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In my DAFx06 review, we looked at

• Early digital audio effects (delay lines, scanner vibrato, . . . )
• Acoustic propagation models
• Digital waveguide models (voice, strings, woodwinds, . . . )
• Commuted synthesis (acoustic guitar, harpsichord, piano, . . . )
• All my best accumulated sound examples!
• That presentation is available online:

http://ccrma.stanford.edu/~jos/pdf/DAFx06KeynoteII.pdf

(sound examples via HTTP)
What can I talk about now?
New research results in the past three years?

http://ccrma.stanford.edu/~jos/pdf/DAFx06KeynoteII.pdf
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Problem:

I haven’t done that much in the past three years!

Solution:

Summarize recent DAFx-related research at CCRMA
as a whole

• Talk Design:

◦ New results in the past year (three years is too much)
◦ Developed at CCRMA
◦ JOS involved as collaborator or adviser

(i.e., I know something about it!)
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DAFx-Related Research involving JOS at CCRMA, 2008-2009
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CCRMA building: The Knoll, Stanford University



Multimodal Spring Reverb
Modeling
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Accutronics Type 8 Spring Tank
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Top: Accutronics Type 8 Spring Tank
Bot: Single Spring “Folded” into a Compact Space



Measured Single-Spring Impulse Response
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Model Impulse Response
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Model Impulse Response in Time and Frequency Domains



Spring Reverb Sound Examples

Overview

Spring Reverb Models

• Spring Tank

• Impulse Response

• Model

• Sound Examples

Virtual Analog Circuits

Acoustic Guitar Models

Haptic Instruments

New Oscillators

Spectral Delay Filters

Audio FFT Filter Banks

Microphone Array

Faust to Flash Plugins

Summary

Julius O. Smith III DAFx-09, Keynote III, Como, Italy – 10 / 54

• Dry Source Signal: (WAV) (MP3)
• Measured Spring-Reverb Response: (WAV) (MP3)
• Spring-Reverb Model Response: (WAV) (MP3)

Submitted Paper: “A Spring Reverb Model Employing Coupled
Torsional and Longitudinal Modes”

Jonathan Abel, Dave Berners, Kyle Spratt, and Julius Smith

(in review)

http://ccrma.stanford.edu/~jos/wav/dsignal.wav
http://ccrma.stanford.edu/~jos/mp3/dsignal.mp3
http://ccrma.stanford.edu/~jos/wav/msignalp3.wav
http://ccrma.stanford.edu/~jos/mp3/msignalp3.mp3
http://ccrma.stanford.edu/~jos/wav/msignalp3hatn.wav
http://ccrma.stanford.edu/~jos/mp3/msignalp3hatn.mp3
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Digitizing Circuits in Real Time
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Recent CCRMA/EE thesis by David Yeh :

Digital Implementation of Musical Distortion Circuits by
Analysis and Simulation — June 2009

• Analog Audio Circuits → Real-Time Digital Audio Effects
• Includes work of four past DAFx papers
• Linear and nonlinear methods for digitizing circuits
• Nonlinear methods similar to SPICE (implicit) but modified for

real time circuit-solving (semi-implicit) in discrete time
• One method extends the “K Method” to

◦ Nonlinear circuits, with automated application to “netlists”
◦ Discrete-time nonlinear state-space formulation

(resolves issues with certain circuit types)

• Instantaneous nonlinearities are “precomputed” as in K Method
• Can be applied to transistor and vacuum-tube circuits
• Accuracy limited primarily by the underlying device models
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Submitted paper (from pending CCRMA/CS thesis) by Nelson Lee :

“Analysis and Synthesis of Coupled Vibrating Strings
Using a Hybrid Modal-Waveguide Synthesis Model”

Nelson Lee, Julius Smith, and Vesa Välimäki (in review)

Similar to Balázs Bank formulation, but replacing low-frequency
partials by fourth-order resonators (instead of adding
second-order resonators to existing partials)



Virtual Acoustic Guitar Sound Examples of Individual Effects
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From Nelson Lee’s thesis defense:

• Original waveform: (WAV) (MP3)
• Simple lossless, reflectively terminated digital waveguide (DWG):

(WAV) (MP3)
• Add loop filter: (WAV) (MP3)
• Add interpolation filter: (WAV) (MP3)
• Add excitation (ICMC07): (WAV) (MP3)
• Add body response: (WAV) (MP3)
• Add hybrid modal/waveguide model: (WAV) (MP3)
• Exaggerate pitch glide due to tension modulation: (WAV) (MP3)

http://ccrma.stanford.edu/~jos/wav/nalee_00_orig.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_00_orig.mp3
http://ccrma.stanford.edu/~jos/wav/nalee_01_dwg_001.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_01_dwg_001.mp3
http://ccrma.stanford.edu/~jos/wav/nalee_02_dwg_lf_001.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_02_dwg_lf_001.mp3
http://ccrma.stanford.edu/~jos/wav/nalee_03_dwg_lf_thiran_001.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_03_dwg_lf_thiran_001.mp3
http://ccrma.stanford.edu/~jos/wav/nalee_04_dwg_lf_thiran_ssi_excit_001.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_04_dwg_lf_thiran_ssi_excit_001.mp3
http://ccrma.stanford.edu/~jos/wav/nalee_05_dwg_lf_thiran_body_SSI_excit_002.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_05_dwg_lf_thiran_body_SSI_excit_002.mp3
http://ccrma.stanford.edu/~jos/wav/nalee_06_dwg_lf_thiran_SSI_excit_hybrid_016.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_06_dwg_lf_thiran_SSI_excit_hybrid_016.mp3
http://ccrma.stanford.edu/~jos/wav/nalee_07_dwg_lf_thiran_SSI_excit_hybrid_tm_002.wav
http://ccrma.stanford.edu/~jos/mp3/nalee_07_dwg_lf_thiran_SSI_excit_hybrid_tm_002.mp3
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More Nelson Lee examples:

• Original 1: (WAV) (MP3)
• Synthesized 1: (WAV) (MP3)

• Original 2: (WAV) (MP3)
• Synthesized 2: (WAV) (MP3)

• Original 3: (WAV) (MP3)
• Synthesized 3: (WAV) (MP3)

• Original 4: (WAV) (MP3)
• Synthesized 4: (WAV) (MP3)

• Original 5: (WAV) (MP3)
• Synthesized 5: (WAV) (MP3)

• Original 6: (WAV) (MP3)
• Synthesized 6: (WAV) (MP3)

• Synthesized Chord Demo: (WAV) (MP3)

http://ccrma.stanford.edu/~jos/wav/nalee-marker1.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-marker1.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-final1.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-final1.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-marker2.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-marker2.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-final2.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-final2.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-marker3.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-marker3.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-final3.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-final3.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-marker4.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-marker4.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-final4.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-final4.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-marker5.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-marker5.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-final5.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-final5.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-marker6.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-marker6.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-final6.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-final6.mp3
http://ccrma.stanford.edu/~jos/wav/nalee-final-mixdown.wav
http://ccrma.stanford.edu/~jos/mp3/nalee-final-mixdown.mp3
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CCRMA/EE PhD student Ed Berdahl is working on

Haptic Feedback Control for Virtual Instruments

Dissertation expected by the end of the year

Goals:

• Assist and/or augment gestures
• Assist with accurate playing
• Recent projects:

◦ Haptically plucked virtual string
◦ Active drumhead (one-handed rolls, etc.):

http://ccrma.stanford.edu/~eberdahl/Projects/-
HapticDrum/

http://ccrma.stanford.edu/~eberdahl/Projects/HapticDrum/
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Given
f(x) = xn + an−1x

n−1 + ... + a1x + a0

then differentiating n − 1 times gives

f (n)(x) = n!x + (n − 1)! an−1.

This first-order polynomial (a line segment) generates a sawtooth
waveform as x periodically traverses [−1, 1].
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1. Digitally synthesize

x(n) = f

[

2

(

nT

P
mod 1

)

− 1

]

,

where
f(x) = xn + an−1x

n−1 + ... + a1x + a0

T = sampling interval (sec)

P = desired period (sec)

n = sample number (integer)

2. Apply n − 1 first-order finite differences
xk+1(n) = [xk(n) − xk(n − 1)]/(2T/P ) to get

Xn−1(z) =

(

1 − z−1

2T/P

)n−1

X(z)
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Initial waveform is given by sampling

f(x) = xn + an−1x
n−1 + ... + a1x + a0, x ∈ [−1, 1).

After n − 1 derivatives, we get

f (n)(x) = n!x + (n − 1)! an−1.

• For zero mean, set an−1 = 0
• The n − 1 remaining degrees of freedom in f(x) can be used to

maximize flatness at the transition from x = 1 to x = −1
• This smoothness minimizes aliasing in the synthesized sawtooth
• We can set a0 = 0 because it has no effect on smoothness
• This leaves n − 2 coefficients to optimize
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Results for polynomial orders up to n = 6:

f2(x) = x2

f3(x) = x3
− x

f4(x) = x4
− 2x2

f5(x) = x5
−

10

3
x3 +

7

3

f6(x) = x6
− 5x4 + 7x2

Submitted Paper: “Alias-Suppressed Oscillators based on
Differentiated Polynomial Waveforms”

Vesa Välimäki, Juhan Nam, Julius Smith, and Jonathan Abel

IEEE Transactions on Acoustics, Speech, and Language Processing
March 2010 (accepted for publication)
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Masking curve

Spectrum of a sawtooth waveform over masking threshold

• F0 = 4.3 kHz, Fs = 44.1 kHz
• 3rd-order B-spline interpolation = 4th-order DPW

[Juhan Nam]
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• Plain Digital Sawtooth
• Differentiated-Parabolic-Wave Sawtooth
• Doubly Differentiated Cubic-Wave Sawtooth
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See presentation later this morning (11:20 am):

“Spectral Delay Filters with Feedback Delay and Time-Varying
Coefficients”

Jussi Pekonen, Vesa Välimäki, Jonathan Abel, and Julius Smith
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Recent Paper (published online):

“Spectral Delay Filters”

Vesa Välimäki, Jonathan Abel, and Julius Smith

Journal of the Audio Engineering Society

July/August 2009
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Simple octave filter bank for complex signals.
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• FFT implementation of one frame of simple octave filter bank
• Successive frames non-overlapping (rectangular window)
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Channel-frequency-response overlay for three-octave filter bank

• Filter-bank driven by an impulse
• Zero-padded FFT taken for each channel signal
• Magnitude responses overlaid
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Interpolated Channel Signal Spectra

Improve channel-filter impulse responses:

Rectangularly windowed sinusoids
→ Chebyshev-windowed sinusoids
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Interpolated Channel Signal Spectra after Aliased Reconstruction

• Each channel maximually downsampled
• Transition bands alias heavily
• Aliasing cancels in filter-bank sum
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Channel Signal Spectra Interpolated by 4

As before but allocating wider overlapping IFFT bands:

• Passband plus transitions fit inside IFFT
• Passbands contiguous as before, but IFFTs overlap more
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• Arbitrary nonuniform spectral partitions and/or overlap-add
decompositions are easily implemented, while preserving the
FFT speed advantage

• Extension to time-varying nonuniform filter banks is
straightforward

• Come see the poster this afternoon!
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While outside the 1-year limit, Matt Wright’s poster this afternoon
(4:30 pm) Spectrally Matched Click Synthesis is another work
performed at least partially at CCRMA with JOS input.

• FIR filter design to achieve a minimum-duration “click” having a
desired magnitude spectrum

• Applications:

◦ Incremental attack strength modification
◦ Continuous gradual “morphing” between an input sound and

successively more impulsive/ percussive sounds
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• Adustable geometry (software calibrated)
• Sixteen microphones (Countryman B6 Omni Lavalier):

◦ 2 mm diameter capsules
◦ 1 mm diameter flexible mounting wire
◦ Acoustically transparent over most of the audio band
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“A Configurable Microphone Array with Acoustically Transparent
Omnidirectional Elements”

Jonathan Abel, Nicholas Bryan, Travis Skare, Patty Huang, Darius
Mostowfi, Miriam Kolar, and Julius Smith

AES-2009, New York

Current Application:

Recording and modeling acoustic properties of underground
galleries at pre-Inca archeological site Chavı́n de Huántar in Peru
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CCRMA/EE graduate student Travis Skare developed a Faust
architecture file for Flash browser plugins:
http://ccrma.stanford.edu/~travissk/faustflash/

• Faust generates C++ as usual
• Alchemy (by Adobe Labs) translates C++ to ActionScript
• Several Faust examples successfully compiled:

pitch-shifter, freeverb, karplus, osc,
multibandfilter

• Interesting points to note:

◦ Flash version 10 needed for run-time sound processing
◦ Delay from plugin controls to sound is about half a second

• Thanks to Google for allowing Travis to release his code as free
software

http://ccrma.stanford.edu/~travissk/faustflash/
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In summary, we took a quick look at some DAFx-Related Research
involving JOS at CCRMA in 2008-2009:

• Spring Reverb Modeling — Jonathan Abel et al. — new
propagation modes and calibration methods

• Digitizing Analog Circuits in Real Time — David Yeh —
Automated K-Method for nonlinear analog circuits

• Coupled Strings Analysis and Synthesis — Nelson Lee —
Fourth-order modes for low partials, wavuide model for upper
partials; new analysis techniques

• Haptic Virtual Instruments — Ed Berdahl — Real controllers (with
force feedback) for virtual instruments
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• Alias-Suppressed Virtual Analog — Vesa Välimäki et al. —
differentiated higher-order polynomials suppress aliasing further
than in the parabolic case (Välimäki 2005)

• Spectral Delay Filters — Vesa Välimäki et al. — “impulse
response synthesis”

• Audio FFT Filter Banks — JOS — arbitrary nonuniform filter
banks (spectral overlap-add decompositions) using overlapping
IFFTs for each subband that include transition bands

• Microphone Array — Jonathan Abel et al. — Acoustically
transparent, configurable, software-calibrated microphone array
for sampling the 3D sound field

• Faust to Flash Plugins — Travis Skare — Tools for making Flash
plugins from Faust source
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For maximum wraparound smoothness, compute an,
n ∈ [1, n − 2], such that

f (k)(−1) = f (k)(1)

for k = 0, 1, . . . , n − 1.

• These equations yield an upper triangular system
• Triangular matrix equations are easily “back-solved”
• Solution gives the maximually flat coefficients for f(x)
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In general, f(x) is a sum of its even and odd parts:

f(x) = fe(x) + fo(x)

where
fe(−x) = fe(x)

∆
=

f(x) + f(−x)

2

−fo(−x) = fo(x)
∆
=

f(x) − f(−x)

2

• Even part fe(x) contains all even powers of x:

fe(x) = · · · + a4x
4 + a2x

2 + a0

• Odd part fo(x) contains all odd powers of x:

fo(x) = · · · + a5x
5 + a3x

3 + a1x
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We have
f(x) = fe(x) + fo(x)

where

fe(x) =
f(x) + f(−x)

2

fo(x) =
f(x) − f(−x)

2

• Note that fe(−1) = fe(1) ⇒ smoothness constraint satisfied
spontaneously by even part

• Since fo(−1) = −fo(1), we must have fo(1) = 0
⇒ sum of fo coefficients must be zero in odd part
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• If f(x) is an odd-order polynomial satisfying
f (k)(−1) = f (k)(1) for k = 0, 1, . . . , n − 1, then it continues
to satisfy those constraints when its even part is replaced by zero

• Similarly, the odd part of an even-order polynomial f(x) may be
set to zero without affecting its wraparound smoothness

• Thus, without loss of generality, the starting polynomial f(x) may
be taken as even or odd, according its order

• The derivative of an even polynomial is odd, and vice versa

• Every other polynomial derivative has the sum-to-zero constraint

• Upper triangular system is reduced by about half
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