two sinusoidal oscillators)

� Chorus
� Voices
� Basso Profundo

� Other early FM synthesis

� Clicks and Drums
� Big Bell
� String Canon



FM Voice
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FM voice synthesis can be viewed as compressed modeling of
spectral formants

Modulation Frequency (all three)

Frequency f0

M
ag

ni
tu

de
Carrier 1 Carrier 2

Carrier 3



Sinusoidal Modeling Synthesis

(1988)
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Tracking Spectral Peaks in the Short-Time Fourier Transform
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dB mag
Peak
tracking

Quadratic
Peak
Interpolation

Frequencies

Amplitudes

Phases

window w(n)

s(t)

atan

FFT

� STFT peak tracking at CCRMA: mid-1980s (PARSHL program)

� Motivated by vocoder analysis of piano tones
� In�uences: STFT (Allen and Rabiner 1977),

ADEC (1977), MAPLE (1979)
� Independently developed for speech coding by McAulay and

Quatieri at Lincoln Labs (1985)



Example Spectral Trajectories
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Parametric Spectral Modeling
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A1(t) A2(t) A3(t) A4(t)f 1(t) f 2(t) f 3(t) f 4(t)

Pwhite noise
u(t) �lter(t)

ht (� )
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4P
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A i (t) cos

hRt
0 ! i (t)dt + � i (0)

i
+ ( ht � u)( t)



Sines + Noise Sound Examples
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Xavier Serra thesis demos (Sines + Noise signal modeling)

� Piano

� Original
� Sinusoids alone
� Residual after sinusoids removed
� Sines + noise model

� Voice

� Original
� Sinusoids
� Residual
� Synthesis



Musical Effects with Sines+Noise Models
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� Piano Effects

� Pitch downshift one octave
� Pitch �attened
� Varying partial stretching

� Voice Effects

� Frequency-scale by 0.6
� Frequency-scale by 0.4 and stretch partials
� Variable time-scaling, deterministic to stochastic



Cross-Synthesis with Sines+Noise Models

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

� Sinusoidal Modeling

� Spectral Trajectories

� Sines + Noise

� S+N Examples

� S+N FX

� S+N XSynth

� Sines + Transients

� S + N + Transients

� S+N+T TSM

� S+N+T Freq Map

� S+N+T Windows

� HF Noise Modeling

� HF Noise Band

� S+N+T Examples

Future

Julius Smith Music 421 Applications Lecture – 37 / 50

� Voice “modulator”

� Creaking ship's mast “carrier”
� Voice-modulated creaking mast
� Same with modi�ed spectral envelopes



Sines + Transients Sound Examples
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In this technique, the sinusoidal sum is phase-matched at the
cross-over point only (with no cross-fade).

� Marimba

� Original
� Sinusoidal model
� Original attack, followed by sinusoidal model

� Piano

� Original
� Sinusoidal model
� Original attack, followed by sinusoidal model



Multiresolution Sines + Noise + Transients
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Why Model Transients Separately?

� Sinusoids ef�ciently model spectral peaks over time
� Filtered noise ef�ciently models spectral residual vs. t
� Neither is good for abrupt transients in the waveform
� Phase-matched oscillators are expensive
� More ef�cient to switch to a transient model during transients
� Need sinusoidal phase matching at the switching times

Transient models:

� Original waveform slice (1988)
� Wavelet expansion (Ali 1996)
� MPEG-2 AAC (with short window) (Levine 1998)
� Frequency-domain LPC

(time-domain amplitude envelope) (Verma 2000)



Time Scale Modi�cation of Sines + Noise + Transients Models
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transients

transients

transients

transients

sines +
noise
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noise
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sines +
noise
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noise

sines +
noise

original signal

time-scaled
signal

time

Time-Scale Modi�cation (TSM) becomes well de�ned :

� Transients are translated in time
� Sinusoidal envelopes are scaled in time
� Noise-�lter envelopes also scaled in time
� Dual of TSM is frequency scaling



Sines + Noise + Transients Time-Frequency Map
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Corresponding Analysis Windows
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Quasi-Constant-Q (Wavelet) Time-Frequency Map
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Bark-Band Noise Modeling at High Frequencies (Levine 1998)
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Amplitude Envelope for One Noise Band
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Sines + Noise + Transients Sound Examples
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Scott Levine Thesis Demos (Sines + Noise + Transients at 32 kbps)
(http://ccrma.stanford.edu/~scottl/thesis.html )

“It Takes Two” by Rob Base & DJ E-Z Rock

� Original
� MPEG-AAC at 32 kbps
� Sines+transients+noise at 32 kbps

� Multiresolution sinusoids
� Residual Bark-band noise
� Transform-coded transients (AAC)
� Bark-band noise above 5 kHz



Time Scale Modi�cation using Sines + Noise + Transients
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Scott Levine Thesis Demos (Sines + Noise + Transients at 32 kbps)
(http://ccrma.stanford.edu/~scottl/thesis.html )

Time-Scale Modi�cation (pitch unchanged)

� S+N+T time-scale factors [2.0, 1.6, 1.2, 1.0, 0.8, 0.6, 0.5]

S+N+T Pitch Shifting (timing unchanged)

� Pitch-scale factors [0.89, 0.94, 1.00, 1.06, 1.12]



Summary and Future Prospects
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Spectral Modeling History Highlights

Julius Smith Music 421 Applications Lecture – 49 / 50

� Bernoulli's modal sums (1733)
� Fourier's initial theorem (1822)
� Telharmonium (1906)
� Hammond organ (1930s)
� Channel Vocoder (1939)
� Phase Vocoder (1966)
� “Additive Synthesis” (1969)
� FFT Phase Vocoder (1976)
� Sinusoidal Modeling

(1977,1979,1985)
� Sines+Noise (1989)
� Sines+Transients (1989)
� TF Reassignment (1995)
� Sines+Noise+Transients

(1998)

Perceptual audio coding :
� Princen-Bradley �lterbank

(1986)
� K. Brandenburg thesis (1989)
� Auditory masking usage
� Dolby AC2
� Musicam
� ASPEC
� MPEG-I,II,IV

(S+N+T “parametric sounds”)



Future Prospects

Julius Smith Music 421 Applications Lecture – 50 / 50

Observations:

� Sinusoidal modeling of sound is “Unreasonably Effective”
� Basic “auditory masking” discards � 90% information
� Interesting neuroscience observation:

“... most neurons in the primary auditory cortex A1 are silent
most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnesco,
PNAS:103(16), April 2006)

� What is the right “psychospectral model” for sound?

� The cochlea of the ear is a real-time spectrum analyzer
� How is the “ear's spectrogram” represented at higher levels?



Future Prospects

Julius Smith Music 421 Applications Lecture – 50 / 50

Observations:

� Sinusoidal modeling of sound is “Unreasonably Effective”
� Basic “auditory masking” discards � 90% information
� Interesting neuroscience observation:

“... most neurons in the primary auditory cortex A1 are silent
most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnesco,
PNAS:103(16), April 2006)

� What is the right “psychospectral model” for sound?

� The cochlea of the ear is a real-time spectrum analyzer
� How is the “ear's spectrogram” represented at higher levels?



Future Prospects

Julius Smith Music 421 Applications Lecture – 50 / 50

Observations:

� Sinusoidal modeling of sound is “Unreasonably Effective”
� Basic “auditory masking” discards � 90% information
� Interesting neuroscience observation:

“... most neurons in the primary auditory cortex A1 are silent
most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnesco,
PNAS:103(16), April 2006)

� What is the right “psychospectral model” for sound?

� The cochlea of the ear is a real-time spectrum analyzer
� How is the “ear's spectrogram” represented at higher levels?



Future Prospects

Julius Smith Music 421 Applications Lecture – 50 / 50

Observations:

� Sinusoidal modeling of sound is “Unreasonably Effective”
� Basic “auditory masking” discards � 90% information
� Interesting neuroscience observation:

“... most neurons in the primary auditory cortex A1 are silent
most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnesco,
PNAS:103(16), April 2006)

� What is the right “psychospectral model” for sound?

� The cochlea of the ear is a real-time spectrum analyzer
� How is the “ear's spectrogram” represented at higher levels?



Future Prospects

Julius Smith Music 421 Applications Lecture – 50 / 50

Observations:

� Sinusoidal modeling of sound is “Unreasonably Effective”
� Basic “auditory masking” discards � 90% information
� Interesting neuroscience observation:

“... most neurons in the primary auditory cortex A1 are silent
most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnesco,
PNAS:103(16), April 2006)

� What is the right “psychospectral model” for sound?

� The cochlea of the ear is a real-time spectrum analyzer
� How is the “ear's spectrogram” represented at higher levels?



Future Prospects

Julius Smith Music 421 Applications Lecture – 50 / 50

Observations:

� Sinusoidal modeling of sound is “Unreasonably Effective”
� Basic “auditory masking” discards � 90% information
� Interesting neuroscience observation:

“... most neurons in the primary auditory cortex A1 are silent
most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnesco,
PNAS:103(16), April 2006)

� What is the right “psychospectral model” for sound?

� The cochlea of the ear is a real-time spectrum analyzer
� How is the “ear's spectrogram” represented at higher levels?



Future Prospects

Julius Smith Music 421 Applications Lecture – 50 / 50

Observations:

� Sinusoidal modeling of sound is “Unreasonably Effective”
� Basic “auditory masking” discards � 90% information
� Interesting neuroscience observation:

“... most neurons in the primary auditory cortex A1 are silent
most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnesco,
PNAS:103(16), April 2006)

� What is the right “psychospectral model” for sound?

� The cochlea of the ear is a real-time spectrum analyzer
� How is the “ear's spectrogram” represented at higher levels?


	Spectral Modeling Synthesis (Historical Summary)
	Milestones in Audio Spectral Modeling

	Telharmonium (1898)
	Telharmonium (Cahill 1898)
	Telharmonium Rheotomes
	Telharmonium Rotor: Forerunner of Hammond Organ Tone Wheels

	The Voder (1939)
	The Voder (Homer Dudley — 1939 Worlds Fair)
	Voder Keyboard
	Voder Schematic
	Voder Demos

	The Channel Vocoder (1928) (``Voice Coder'') 
	Vocoder Analysis & Resynthesis (Dudley 1928)
	Vocoder Filter Bank Analysis/Resynthesis
	Channel Vocoder Sound Examples

	The Phase Vocoder (1966)
	Phase Vocoder Analysis for Additive Synthesis (1976)
	Amplitude and Frequency Envelopes

	Additive Synthesis (1969)
	Classic Additive-Synthesis Analysis (Heterodyne Comb)
	Classic Additive-Synthesis (Sinusoidal Oscillator Envelopes)
	Classic Additive Synthesis Diagram (Computer Music, 1960s)
	Classic Additive-Synthesis Examples

	Frequency Modulation Synthesis (1973)
	Frequency Modulation (FM) Synthesis
	FM Formula
	Simple FM ``Brass'' Patch (Chowning 1970–)
	FM Harmonic Amplitudes (Bessel Function of First Kind)
	Frequency Modulation (FM) Examples
	FM Voice

	Sinusoidal Modeling Synthesis (1988)
	Tracking Spectral Peaks in the Short-Time Fourier Transform
	Example Spectral Trajectories
	 Parametric Spectral Modeling 
	Sines + Noise Sound Examples
	Musical Effects with Sines+Noise Models 
	Cross-Synthesis with Sines+Noise Models 
	Sines + Transients Sound Examples 
	Multiresolution Sines + Noise + Transients 
	Time Scale Modification of Sines + Noise + Transients Models
	Sines + Noise + Transients Time-Frequency Map
	Corresponding Analysis Windows
	Quasi-Constant-Q (Wavelet) Time-Frequency Map
	Bark-Band Noise Modeling at High Frequencies (Levine 1998)
	Amplitude Envelope for One Noise Band
	Sines + Noise + Transients Sound Examples
	Time Scale Modification using Sines + Noise + Transients


