Historical Overview of Audio Spectral Modeling

Julius Smith CCRMA, Stanford University

Music 421 Applications Lecture

April 2, 2018

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

Milestones in Audio Spectral Modeling

- Fourier's theorem (1822)
- Telharmonium (1898)
- Voder (1920s)
- Vocoder (1920s)
- Hammond Organ (1930s)
- Phase Vocoder (1966)
- Digital Organ (1968)
- Additive Synthesis (1969)
- FM Brass Synthesis (1970)
- Synclavier 8-bit FM/Additive synthesizer (1975)
- FM singing voice (1978)
- Sinusoidal Modeling (1985)
- Sines + Noise (1988)
- Sines + Noise + Transients (1988,1996,1998,2000)
- Inverse FFT synthesis (1992)
- Spectrogram Synthesis (2017)
- Future Directions

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

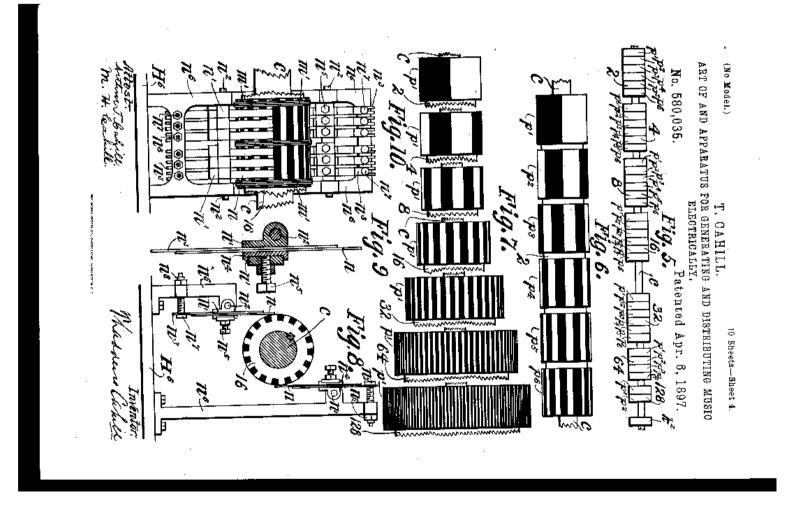
DDSP

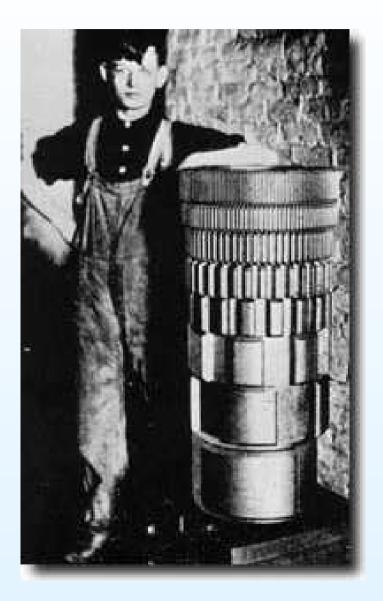
Future

Telharmonium (1898)

Telharmonium (Cahill 1898)

U.S. patent 580,035:


"Art of and Apparatus for Generating and Distributing Music Electrically"



Telharmonium Rheotomes

Forerunner of the Hammond Organ Tone Wheels

Telharmonium Rotor (early "Tonewheel")

Hammond influenced: https://en.wikipedia.org/wiki/Tonewheel

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

The Voder (1939)

Telharmonium

Voder

• Voder Keyboard

Voder Schematic

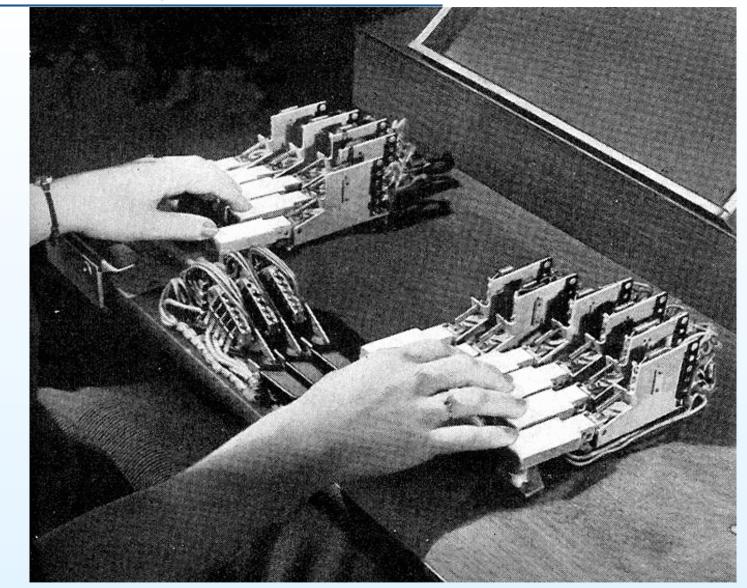
Voder Demos

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis


Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

The Voder (Homer Dudley — 1939 Worlds Fair)

http://davidszondy.com/future/robot/voder.htm

>

Voder

Telharmonium

• Voder Keyboard

• Voder Schematic

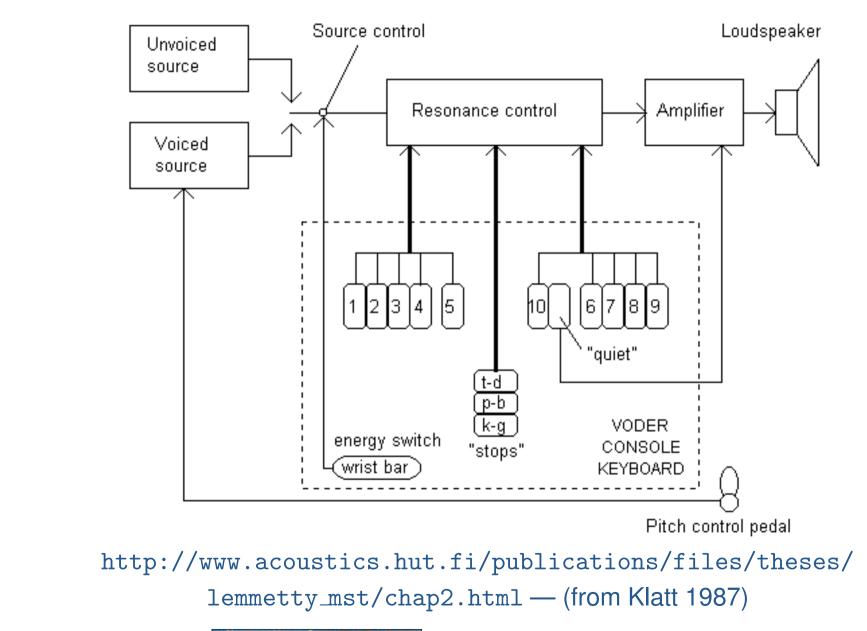
• Voder Demos

Channel Vocoder

Phase Vocoder

FM Synthesis

DDSP


Future

Additive Synthesis

Sinusoidal Modeling

Spectrogram Synth

Voder Keyboard

Telharmonium

Voder

- Voder Keyboard
- Voder Schematic
- Voder Demos

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

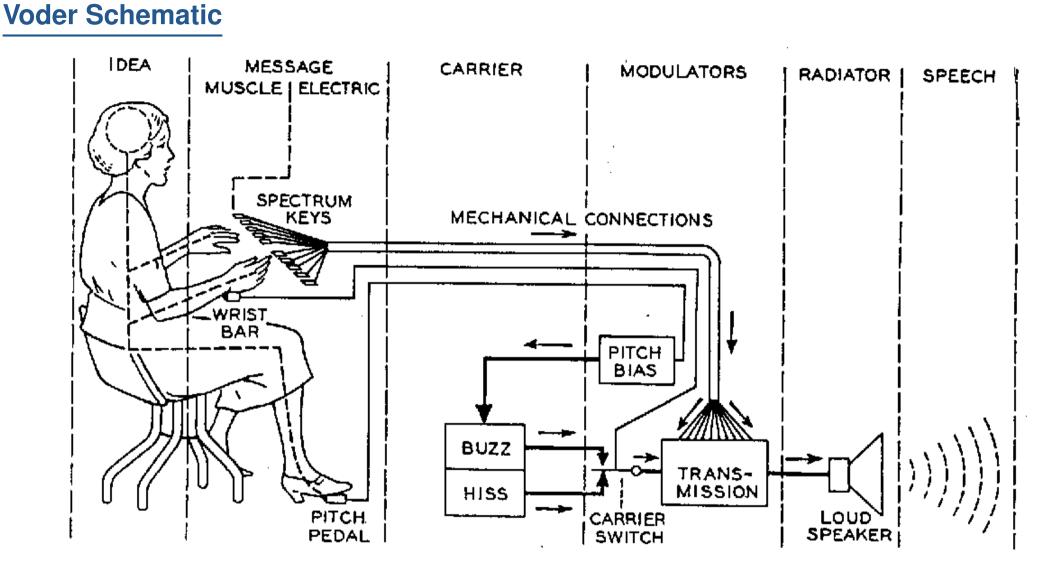


Fig. 8-Schematic circuit of the voder.

http://ptolemy.eecs.berkeley.edu/~eal/audio/voder.html

Telharmonium

Voder

- Voder Keyboard
- Voder Schematic
- Voder Demos

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

Voder Demos

- Voder Demo (Audio and Video)
- More Voder Demos Audio Only [Demos Begin]

OutlineTelharmoniumVoderChannel VocoderPhase VocoderAdditive SynthesisFM SynthesisSinusoidal ModelingSpectrogram SynthDDSPFuture

The Channel Vocoder (1928) ("Voice Coder")

Telharmonium

Voder

Channel Vocoder

• Vocoder Examples

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

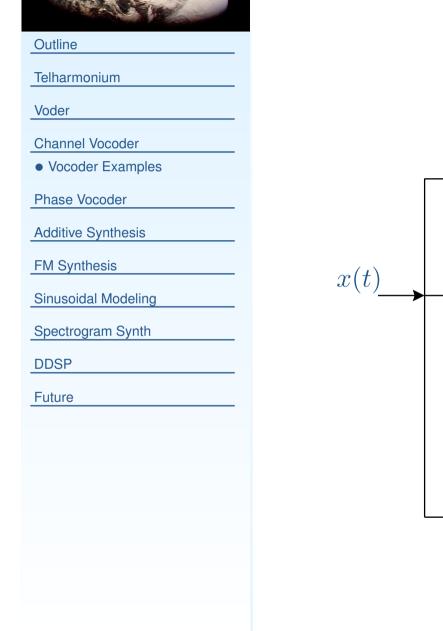
Vocoder Analysis & Resynthesis (Dudley 1928)

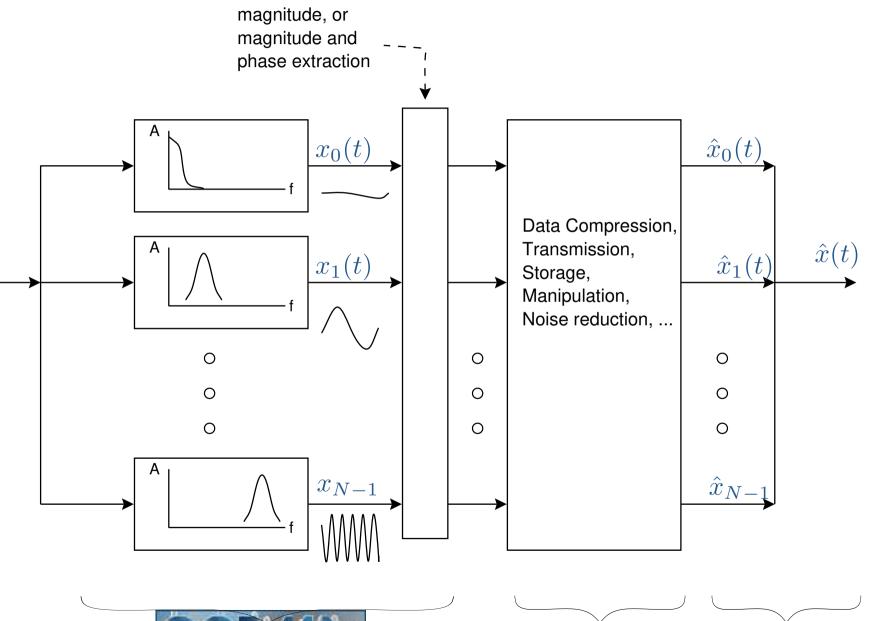
Analysis:

- Ten analog bandpass filters between 250 and 3000 Hz: Bandpass \rightarrow rectifier \rightarrow lowpass filter \rightarrow *amplitude envelope*
- Voiced/Unvoiced decision made
- Fundamental frequency F_0 measured for voiced case

Synthesis:

- Ten matching bandpass filters driven by a
 - \circ "buzz source" (voiced), or
 - "hiss source" (unvoiced)
- Bands were scaled by amplitude envelopes and summed
- Said to have an "unpleasant electrical accent"


Related Speech Models:


- The Vocoder is an early *source-filter* model for speech
- Linear Predictive Coding (LPC) of speech is another

Vocoder Filter Bank Analysis/Resynthesis

Julius Smith

Channel Vocoder Sound Examples

- Outline
- Telharmonium
- Voder
- Channel Vocoder
- Vocoder Examples
- Phase Vocoder
- Additive Synthesis
- FM Synthesis
- Sinusoidal Modeling
- Spectrogram Synth
- DDSP
- Future

• 10 channels, sine carriers

Original

- 10 channels, narrowband-noise carriers
- 26 channels, sine carriers
- 26 channels, narrowband-noise carriers
- 26 channels, narrowband-noise carriers, channels reversed
- **Phase Vocoder:** Identity system in absence of modifications
- The FFT Phase Vocoder next transitioned to the Short-Time Fourier Transform (STFT) (Allen and Rabiner 1977)

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

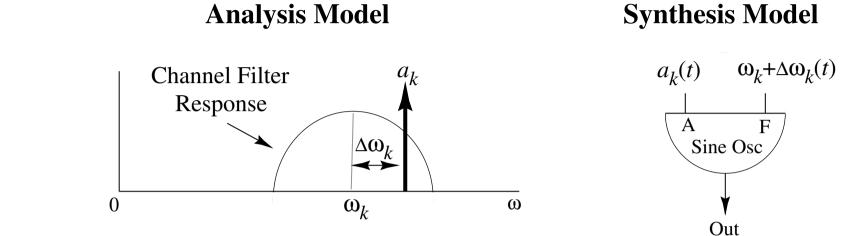
Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP


Future

The Phase Vocoder (1966)

Phase Vocoder Analysis for Additive Synthesis (1976)

Channel Vocoder

Phase Vocoder

Telharmonium

Outline

Voder

Additive Synthesis

- FM Synthesis
- Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

- Early "channel vocoder" implementations (hardware) only measured amplitude $a_k(t)$ (Dudley 1939)
- The "phase vocoder" (Flanagan and Golden 1966) added phase tracking in each channel
- Portnoff (1976) developed the FFT phase vocoder, replacing the heterodyne comb in computer-music additive-synthesis analysis (James A. Moorer 1975)
- Inverse FFT synthesis (Rodet and Depalle 1992) gave faster sinusoidal oscillator banks

Voder

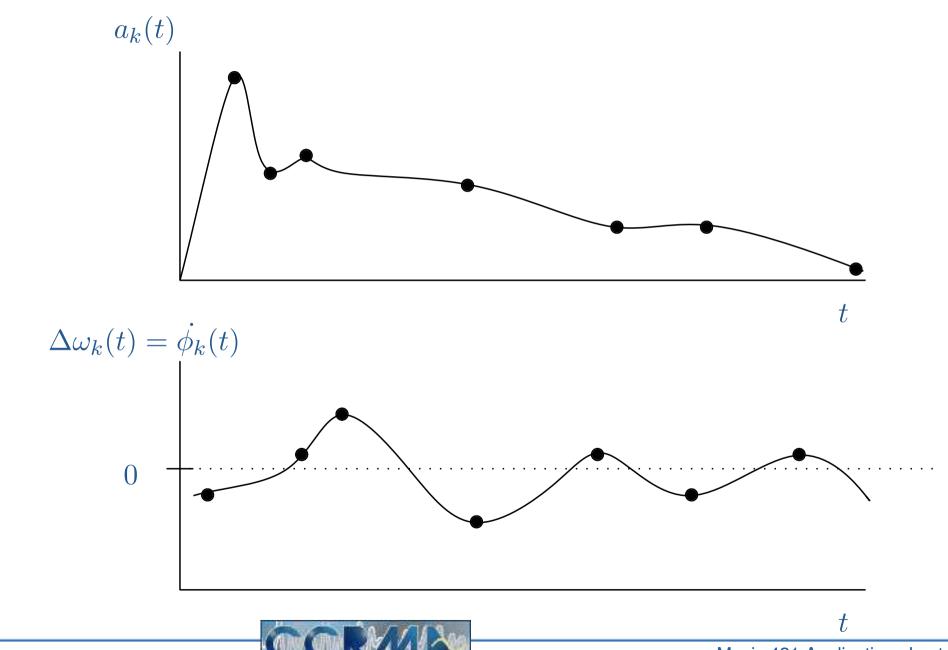
Telharmonium

Channel Vocoder

Phase Vocoder

FM Synthesis

DDSP


Future

Additive Synthesis

Sinusoidal Modeling

Spectrogram Synth

Amplitude and Frequency Envelopes

Julius Smith

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

Additive Synthesis (1969)

Classic Additive-Synthesis Analysis (Heterodyne Comb)

D F TINE CCRMA Tech. Reports 1 & 2

'S IANM'

" reports — available online)

Sinusoidal Modeling

Spectrogram Synth

DDSP

Outline

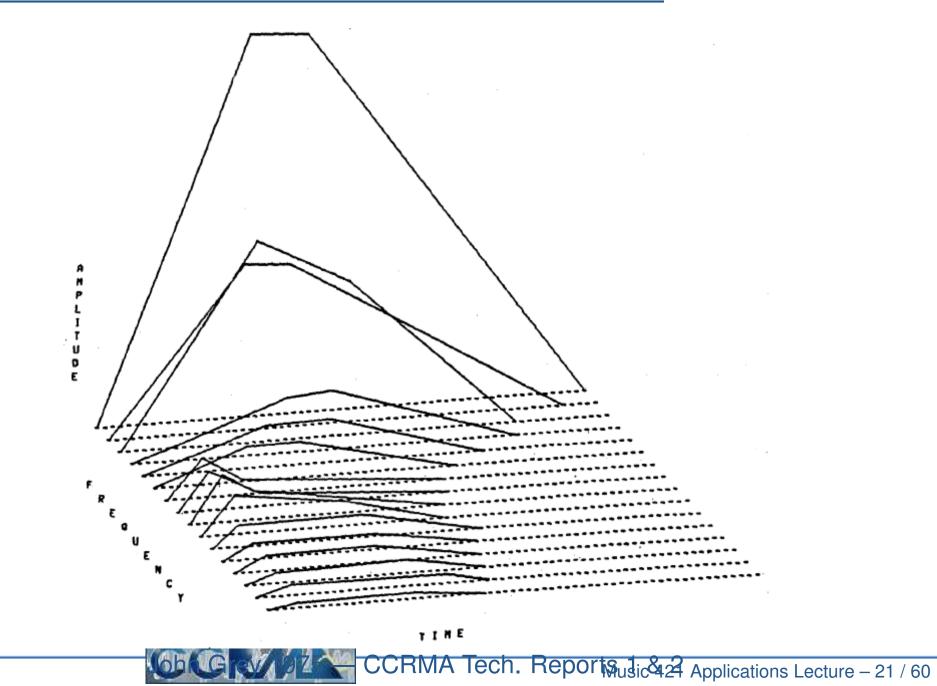
Voder

Telharmonium

Channel Vocoder

Phase Vocoder

FM Synthesis


Additive Synthesis

Additive Analysis
Additive Synthesis

Future

Classic Additive-Synthesis (Sinusoidal Oscillator Envelopes)

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

Additive Analysis

• Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

Julius Smith

(CCDMA "STANIA" reports available opling)

Telharmonium

Voder

Channel Vocoder

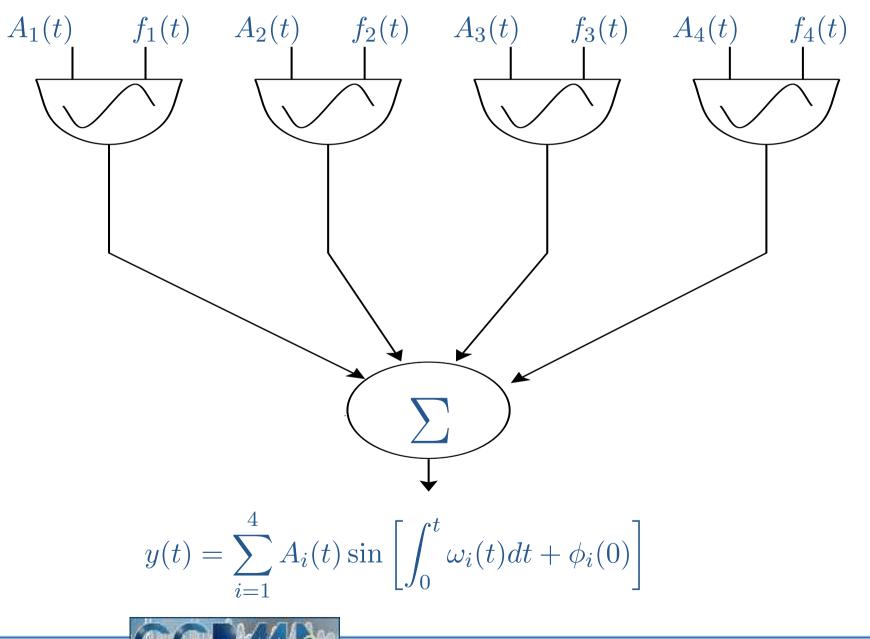
Phase Vocoder

Additive Synthesis

Additive Analysis

• Additive Synthesis

FM Synthesis


Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

Classic Additive Synthesis Diagram (Computer Music, 1960s)

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

Additive Analysis

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

Classic Additive-Synthesis Examples

- Bb Clarinet
- Eb Clarinet
- Oboe
- Bassoon
- Tenor Saxophone
- Trumpet
- English Horn
- French Horn
- Flute
- All of the above
- Independently synthesized set

(Synthesized from original John Grey data)

OutlineTelharmoniumVoderChannel VocoderPhase VocoderAdditive SynthesisFM SynthesisSinusoidal ModelingSpectrogram SynthDDSPFuture

Frequency Modulation Synthesis (1973)

Frequency Modulation (FM) Synthesis

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

• FM Synthesis

- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

FM synthesis is normally used as a *spectral modeling* technique

- Discovered and developed (1970s) by John M. Chowning (CCRMA Founding Director)
- Key paper: JAES 1973 (vol. 21, no. 7)
- Commercialized by Yamaha Corporation:
 - DX-7 synthesizer (1983)
 - OPL chipset (SoundBlaster PC sound card)
 - Cell phone ring tones
- On the physical modeling front, synthesis of vibrating-string waveforms using *finite differences* started around this time: Hiller & Ruiz, JAES 1971 (vol. 19, no. 6)

FM Formula

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

- FM Synthesis
- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

 $x(t) = A_c \sin[\omega_c t + \phi_c + A_m \sin(\omega_m t + \phi_m)]$

where

 (A_c, ω_c, ϕ_c) specify the *carrier* sinusoid (A_m, ω_m, ϕ_m) specify the *modulator* sinusoid

Can also be called phase modulation

Telharmonium

Voder

Channel Vocoder

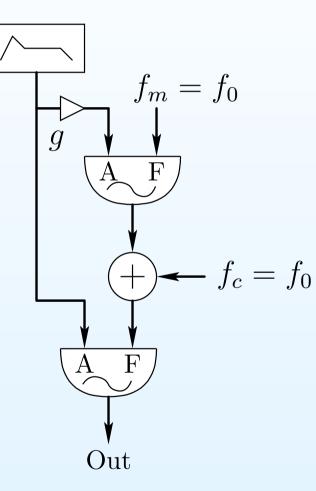
Phase Vocoder

Additive Synthesis

FM Synthesis

- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice

Sinusoidal Modeling


Spectrogram Synth

DDSP

Future

Simple FM "Brass" Patch (Chowning 1970–)

Jean-Claude Risset observation (1964–1969): Brass bandwidth \propto amplitude

\sim				
()		† 1	n	0
0	'u	ш		E
_	_			_

Telharmonium

Voder

Channel Vocoder

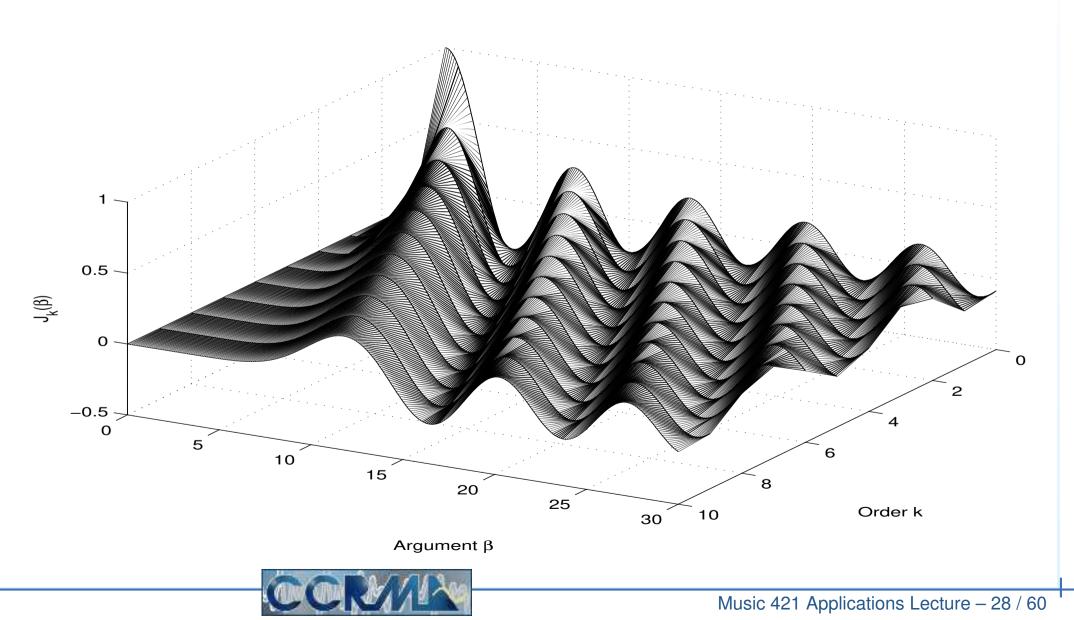
Phase Vocoder

Additive Synthesis

FM Synthesis

- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice

Sinusoidal Modeling


Spectrogram Synth

DDSP

Future

FM Harmonic Amplitudes (Bessel Function of First Kind)

Harmonic number k, FM index β :

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

- FM Synthesis
- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

Frequency Modulation (FM) Examples

All examples by John Chowning unless otherwise noted:

- FM brass synthesis
 - Low Brass example
 - Dexter Morril's FM Trumpet
- FM singing voice (1978)
 Each formant synthesized using an FM operator pair (two sinusoidal oscillators)
 - Chorus
 - Voices
 - Basso Profundo
- Other early FM synthesis
 - Clicks and Drums
 - Big Bell
 - String Canon

FM Voice

Outline

Telharmonium

Voder

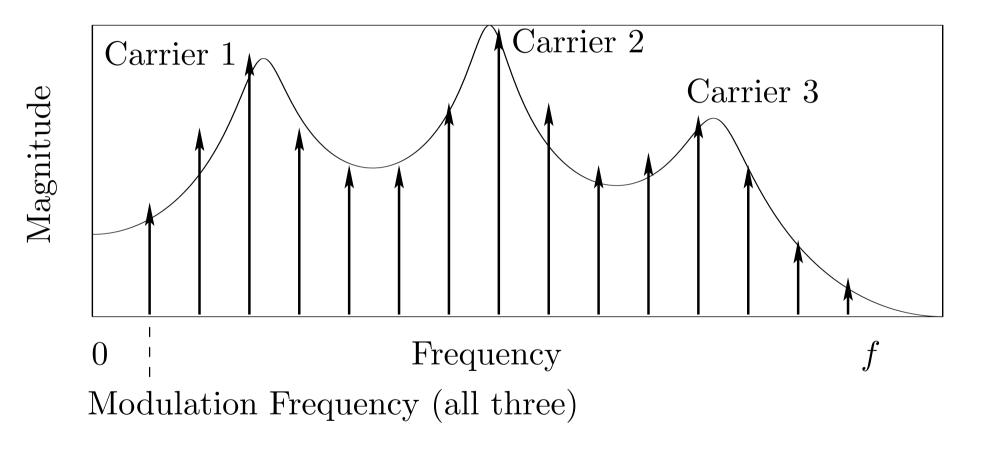
Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice

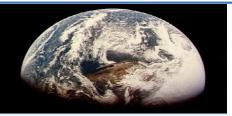

Sinusoidal Modeling

Spectrogram Synth

DDSP

Future

FM voice synthesis can be viewed as *compressed modeling of spectral formants*



OutlineTelharmoniumVoderChannel VocoderPhase VocoderAdditive SynthesisFM SynthesisSinusoidal ModelingSpectrogram SynthDDSPFuture

Sinusoidal Modeling Synthesis (1988)

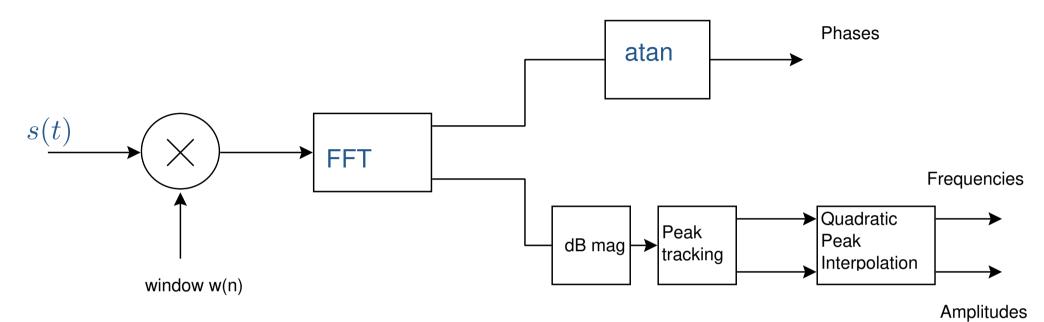
Ο	4		-	~
()		ш	r 1	е
\sim				0

Telharmonium

Voder

Channel	Vocoder
onumer	10000001

Phase Vocoder


Additive Synthesis

FM Synthesis

- Sinusoidal Modeling
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Tracking Spectral Peaks in the Short-Time Fourier Transform

- STFT peak tracking at CCRMA: mid-1980s (PARSHL program)
- Motivated by vocoder analysis of piano tones
- Influences: STFT (Allen and Rabiner 1977), ADEC (1977), MAPLE (1979)
- Independently developed for speech coding by McAulay and Quatieri at Lincoln Labs (1985)

Telharmonium

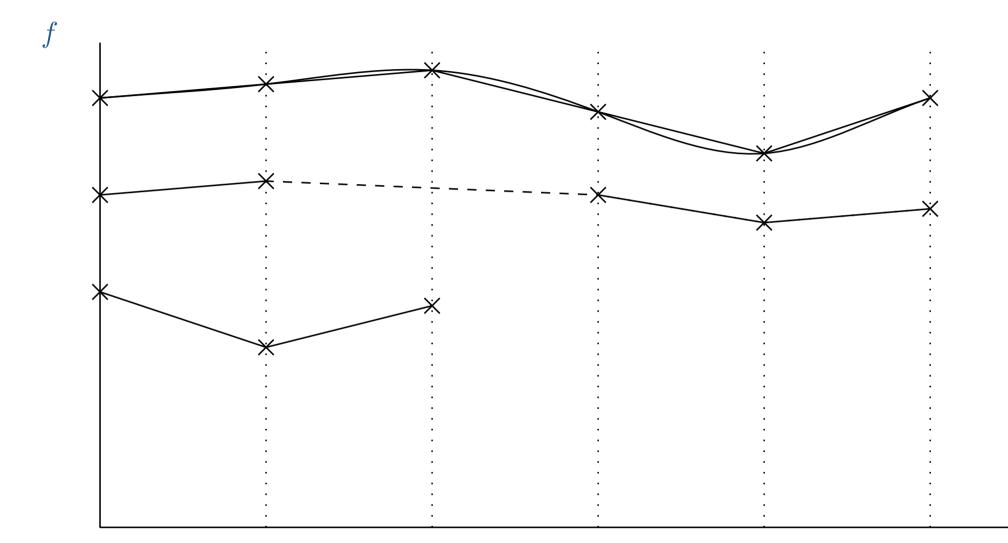
Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis


Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Example Spectral Trajectories

CCRAL

Voder

Telharmonium

Channel Vocoder

Phase Vocoder

FM Synthesis

Additive Synthesis

Sinusoidal Modeling

Sinusoidal Modeling
Spectral Trajectories

Sines + NoiseS+N Examples

• S+N FX

• S+N XSynth

• S+N+T TSM

Sines + Transients

• S + N + Transients

S+N+T Freq Map
S+N+T Windows

HF Noise Modeling
HF Noise Band
S+N+T Examples

Parametric Spectral Modeling

dugie s Smith

Spectrogram Synth

Sines + Noise Sound Examples

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Xavier Serra thesis demos (Sines + Noise signal modeling)

- Piano
 - Original
 - Sinusoids alone
 - Residual after sinusoids removed
 - Sines + noise model
- Voice
 - Original
 - Sinusoids
 - Residual
 - Synthesis

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Piano Effects

• Pitch downshift one octave

Musical Effects with Sines+Noise Models

- Pitch flattened
- Varying partial stretching
- Voice Effects
 - Frequency-scale by 0.6
 - Frequency-scale by 0.4 and stretch partials
 - Variable time-scaling, deterministic to stochastic

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

- Sinusoidal Modeling
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

မျှမျှမှုန်မှာs Smith

Cross-Synthesis with Sines+Noise Models

- Voice "modulator"
- Creaking ship's mast "carrier"
- Voice-modulated creaking mast
- Same with modified spectral envelopes

Sines + Transients Sound Examples

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

In this simple technique, the sinusoidal sum is phase-matched at the cross-over point only (with no cross-fade).

- Marimba
 - Original
 - Sinusoidal model
 - Original attack, followed by sinusoidal model
- Piano
 - Original
 - Sinusoidal model
 - Original attack, followed by sinusoidal model

\sim			
0	1.11	lir	\mathbf{n}
\mathbf{U}	սւ		IE
_			

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Multiresolution Sines + Noise + Transients

Why Model Transients Separately?

- Sinusoids efficiently model spectral *peaks* over time
- Filtered noise efficiently models spectral residual vs. t
- Neither is good for *abrupt transients* in the waveform
- Phase-matched oscillators are expensive
- More efficient to switch to a *transient model* during transients
- Need sinusoidal *phase matching* at the switching times

Transient models:

- Original waveform slice (1988)
- Wavelet expansion (Ali 1996)
- MPEG-2 AAC (with short window) (Levine 1998)
- Frequency-domain LPC
 - (time-domain amplitude envelope) (Verma 2000)

Time Scale Modification of Sines + Noise + Transients Models

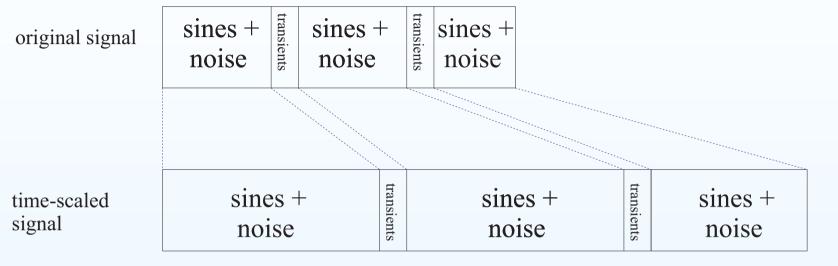
Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder


Additive Synthesis

FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Time-Scale Modification (TSM) becomes *well defined*:

- Transients are *translated* in time
- Sinusoidal envelopes are *scaled* in time
- Noise-filter envelopes also *scaled* in time
- Dual of TSM is *frequency scaling*

time

Sines + Noise + Transients Time-Frequency Map

Outline

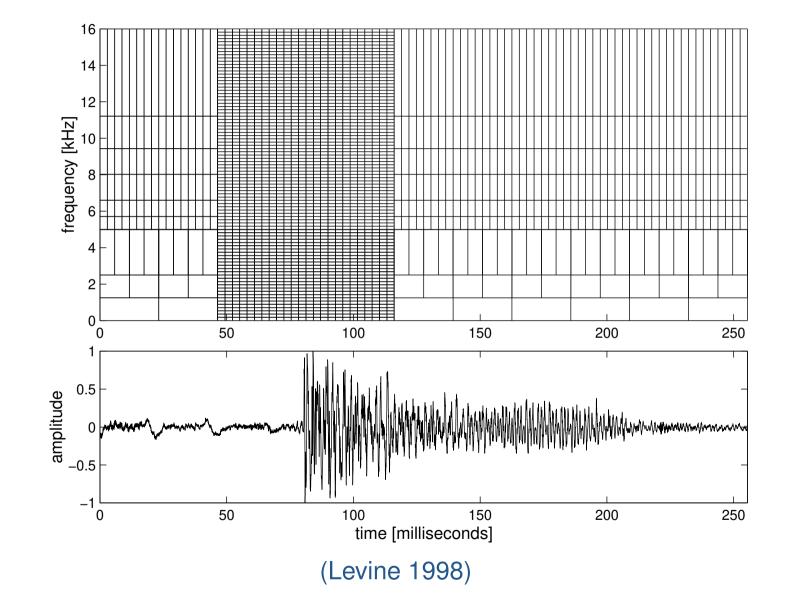
Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis


FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

duip s Smith

Corresponding Analysis Windows

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

• Sinusoidal Modeling

• Spectral Trajectories

• Sines + Noise

• S+N Examples

• S+N FX

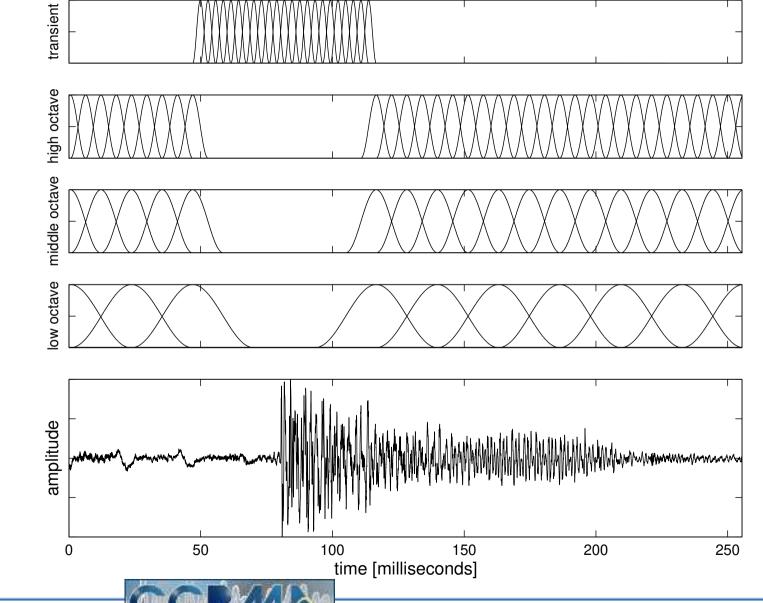
• S+N XSynth

• Sines + Transients

• S + N + Transients

• S+N+T TSM

• S+N+T Freq Map


• S+N+T Windows

HF Noise Modeling

• HF Noise Band

• S+N+T Examples

Spectrogram Synth

႕မျွန်မှာs Smith

Music 421 Applications Lecture – 42 / 60

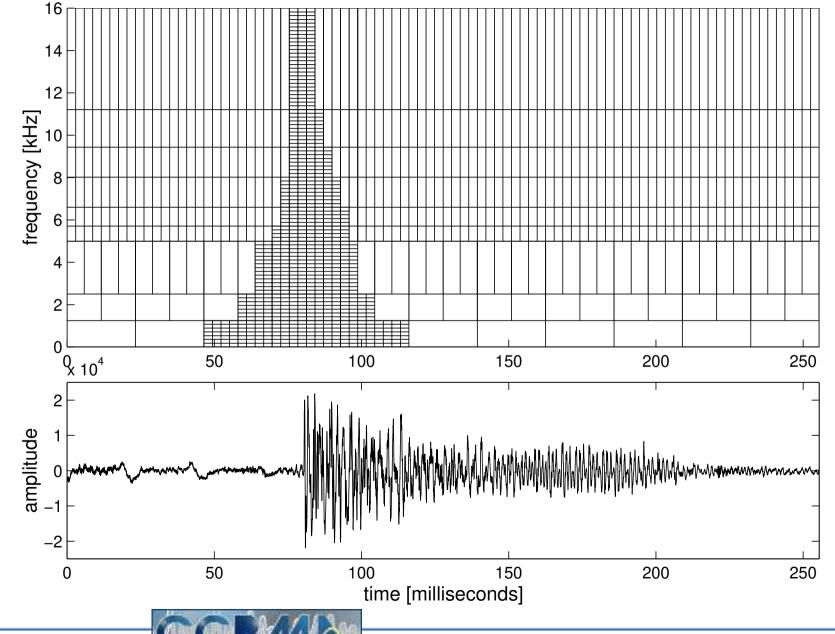
Dutline
Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis


FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Quasi-Constant-Q (Wavelet) Time-Frequency Map

မျှမ်မှုs Smith

Voder

Telharmonium

Channel Vocoder

Phase Vocoder

FM Synthesis

Additive Synthesis

Sinusoidal Modeling

Sinusoidal Modeling
Spectral Trajectories

• Sines + Noise

• S+N Examples

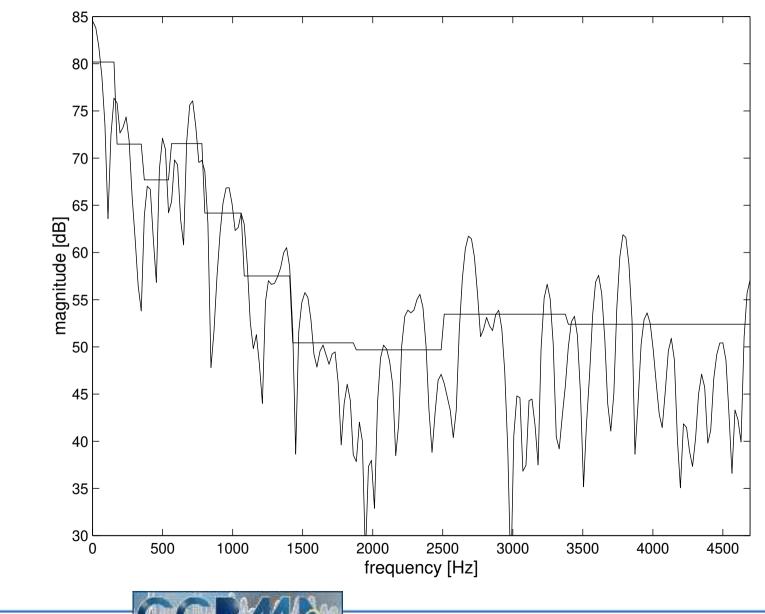
• S+N XSynth

• S+N+T TSM

Sines + Transients
S + N + Transients

• S+N+T Freq Map

S+N+T WindowsHF Noise Modeling


• HF Noise Band

• S+N+T Examples

Spectrogram Synth

• S+N FX

Bark-Band Noise Modeling (Levine 1998)

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

• Sinusoidal Modeling

• Spectral Trajectories

• Sines + Noise

• S+N Examples

• S+N FX

• S+N XSynth

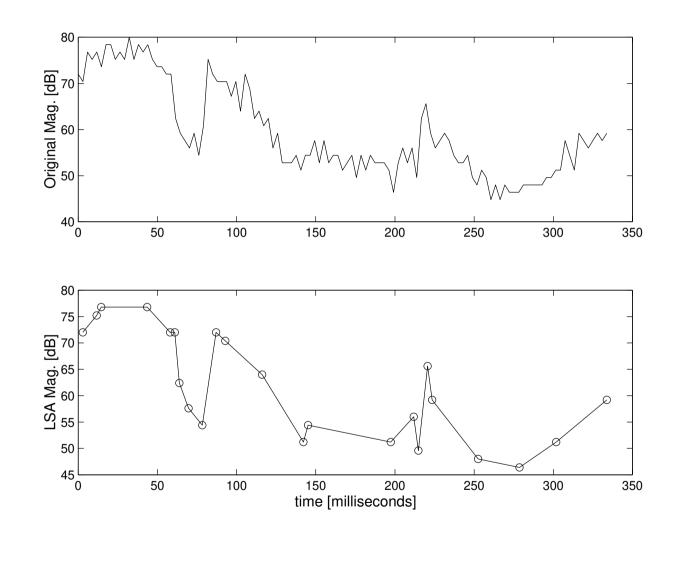
• Sines + Transients

• S + N + Transients

• S+N+T TSM

• S+N+T Freq Map

• S+N+T Windows


• HF Noise Modeling

• HF Noise Band

• S+N+T Examples

Spectrogram Synth

Amplitude Envelope for One Noise Band

Sines + Noise + Transients Sound Examples

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

Scott Levine Thesis Demos (Sines + Noise + Transients at 32 kbps)
(http://ccrma.stanford.edu/~scottl/thesis.html)

"It Takes Two" by Rob Base & DJ E-Z Rock

- Original
- MPEG-AAC at 32 kbps
- Sines+transients+noise at 32 kbps
- Multiresolution sinusoids
- Residual Bark-band noise
- Transform-coded transients (AAC)
- Bark-band noise above 5 kHz

\cap	ut	łi	n	6
\sim	u			-

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples

Spectrogram Synth

dukus Smith

Time Scale Modification using Sines + Noise + Transients

Scott Levine Thesis Demos (Sines + Noise + Transients at 32 kbps)
(http://ccrma.stanford.edu/~scottl/thesis.html)

Time-Scale Modification (pitch unchanged)

• S+N+T time-scale factors [2.0, 1.6, 1.2, 1.0, 0.8, 0.6, 0.5]

S+N+T Pitch Shifting (timing unchanged)

• Pitch-scale factors [0.89, 0.94, 1.00, 1.06, 1.12]

OutlineTelharmoniumVoderChannel VocoderPhase VocoderAdditive SynthesisFM SynthesisSinusoidal ModelingSpectrogram SynthDDSP

Future

Spectrogram Synthesis (2017)

Voder

Telharmonium

Channel Vocoder

Phase Vocoder

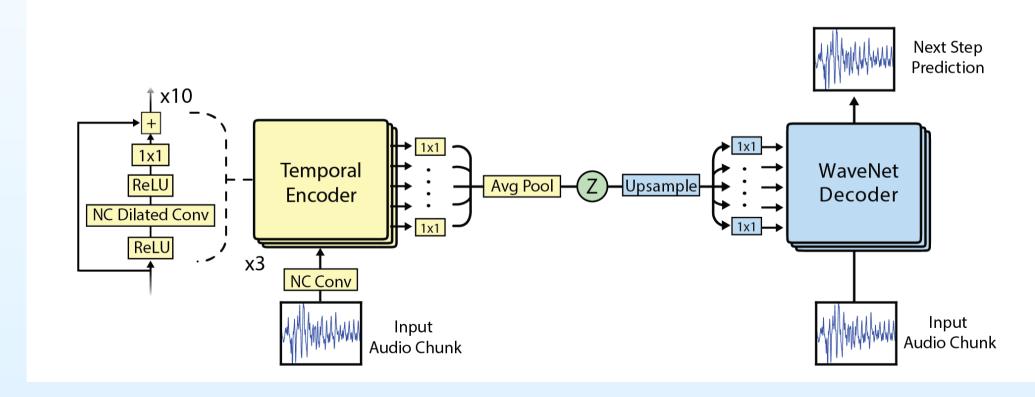
FM Synthesis

• NSynth

DDSP

Future

Additive Synthesis


Sinusoidal Modeling

Spectrogram Synth

• Style Transfer

NSynth: Neural Audio Synthesis (2017)

- NSynth uses deep neural networks to generate sounds at the level of individual samples
- Audio Morphing in "neural latent space"
- Google Magenta project: https://magenta.tensorflow.org/nsynth

Neural Style Transfer for Audio Spectrograms (2017)

Outline

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis

Sinusoidal Modeling

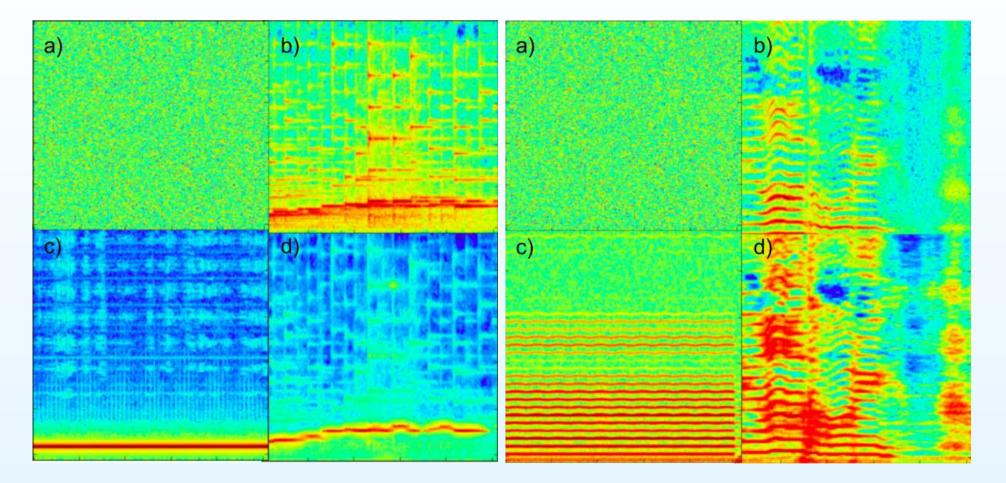
Spectrogram Synth

NSynth

• Style Transfer

DDSP

Future


Learned Spectrogram $X(\omega, t)$ minimizes a *sum* of *loss terms:*

- content loss = L2 distance between current activation filters and those of "content" spectrogram
- style loss = normalized L2 distance between Gram matrix of filter activations of selected convolutional layers chosen as corresponding to "style"
- differences in temporal and frequency energy envelopes
 - NIPS paper by Verma and Smith (2017): https://arxiv.org/abs/1801.01589
- Original paper for images (2015): Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576(2015): https://arxiv.org/abs/1508.06576
- Nice intro (2016):

http://yeephycho.github.io/2016/09/14/neural-style/

Spectrogram Style Transfer, Continued

- Left: Tuning-fork "style" imposed on a harp sample: Adaptive filtering down to fundamental observed
- Right: Violin "style" imposed on singing voice: Bandwidth extension observed

Telharmonium

Voder

Channel Vocoder

Phase Vocoder

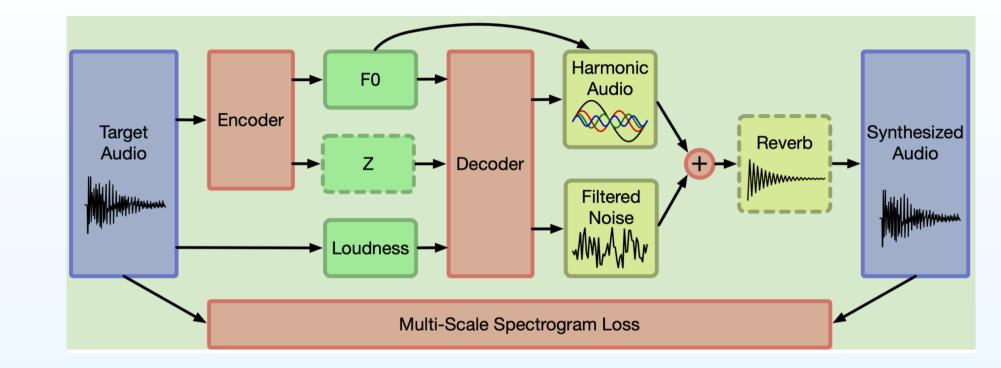
Additive Synthesis

FM Synthesis

Sinusoidal Modeling

Spectrogram Synth

DDSP


Future

Differentiable DSP (2019)

Differentiable DSP

- Jesse Engel et al. at Google Magenta Group
- Neural network analysis/synthesis for *differentiable signal models*
- Additive Synthesis example:
 - Loudness normalized by A-weighted log-power spectrum
 - Fundamental Frequency F0 from pretrained CREPE pitch detector
 - Timbre vector Z from *autoencoder*
 - Timbre vector decodes to sinusoidal amplitude trajectories

Phase Vocoder

Voder

Outline

Telharmonium

Additive Synthesis

Channel Vocoder

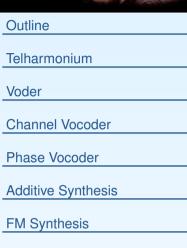

FM Synthesis

Sinusoidal Modeling

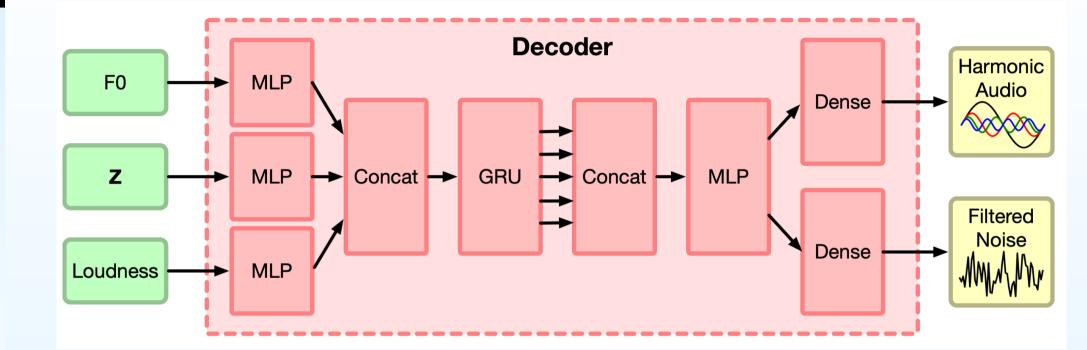
Spectrogram Synth

DDSP

- DDSP
- DDSP Encoder
- DDSP Decoder
- DDSP MLP


- DDSP
- DDSP Encoder
- DDSP Decoder
- DDSP MLP

- Loudness and F0 of Target Audio have been normalized away
- MFCC = Mel Frequency Cepstral Coefficients
- GRU = Gated Recurrent Unit (Cho 2014) similar to LSTM = Long/Short-Term Memory
- Dense = Fully Connected Linear Deep Neural Net (512-to-16 compression step)
- F0 and Loudness normalization leave only *timbre* to be encoded



DDSP Decoder

- Sinusoidal Modeling
- Spectrogram Synth
- DDSP
- DDSP
- DDSP Encoder
- DDSP Decoder
- DDSP MLP

- MLP = Multi-Layer Perceptron (classical neural network)
- 250 time steps (frames) included
- Output is additive synthesis parameters (sines + filtered noise)

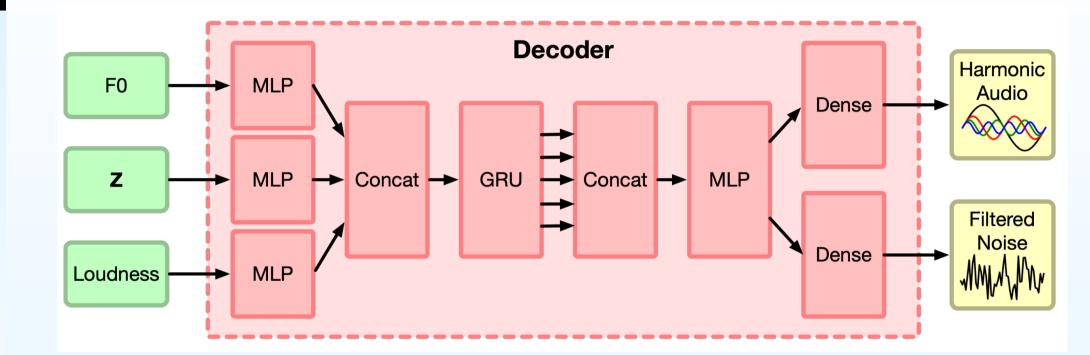
DDSP MLP

(Dutline
_	Telharmonium
١	/oder
(Channel Vocoder

Phase Vocoder

Additive Synthesis

FM Synthesis


Sinusoidal Modeling

Spectrogram Synth

DDSP

- DDSP
- DDSP Encoder
- DDSP Decoder

• DDSP MLP

- RELU = Rectified Linear Unit (half-wave rectifier)
- 3 layers and 512 Units
- Entire model is differentiable end to end, so back-propagation can optimize everything together (ADAM optimizer used)
- Optimization is generally Stochastic Gradient Descent

OutlineTelharmoniumVoderChannel VocoderPhase VocoderAdditive SynthesisFM SynthesisSinusoidal ModelingSpectrogram SynthDDSPFuture

Summary and Future Prospects

Spectral Modeling History Highlights

- Bernoulli's modal sums (1733)
- Fourier's initial theorem (1822)
- Telharmonium (1906)
- Hammond organ (1930s)
- Channel Vocoder (1939)
- Phase Vocoder (1966)
- "Additive Synthesis" (1969)
- FFT Phase Vocoder (1976)
- Sinusoidal Modeling (1977,1979,1985)
- Sines+Noise (1989)
- Sines+Transients (1989)
- TF Reassignment (1995)
- Sines+Noise+Transients (1998)

Perceptual audio coding:

- Princen-Bradley filterbank (1986)
- K. Brandenburg thesis (1989)
- Auditory masking usage
- Dolby AC2
- Musicam
- ASPEC
- MPEG-I,II,IV (S+N+T "parametric sounds")

Neural Models (Incomplete!):

- WaveNet (2016)
- SampleRNN (2017) ...

Neural Audio Generation in Recent Years

- WaveNet (2016) [expensive but amazing quality]
- SampleRNN (2017)
 - Check out https://dadabots.com/
 - e.g., "lofi classic metal ai radio":
 - https://www.youtube.com/watch?v=J1NV6CUJI18
- DDSP (2020)
- JukeBox (2020) [expensive inspired many offshoots]
- SoundStream (2021) [Multilevel VQ excellent elementary background]
- PerceiverAR (2022) [SoundStream tokens \rightarrow Perceiver]
- AudioLM (2022) [parallel *semantic* and *acoustic* token sequences]
- Riffusion (2022) [diffusion encoding of spectrograms]
- MusicLM (2023) [based on SoundStream, AudioLM]
- Numerous follow-on papers

(Track citations in Google Scholar)

Future Prospects

Observations:

- Sinusoidal modeling of sound is "Unreasonably Effective"
- Basic "auditory masking" discards \approx 90% information
- Interesting neuroscience observation:
 - "... most neurons in the primary auditory cortex A1 are silent most of the time ..."

(from "Sparse Time-Frequency Representations", Gardner and Magnesco, PNAS:103(16), April 2006)

- In addition to evolving our *brains*, we evolved our *inner ear* (real-time spectrum analysis hardware)
 - Efficient audio modeling focuses on the spectral peak behavior
 - We evolved *neural processing* of a *fixed time-frequency analysis*
 - Neural nets can identify, track, and predict "auditory objects"
 - MIT Researchers have replicated auditory cortex activity in neural nets

