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Abstract

Three different approaches to the digital synthesis of si-
nusoids are examined as to their application in VLSI. Re-
cursive techniques are favored due to their low memory
requirements and relatively small computational cost. A
second-order (resonator) method is contrasted with a cou-
pled first-order form in regard to bit precision, frequency
resolution, amplitude stability, and distortion. The cou-
pled form is found to be more reliable, especially for short
word lengths, and is also found to have more promise in
being extensible to realize the frequency modulation syn-
thesis technique.

1. INTRODUCTION

Methods for generating sine waves can be grouped into
three categories: (a) computation of sin(w) by means of se-
ries expansion, where w can be any arbitrary angle, (b) ta-
ble lookup of the sine function, interpreting the angle w
as a table address and quantizing it according to table
length, and (c) recursive techniques, which cannot com-
pute the sine of an arbitrary angle, but rather compute se-
quences of samples based on the values of state variables.
Methods belonging to category (a) are generally employed
in subroutine packages for high-level computer languages,
but are usually considered too time- and resource-intensive
for musical synthesis purposes. Almost all sine genera-
tion algorithms employed for music, whether implemented
in hardware or software, make use of the table lookup
method. Resulting sinewaves vary in frequency resolution,
signal-to-quantization-noise-ratio, and distortion depend-
ing on the length and width of the table, and whether or
not interpolation is used to smooth the output.

If sine generation is implemented in VLSI, the table lookup
method is probably inappropriate, since memory is usually
not available or very limited. Method (a) is too expen-
sive unless a very gross approximation to the sine function
(such as a cubic) is sufficient; for instance, such an approx-
imation might be satisfactory for FM synthesis. In general,
however, recursive techniques must be used. One such
technique makes use of a digital resonator (2nd-order filter)
with the radius of the poles set to 1.0. With careful control
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over the filter zeros, the initial conditions, and computa-
tion precision, this technique yields stable and accurate
sinewaves, and has been used with success by Wawrzynek
and Mead (1985) at Caltech.

Another recursive technique uses a coupled first-order fil-
ter [Rabiner and Gold (1975)]; rotation of a vector by w is
accomplished by multiplying the vector by an appropriate
matrix. If the traditional rotation matrix is used, the am-
plitude of the resulting sinewave tends to grow or decay
exponentially, due to quantization errors in representing
the cos(w) and sin(w) coefficients. However, a different
matrix can be used that guarantees stability. This alter-
nate method will be referred to as the modified coupled
first-order form, and is treated in more detail in the fol-
lowing section. After this discussion, the modified coupled
form and the digital resonator are compared in regard to
their relative merits as sinusoidal generators in VLSI.

2. OVERVIEW OF COUPLED FORM

The coupled first-order form can be expressed as a pair of
equations:

z(n + 1) = cos(w) - z(n) — sin(w) - y(n)
y(n + 1) = sin(w) - 2(n) + cos(s)  y(n),
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It can be shown that this is equivalent to

(2ot ] = [t ~smped]- [o09)]

and thus with the initial condition of {z(0), y(0)} =
{1, 0}, we see that z(n + 1) = cos(nw) and y(n +
1) = sin(nw). There is numerical instability in this
method, arising from inaccurate representation in finite

(1)
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word-length machines of cos(w) and sin(w). More specif-
ically, if ~ cos(w) and ~ sin(w) are used to notate these
slight inaccurate representations, the determinant of the
matrix, or ~cos?(w) + ~sin*(w), is not necessarily equal
to 1; thus, in general, equation (1) results in waveforms
that either decay rapidly into silence or grow exponentially
in amplitude, causing nonlinear overflow oscillations.

2.1 The Modified Coupled Form

It is possible to use a slightly different set of coefficients to
produce absolutely stable sinusoidal waveforms:

z(n+1) = z(n) — - y(n)
y(n+1)=€e-z(n+1) +y(n),

which in matrix form becomes

zin+ 1)} _ |1 - " .1 z(0 (2)
yn+1)| " |e 1-¢£2 y(0
A more compact way of expressing (2) is as:

Xn = G" - %o,

where X represents an output vector at sample time k and
G is the modified rotation matrix. It is evident from (2)
that the determinant of the matrix is equal to 1 regardless
of the fixed-precision value given to ¢; hence, z(n) and
y(n) should be numerically stable. However, we need to
resort to linear systems analysis to verify this, and also to
determine the forms of z(n) and y(n) and how they relate
to each other.

We can start by finding the eigenvalues (natural, or res-
onating, frequencies) of G. This is done by solving

A-1

E —
- A-1+¢? =0

det(MI - G) =
which yields

2
A=1- %:tjevl—e’/4,

where 7 is used to represent «/—1. This formula for A is
valid for |e| < 2. Since the squared magnitude of A equals
1, we can represent A as

A = et7% = cos(w) % g sin(w),

where cos(w) = 1 — €2/2 and sin(w) = ey/1 — €2/4. For
convenience, we shall choose A; = ¢/¥ and A, = e 7%, It
can also be shown that € and the natural frequency w are
related by

w w
in - = and 0s — = /1 —¢€2/4
sin o cos - /

€
2

and that an ¢ ranging between +2 corresponds to an w
ranging between *.
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In order to represent G® in terms of w, we seek to ex-
press G in terms of A, where A = [’\ol Ao,]' Since the
eigenvalues are distinct (i.e., A\; # A;), there is a trans-
formation matrix T such that G = TAT ~!; furthermore,
G® = TAT! (since T™'T = I), and A® = %} ] =

[’j;u e,,?_, ]. A T that satisfies these equations is

1 1
T= [e—iw, eiw] )

where ¢/ = /2 + j4/1 —¢2/4. (Note that the right-
hand side of this equation does indeed have a magnitude
of 1.) Further investigation shows that ¢ = (7 — w)/2;
thus, cos(p) = sin(w/2) = €/2 and sin(p) = cos(w/2) =
v/1— €2/4. Using this T matrix, we have

G® = TAPT !

_ 1 1 1 e 0 L |
" 2sinfp) (¢ €0 0 e ] e 1

' [si_ngnu+<p) - sinfra) } (3)

" sin(p) |si nw) — sin(nw — )

s

2.2 Initial Conditions

From (3), it is more apparent how to set initial conditions
(the vector xo) to obtain our desired sinusoids. In partic-
ular, setting {z(0), y(0)} = {1, cos(p)} = {1, &/2} yields
{a(n), y(n)} = {cos(nw), cos(rw~ )} and {2(0), ¥(0)} =
{0, —sin(p)} yields {z(n), y(n)} = {sin(nw), sin(nw —
o)}

3. COMPARISON WITH DIGITAL RESONATOR

A digital resonator is a two-pole recursive filter that can
be expressed as

y(n) = 2Rcos(w) - y(n — 1) — R’y(n - 2) + z(n) (4)

If R = 1, the resonator is undamped, and the filter re-
sponse y(n) to an impulsive input z(n) is a sinusoid with
constant amplitude. The phase of the sinusoid can be con-
trolled by using an input sequence different from a sin-
gle impulse, or by introducing feed-forward components
into the filter. That is, a pure sine wave is had if z(n)
in equation (4) is replaced by Rsin(w) - z(n — 1), and
a pure cosine wave is obuained by replacing z(n) with
z(n) — R cos(w) - z(n — 1). Without the feedforward terms,
the impulse z(0) must be prescaled by sin(w) to guarantee
an output sinusoid bounded by £1.

It is important to realize that both the digital resonator
and the modified coupled form have coefficients that can
range between +2. TFor the resonator, the coefficient
in question is 2cos(w) (R is 1); for the coupled form,
it is €. This means that to implement either of these



methods requires a number system that can accommo-
date values in this range. (The critical issue is how re-
sults are obtained from multiplications.) Both the Cal-
tech system [Wawrzynek and Mead (1985)] and the MSSP
[Lyon (1984)] use numbers that are interpreted as integer-
fractions with the binary point positioned such that the
operating range is between +8.

Both sine generation methods were simulated at the Center
for Computer Research in Music and Acoustics (CCRMA)
at Stanford. Word length (number of bits of precision),
frequency, and duration were treated as parameters, so
that amplitude stability, frequency resolution, and distor-
tion could be examined under different operating condi-
tions. The sampling rate was 44.1 KHz in all examples,
fixed-point arithmetic was used throughout, and simple
truncation was used to trim values to the set word length
after multiplications. (Rounding and truncation towards
0 were also tried, but results were essentially identical to
those obtained using simple truncation.)

3.1 Computational Cost

With R set to 1, the resonator involves one multiply and
one add per output sample. In addition, a memory move
or copy is required so that y(n — 2) gets the old y(n —
1) before y(n — 1) is overwritten with the new y(n). No
such move is required for the modified coupled form, since
z(n + 1) is updated first, and then used with the old y(n)
to calculate y(n + 1). However, two multiplies and adds
per output sample are required with this technique. Thus,
the resonator method is roughly twice as efficient as the
coupled form for generating pure sinewaves. If frequency
modulation is desired, however, this advantage disappears.

3.2 Peak Amplitudes

Peak amplitude values are consistently +1 for the coupled
form, regardless of word length precision. This doesn’t
always hold for the resonator method; peaks tend to be
larger than 1 for small word lengths, and can even grow
unstable. This phenomenon is worse for low frequencies
than for high ones. However, with 16-18 fractional bits (to
the right of the binary point), peak amplitudes resulting
from the resonator method are indeed stable at 1.

3.3 Frequency Resolution

To assess frequency resolution (and also distortion), output
waveforms were processed by Fourier transforms. A peak-
finding algorithm was used to determine the fundamental
frequency of the transform. It is not known how precise
this algorithm is in determining frequencies, so results are
stated informally.

Both methods have very accurate frequency resolution if at
least 24 fractional bits are used, and even 20 are adequate
in most cases. The coupled form slightly outperforms the
resonator method in this regard, having highly accurate
resolution for word lengths with more than 15 fractional
bits. Fourteen fractional bits brings the accuracy to within
10 cents at 75 Hz.
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3.4 Distortion

If less than 24 fractional bits are used with the resonator
method, there is evident distortion in the output waveform.
For low frequencies, this distortion is less than 10 dB below
the signal when 14 fractional bits are used, and about 50
dB down when 16 fractional bits are used. At higher fre-
quencies, distortion tends to be about 60 dB below the sig-
nal for fewer than 24 fractional bits. The modified coupled
form produces stable, distortion-free sinewaves regardless
of word length.

4. EXTENSIONS FOR FM

Neither of the two sine synthesis methods we have been
discussing is easily modified to accommodate frequency
modulation. However, the extensions required to realize
this synthesis technique are not cost-prohibitive, though
the coupled form offers more promise than the resonator
method.

For proper frequency modulation, phase must be pre-
served. This means that if an output waveform is cos(nw),
say, and the frequency is being modulated to a new value
w', the output must be interpreted as cos(mw'), for some
m such that mw’ = nw. Thus, for the resonator method,
y(n — 2), which would correspond to cos(n — 1)w in our
example, must be replaced by a value corresponding to
cos(m —1)w’. Since m doesn’t correspond to any predeter-
mined value, but rather is chosen so as to maintain phase
continuity, it is not trivial to construct cos(m —1)w’. Using
a trigonometric identity, we have

cos(m — 1)w' = cos(mw') - cos(w’) + sin(mw’) - sin(w’)

= cos(nw) - cos(w’) + sin(nw) - sin(w’)

Thus, two resonators have to be computed in phase quadra-
ture (one for cos(nw) and one for sin(nw)), and both
cos(w’) and sin(w’) have to be computed each sample (as-
suming general FM). Furthermore, four multiplies and two
adds have to be performed each sample as well (a similar
trigonometric identity applies to sin(m — 1)w’).

The same problem exists for the modified coupled form,
but it appears to be more tractable. In this case, cos(nw —
) must be replaced by cos(mw’ — '), and sin(nw — p)
with sin(mw’ — ¢'). Trigonometric expansion results in

cos(mw’ — ') = cos(mw') - cos(p’) + sin(mw') - sin(y’)
= cos(nw) - % + sin(nw) sin(y")
= cos(nw) - sin(%l) + sin(nw) cos('—dz—l)

and there is a similar equation involved for sin(mw’ — ¢’).
Two coupled forms must be computed in phase quadrature,
but only one of the two equations in each pair needs to be
computed (since y(n + 1) is immediately replaced by a
newly computed value to accomplish the modulation).
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In general, less computation will be involved in comput-
ing sin(w’/2) than in computing sin(w'), and likewise for
cos(w'/2) vs. cos(w’). This w’ is the sum of a constant car-
rier frequency and a sinusoidally varying modulator; the
sine and cosine functions can be approximated with series
expansion. The error in this approximation can in gen-
eral be higher than what could be tolerated in computing
sinewaves by series expansion directly. It is postulated that
a cubic for most circumstances — and a fifth-order poly-
nomial in all cases — is sufficient to compute a new ¢'.
Simulations of FM synthesis with the coupled form are in
progress, and results will be forthcoming shortly [Gordon
(1985)].

5. CONCLUSIONS

The modified coupled first-order filter appears to be an
attractive technique for synthesizing sine waves in VLSI.
Only a few state variables are required to achieve abso-
lutely stable sinusoids with accurate frequency resolution
and no distortion. Ii also shows great promise in being
extensible to frequency modulation synthesis. The modi-
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fied coupled form compares favorably with the undamped
digital resonator, especially for short word lengths and FM
possibilities.
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