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ABSTRACT

FFT-based nonuniform filter banks are proposed based on channel-
sized inverse FFTs applied to nonuniform frequency-partitions (or
overlap-add decompositions) of the Short Time Fourier Transform
(STFT). Audio filter banks (particularly octave filter banks) are
considered as application examples. Trade-offs discussed include
perfect reconstruction, aliasing cancellation, flexibility of filter-
channel band edges, use of the FFT for speed, multirate time-
domain channel signals, time-varying filtering, and associated is-
sues.

1. INTRODUCTION

It is well known that the frequency resolution of human hearing
decreases with frequency [1, 2]. As a result, any “auditory fil-
ter bank” must be a nonuniform filter bank in which the channel
bandwidths increase with frequency over most of the spectrum. A
classic approximate example is the third-octave filter bank [3]. A
simpler (cruder) approximation is the octave filter bank [3], also
called a dyadic filter bank when implemented using a binary tree
structure [4]. Both are examples of constant-Q filter banks, in
which the bandwidth of each filter-bank channel is proportional to
center frequency [5]. Approximate auditory filter banks, such as
constant-Q filter banks, have extensive applications in basic hear-
ing research, audio engineering, and digital audio effects.

If the output signals from all channels of a constant-Q filter
bank are sampled at a particular time, we obtain what may be
called a constant-Q transform [6]. A constant-Q transform can be
efficiently implemented by smoothing the output of a Fast Fourier
Transform (FFT) [7]. More generally, a multiresolution spectro-
gram can be implemented by combining FFTs of different lengths
and advancing the FFTs forward through time [8, 9]. Such nonuni-
form filter banks can also be implemented using the Goetzel algo-
rithm [10].

While the topic of filter banks is well developed in the liter-
ature, including constant-Q, nonuniform FFT-based, and wavelet
filter banks, it appears the elementary practical methods presented
in this paper have been overlooked to date. In particular, clas-
sic nonuniform FFT filter banks as described in [11] have not of-
fered the perfect reconstruction property [4] in which the filter-
bank sum yields the input signal exactly (to within a delay and/or
scale factor) when the filter-band signals are not modified. The
voluminous literature on perfect-reconstruction filter banks [4] ad-
dresses nonuniform filter banks, such as dyadic filter banks de-
signed based on pseudo quadrature mirror filter designs, but sim-
pler STFT methods do not yet appear to be incorporated.

This paper can be viewed as an extension of [7] to the FFT
filter-bank case. Alternatively, it may be viewed as a novel method
for nonuniform FIR filter-bank design and implementation, based

on STFT methodology, with arbitrarily accurate reconstruction and
controlled aliasing in the downsampled case. While this paper
considers only auditory (approximately constant-Q) filter banks,
the method works equally well for arbitrary nonuniform spectral
partitions and overlap-add decompositions.

2. BASIC IDEA

The basic idea is to partition FFT bins into the desired nonuniform
bands, and perform smaller inverse FFTs on each subband to syn-
thesize downsampled time-domain signals in each band. A simple
example length 8 FFT octave filter bank is shown in Fig. 1. The re-
mainder of this section presents the basic theory in a tutorial style
that recount the reasoning leading to the idea. To maximize the
audience for which this paper is readable and practically useful,
mathematical notation is replaced by high-level signal operations
in matlab (the most commonly used high-level language for signal
processing [12]). For a tutorial development of the mathematical
theory of these operations, see for example [13, 9].
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Figure 1: FFT implementation of one frame of the simple oc-
tave filter bank of Fig. 2 on page 3. Successive frames are non-
overlapping (rectangular window advances its full length each
frame).

The next section begins with further explication of the (overly)
simple example of Fig. 1, followed by discussion of further refine-
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ments for achieving audio filter banks of more practical complexity
and quality.

2.1. Summing STFT Bins

In the Short-Time Fourier Transform, which implements a uniform
FIR filter bank [14, 9], each FFT bin can be regarded as one sam-
ple of the filter-bank output in one channel [15]. It is elementary
that summing adjacent filter-bank signals sums the corresponding
passbands to create a wider passband. Summing adjacent FFT
bins in the STFT, therefore, synthesizes one sample from a wider
passband implemented using the FFT. This is essentially how a
constant-Q transform is created from an FFT in [7] (using a differ-
ent frequency-weighting, or “smoothing kernel”). However, when
making a filter bank, as opposed to only a transform used for spec-
trographic purposes, we must be able to step the FFT through time
and compute properly sampled time-domain filter-bank signals.

The wider passband created by adjacent-channel summing re-
quires a higher sampling rate in the time domain to avoid aliasing.
As a result, the maximum STFT “hop size” is limited by the widest
passband in the filter bank. For audio filter banks, low-frequency
channels have narrow bandwidths, while high-frequency channels
are wider, thereby forcing a smaller hop size for the STFT. This
means that the low-frequency channels are heavily oversampled
when the high-frequency channels are merely adequately sampled
(in time) [7, 8]. In an octave filter-bank, for example, the top oc-
tave, occupying the entire upper half of the spectrum, requires a
time-domain step-size of no more than two samples, if aliasing of
the band is to be avoided. Each octave down is then oversampled
(in time) by an additional factor of 2.

2.2. Inverse Transforming STFT Bin Groups

The solution proposed here is to compute multiple time samples
for each high-frequency channel, so that one hop of the FFT pro-
duces all needed samples in each band in order that all channels
can use the same hop size without redundancy. If the narrowest
band produces one sample per hop, then a band N times as wide
must produce at least N samples per hop.

To efficiently compute multiple time samples from the freq-
uency-samples (FFT bins) of a given band, an inverse FFT can be
used, as shown in Fig. 1. In matlab notation, let X(1:N) denote
the FFT (length N) of the current frame of data in the STFT, and de-
note the lower and upper spectral samples for band k by lsn(k)
and hsn(k), respectively. Then we may compute (in matlab) the
full-rate time-domain signal corresponding to band k as follows:

BandK = X(lsn(k):hsn(k));
z1 = zeros(1,lsn(k)-1);
z2 = zeros(1,N-hsn(k));
BandKzp = [z1, BandK, z2]; % (1)
x(k,:) = ifft(BandKzp);

where x(k,:) denotes the output signal vector (length N) for the
kth filter-bank channel for the current time-domain STFT window.

Let Nk = hsn(k)−lsn(k)+1 denote the number of FFT
bins in band k. When Nk is a power of 2, we can apply an inverse
FFT only to the nonzero samples in the band:

xd{k} = ifft(BandK);

where xd{k} now denotes a cell array for holding the downsam-
pled signal vectors (since the downsampling factor is typically dif-
ferent for different bands).

We may relate x(k,:) and xd{k} by noting that, when Lk
= N/Nk is an integer, we have that the relation

BandK == alias(BandKzp,Lk) % (2)

is true, for each element, where alias(x,K) denotes aliasing of
K equal partitions of the vector x:1

function y = alias(x,L)
Nx = length(x);
Np = Nx/L; % aliasing-partition length
y = zeros(Np,1);
for i=1:L
y = y + x(1+(i-1)*Np : i*Np)(:);

end

By the aliasing theorem (downsampling theorem) for Discrete
Fourier Transforms (DFTs) [13], the relation (2) in the frequency
domain corresponds to

xd{k} == Lk * x(k,1:Lk:end)

in the time domain, i.e., xd{k} is obtained from x(k,:) by
means of downsampling by the factor Lk. This produces N/Lk
== Nk samples. That is, for a band that is Nk bins wide, we ob-
tain Nk time-domain samples for each STFT frame, when critically
sampled. (At the full rate, we obtain N samples from each channel
for each frame.)

We thus see that taking an inverse FFT of only the bins in
a given channel (BandK above) computes the critically downsam-
pled signal xdk for that channel. Downsampling factors between 1
and Lk can be implemented by choosing a zero-padding factor for
the band somewhere between 1 and Lk. (In (1), the zero-padding
factor is N/Nk.)

Note that this filter bank has the perfect reconstruction (PR)
property [4]. That is, the original input signal can be exactly re-
constructed (to within a delay and possible scale factor) from the
channel signals. The PR property follows immediately from the
exact invertibility of the FFT. Specifically, we can recover the orig-
inal signal frame by taking an FFT of each channel-signal frame
and abutting the spectral bins so computed to form the original
frame spectrum. Of course, the underlying STFT (uniform filter
bank) must be PR as well, as it routinely is in practice [9].

2.3. Improving the Channel Filters

Recall that each FFT bin can be viewed as a sample from a band-
pass filter whose frequency response is a frequency-shift of the
FFT-window Fourier transform [9].2 Therefore, the frequency re-
sponse of a channel filter obtained by summing Nk adjacent FFT
bins is given by the sum of Nk window transforms, one for each
FFT bin in the sum. As a result, the stopband of the channel filter
frequency response is a sum of Nk successive window side lobes,
and by controlling window side-lobe level, we may control the
stopband gain of the channel filters.

The transition width from passband to stopband, on the other
hand, is given by the main-lobe width of the window transform
[9]. In the previous section, by zero-padding the band (line (1)
above), we implicitly assumed a transition width of one bin. Only
the length N rectangular window can be reasonably said to have a
one-bin transition from passband to stopband. Since the first side
lobe of a rectangular window transform is only about 13 dB below

1A more efficient implementation can use reshape and sum.
2http://ccrma.stanford.edu/˜jos/sasp/dftfb.html
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the main lobe, the rectangular window gives poor stopband perfor-
mance, as illustrated in Fig. 4 on page 4. Moreover, we often need
FFT data windows to be shorter than the FFT size N (i.e., we often
need zero-padding in the time domain) so that the frame spectrum
will be oversampled, enabling various spectral processing such as
linear filtering [9].

One might wonder how the length N rectangular window can
be all that bad when it gives the perfect reconstruction property,
as demonstrated in the previous section. The answer is that there
is a lot of aliasing in the channel signals, when downsampled, but
this aliasing is exactly canceled in the reconstruction, provided the
channel signals were not modified in any way [9].

Going back to §2.1, we need to replace the zero-padded band
(1) by a proper filtering operation in the frequency domain (a
“spectral window”):

BandK2 = Hk .* X;
x(k,:) = ifft(BandK2); % full rate
BandK2a = alias(BandK2,Nk);
xd{k} = ifft(BandK2a); % crit samp

where the channel filter frequency response Hk may be prepared
in advance as the appropriate weighted sum of FFT-window trans-
forms:

Hideal = [z1,ones(1,Nk),z2];
Hk = cconvr(W,Hideal); % circ. conv.

where z1 and z2 are the same zero vectors defined in §2.1, and
cconvr(W,H) denotes the circular convolution of two real vec-
tors having the same length [13]:

function [Y] = cconvr(W,X)
wc=fft(W); xc=fft(X);
yc = wc .* xc;
Y = real(ifft(yc));

Note that in this more practical case, the perfect reconstruction
property no longer holds, since the operation

BandK2a = alias(Hk .* X, Nk);

is not exactly invertible in general.3 However, we may approach
perfect reconstruction arbitrarily closely by only aliasing stopband
intervals onto the passband, and by increasing the stopband attenu-
ation of Hk as desired. In contrast to the PR case, we do not rely on
aliasing cancellation, which is valuable when the channel signals
are to be modified.

The band filters Hk can be said to have been designed by the
window method for FIR filter design [16]. (See functions fir1
and fir2 in Octave and/or the Matlab Signal Processing Tool-
box.)

3. FAST OCTAVE FILTER BANKS

Let’s now apply the above technique to the design of an octave
filter bank.4 At first sight, this appears to be a natural fit, because

3When the FFT window is a length N rectangular window, then
alias(Hk .* X, Nk) == BandK, as defined above, and there is no
aliasing after all. More precisely, the aliased spectral samples all happen to
be zeros of the window transform (which is an aliased sinc function) [9].
These zeros depend on the window-length being N (no zero-padding), and
on the window-type being rectangular (“no window”).

4Do not confuse the Octave program—a free, open-source implementa-
tion of the matlab language—with the musical octave: a frequency interval
spanning a factor of two. Here, “Octave” (capitalized) refers to the pro-
gram, while “octave” refers to the frequency interval.

it is immediately easy to partition a power of 2 (typical for the FFT
size N) into octaves, each having a width in bins that is a power of
2. For example, when N == 8, we have the following stack of
frequency-response vectors for the rectangular-window, no-zero-
padding, complex-signal case:

H = [ ...
0 0 0 0 1 1 1 1 ; ...
0 0 1 1 0 0 0 0 ; ...
0 1 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 0 ];

Figure 2 depicts the resulting filter bank schematically in the fre-
quency domain.5 Thus, H(1,:) is the frequency-response for
the top (first) octave, H(2,:) is the frequency-response for the
next-to-top (second) octave, H(3,:) is the next octave down, and
H(4,:) is the “remainder” of the spectrum. (In every octave filter
bank, there is a final low-frequency band.
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Figure 2: Simple octave filter bank for complex signals.

A schematic of the filter-bank implementation using FFTs is
shown in Fig. 1 on page 1. The division by N called for by ifft(N)
is often spread out among the ifft butterfly stages as divisions
by 2 (one-bit right-shifts in fixed-point arithmetic) after each of
them. For conservation of dynamic range, half of the right-shifts
can be spread out among every other forward-FFT butterfly stage
[17] as well, thereby implementing the normalized DFT (NDFT)
[13].

The simple spectral partitioning of Fig. 2 is appropriate for
complex signals—those for which the spectrum is regarded as span-
ning 0 Hz to the sampling rate. For real signals, we need a spectral
partition more like that in Fig. 3.

Unfortunately, the number of spectral samples in Fig. 3 is 14—
not a power of 2. (The previous length 8 complex case maps to
length 14 real case because the dc and Nyquist-limit samples do
not have complex-conjugate counterparts.) Discarding the sample
at the Nyquist limit—number 8 in Fig. 3—does not help, since
that gives 13 samples—still not a power of 2. In summary, there
is no obvious way to octave-partition the spectral samples of a real

5The samples are connected by straight lines to make them visible. The
true responses for the left two bands are aliased sinc functions (asinc). The
next octave up is a sum of two asincs, and the rightmost band (top octave)
is a sum of four asincs. A properly interpolated frequency response for this
filter bank is shown in Fig. 4.
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Figure 3: Simple octave filter bank for real signals.

signal while maintaining the power-of-2 condition for each band
and symmetrically partitioning positive and negative frequencies.

A real signal can of course be converted to its corresponding
“analytic signal” by filtering out the negative-frequency compo-
nents. This is normally done by designing a Hilbert transform
filter [18, 16, 9]. However, such filters are large-order FIR filters,
exactly like we are trying to design! If we design our filter bank
properly, we can use it to zero the negative-frequency components.

3.1. Spectral Rotation of Real Signals

Note that if we rotate the spectrum of a real signal by half a bin, we
obtain N/2 positive-frequency samples and N/2 negative-frequen-
cy samples, with no sample at dc or at the Nyquist limit. This is
typically desirable for audio signals because dc is inaudible and
the Nyquist limit is a degenerate point of the spectrum that, for
example, cannot have a phase other than 0 or π. If N is a power of
2, then so is N/2, and the octave-band partitioning of the previous
section can be applied separately to each half of the spectrum:

LN = round(log2(N)); % number of octave bands
shifter = exp(-j*pi*[0:N-1]/N); % half-bin
xs = x .* shifter; % apply spectral shift
X = fft(xs,N); % project xs onto rotated basis
XP = X(1:N/2); % positive-frequency components
XN = X(N:-1:N/2+1); % neg.-frequency components
YP = dcells(XP); % partition to octave bands
YN = dcells(XN); % ditto for neg. frequencies
YPe = dcells2spec(YP); % unpack "dyadic cells"
YNe = dcells2spec(YN); % unpack neg. freqs
YNeflr = fliplr(YNe); % undo former flip
ys = ifft([YPe,YNeflr],N,2);
y = real(ones(LN,1)*conj(shifter) .* ys);
% = octave filter-bank signals (real)
yr = sum(y); % filter-bank sum (should equal x)

In the above listing, the function dcells simply forms a cell
array in matlab containing the spectral partition (“dyadic cells”).
The function dcells2spec is the inverse of dcells, taking
a spectral partition and unpacking it to produce a usual spectrum
vector.

3.2. Improving the Octave Band Filters

To see the true filter-bank frequency response corresponding to
Fig. 2, we may feed an impulse to the filter bank and take a long

FFT (for zero padding) of the channel signals to produce the inter-
polated response shown in Fig. 4.
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Figure 4: Channel-frequency-response overlay for the octave filter
bank shown in Fig. 2.

The horizontal line along 0 dB in Fig. 4 was obtained by sum-
ming the channel responses, indicating that it is a perfect-recon-
struction filter-bank, as expected. However, the stopband perfor-
mance of the channels is quite poor, being comparable to the side-
lobes of a rectangular window transform (an aliased sinc function).
In fact, the stopband is identical to the rectangular-window side-
lobes for the two lowest bands. Notice that the original eight sam-
ples of Fig. 2 still lie along the 0-dB line, and there are still zeros in
each channel response beneath the unity-gain point of every other
channel’s response, so Fig. 2 can be obtained by sampling Fig. 4 at
those eight points. However, the interpolated response shows that
the filter bank is quite poor by audio standards.
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Figure 5: Channel-frequency-response overlay for a complex-
signal octave filter bank, designed using a length 127 Dolph-
Chebyshev window (80 dB stopband attenuation) and length 256
FFT.

Figure 5 shows an octave filter bank (again for complex sig-
nals) that is better designed for audio usage. Instead of basing
the channel filter prototype on the rectangular window, a Dolph-
Chebyshev window was used [matlab: chebwin(127,80)]. The

DAFX-4



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

FFT size is about twice the filter length, thereby allowing for a data
frame of equal length (to the filter) without incurring time alias-
ing, in the usual way for STFTs [9]. The data window is chosen to
overlap-add to a constant, as typical in STFTs, so its choice does
not affect the quality of the filter-bank output channel signals. We
therefore may continue to use a rectangular data window that ad-
vances by its full length each frame. Choosing an odd filter length
facilitates zero-phase offline STFT processing, in which the mid-
dle FIR sample is treated as occurring at time zero, so that there is
no delay in any filter-bank channel [13].

The filter bank is PR in the full-rate case because the underly-
ing STFT is PR, in the absense of modifications, and because the
channel filter-bank is constant-overlap-add in the frequency do-
main (again in the absence of modifications) according to STFT
theory [9].

3.3. Aliasing on Downsampling

While the filter bank of Fig. 5 gives good stopband rejection, there
is still a lot of aliasing when the bands are critically sampled. This
happens because the transition bands are aliased about their mid-
points. This can be seen in Fig. 5 by noting that aliasing “folding
frequencies” lie at the crossover point between each pair of bands.
An overlay of the spectra of the downsampled filter-bank outputs,
for an impulse input, is shown in Fig. 6.
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Figure 6: Same as Fig. 5 obtained by critically downsampling each
channel signal, zero-padding, and performing an FFT. All the ob-
servable stopband error happens to cancel out in the filter-bank
sum because the input signal is an impulse, in which case the re-
construction remains exact.

Figure 7 shows the aliased spectral signal bands (prior to in-
verse STFT) for a step input (same filter bank). (This type of plot
looks ideal for an impulse input signal because the spectrum is
constant, so the aliased bands are also constant.) Note the large
slice of dc energy that has aliased from near the sampling rate to
near half the sampling rate in the top octave band. The signal and
error spectra are shown overlaid in Fig. 8. In this case, the aliasing
causes significant error in the reconstruction.

3.4. Restricting Aliasing to Stopbands

To eliminate the relatively heavy transition-band aliasing (when
critically sampling the channel signals), we can define overlap-
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Figure 7: Same filter bank as in Fig. 6 but driven by a step input.
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Figure 8: Signal spectrum (an impulse, since the time signal is a
step) and error spectrum for the case of Fig. 7. Note the large error
near half the sampling rate.

ping bands such that each band encompasses its transition bands
on either side. However, unless a full 2 × oversampling is pro-
vided for each band (which is one easy solution), the bandwidth
(in bins) is no longer a power of two, thereby thwarting use of
radix-2 inverse-FFTs to compute the time-domain band signals.

To keep the channel bandwidths at powers of two while re-
stricting aliasing to stopband energy only, each IFFT input band
can be widened beyond the passband plus two transition bands so
that it includes just enough stopband to reach the next power of
two.6 If the stopband energy is negligible, the band can be simply
zero-padded outside of the transition bands instead of including
additional stopband; in other words, each frequency band may be
individually zero-padded to the next higher power of two. Since
the passband widths and IFFT sizes are now decoupled, the chan-
nel IFFTs will overlap by varying amounts, in general.

The bands also may have any shape that sums to a constant fre-
quency response; in other words, while we have been considering
only spectral partitions in this paper, any overlap-add decomposi-

6We do not really have to restrict consideration to powers of two, as
there are many fast Fourier transform algorithms for various composite
and prime lengths [19, 20].
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tion of the spectrum can be used. (See the gammatone and gam-
machirp filter banks for examples of heavily overlapping bands in
an audio filter bank [21].) Both zero-padding and overlap-add-
decomposition are terms normally applied in the time domain [9].
Thus, nonuniform filter banks may be formulated as the Fourier
dual of nonuniform time windows. Figure 9 shows how the exam-
ple of Fig. 5 is modified by this strategy.
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Figure 9: Channel-frequency-response overlay for an octave filter
bank designed using a length 127 Dolph-Chebyshev window (80
dB SBA) and length 256 FFT size.

In summary, passbands of arbitrary width and shape are em-
bedded in overlapping IFFT bands that are a power-of-2 wide. As
a result of this flexibility, the frequency-rotation trick of §3.1 is
no longer needed for real filter banks. Instead, we simply allo-
cate any desired bands between dc and half the sampling rate, and
conjugate-symmetry dictates the rest. In addition to a left-over
“dc-Nyquist” band, there is a similar residual “Nyquist-limit” band
(a typically negligible band about half the sampling rate). In other
words, since the passbands may be any width and the encompass-
ing IFFT bands may overlap by any amount, they do not have to
“pack” conveniently as power-of-two blocks.

The minimum channel bandwidth is defined here as two transi-
tion bands plus one bin (i.e., the minimum passband width is zero,
corresponding to one bin, or one spectral sample). For the Dolph-
Chebyshev window, the transition bandwidth is known in closed
form [22, 9]. In our examples, we have a length 127 window with
80 dB stopband attenuation in the lowpass prototype [matlab com-
mand chebwin(127,80)], corresponding to a transition width
of 6.35 bins in a length 256 FFT, which was rounded up to 7 bins
in software for simplicity of band allocation. Therefore, our mini-
mum channel bandwidth is 15 bins (two transition bands plus one
sample for the band center). The next highest power of two is 16,
so that is our minimum encompassing IFFT length for any band.

The dc and Nyquist channels are combined into a single chan-
nel containing the left-over residual filter-bank response consisting
of a low transition down from dc and a high-frequency transition
up to the sampling rate (in the complex-signal case). When N is
sufficiently large so that these bands contain no audible energy,
they may be discarded. We include them in all examples here so
as to preserve the (near) perfect reconstruction property of the fil-
ter bank. Thus, the 7-bin dc channel is combined with the 7-bin
Nyquist channel to form a single 16-bin encompassing residual

band that may be discarded in many audio applications (when the
initial FFT size is sufficiently large for the sampling rate used).

In the example of Fig. 9, the initial FFT size is 256, and the
channel bandwidths (passbands only, excluding transitions), from
top to bottom, are 121, 64, 32, 16, and 8 bins. The top band is
reduced by 7 bins to leave a transition band to the sampling rate.
Similarly, the lowest band lies above a transition band consisting
of bins 0-6. The encompassing IFFTs (containing transitions) are
lengths 256, 128, 64, 32, 32, for the interior bands, and a length
32 IFFT handles the dc and Nyquist bands (which are combined
into a single 14-bin band about dc, which occupies 28 bins when
the transition bands are appended). Letting [lo,hi] denote a band
by its lower and upper bin limit, the nonoverlapping adjacent pass-
band edges in “spectral samples”7 of the interior bands are [8, 15],
[16, 31], [32, 63], [64, 127], and [128, 248]; the overlapping en-
compassing IFFT band edges are then [1, 32], [9, 40], [25, 88],
[57, 184], [1, 256], i.e., they each contain a passband and two tran-
sition bands, and have a power-of-2 length. The downsampling
factor for each channel can be computed as the initial FFT size
(256) divided by the IFFT size (32, 32, 64, 128, or 256) for the
channel.

Figure 10 shows the counterpart of Fig. 6 for this example. In
this case, the aliased signal energy comes only from channel-filter
stopbands. For narrow bands, the aliasing is suppressed by at least
80 dB (the side-lobe level of the chosen Dolph-Chebyshev window
transform). For bands wider than one bin (the minimum bandwidth
in this example is the dc-Nyquist band at 14 bins), the stopband
consists of a sum of shifts of the window-transform sidelobes, and
these are found to be more than 80 dB down due to cancellation
(more than 90 dB down in most bands of this example).
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Figure 10: Same example as in Fig. 9 but looking at the effects of
aliasing to to channel-signal downsampling. Compare to Fig. 6.

3.4.1. Tightening the IFFTs

In this example the top band is not downsampled at all, and the in-
terior bands are oversampled by approximately 2. This is because
the desired passband widths started out at a power of 2, so that
the addition of transition bands forced the next higher power of 2

7Spectral samples are defined here as “bin numbers plus 1”, that is,
spectral samples are numbered from 1 as in matlab, rather than from 0, as
in the signal processing literature.
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for the IFFT size. Narrowing the width of the top band from 121
bins to 128 − 2 · 7 = 114 bins would enable use of a length 128
IFFT for the top band, and similarly for the lower bands. In other
words, when the desired spectral partition is that of an ideal oc-
tave filter bank, as sketched in Fig. 2, narrowing each octave-band
by twice the transition width of the lowpass prototype filter (and
“covering down” to keep them adjacent) will produce a relatively
“tight” FFT filterbank design in which the IFFT sizes remain the
same length as in the heavily aliased case discussed above (Fig.
6). When applied to the octave filter bank, the passbands become
a little narrower than one octave. We may call this a quasi octave
filter bank.

3.4.2. Real Filter Bank Example

Finally, Fig. 11 shows the appearance of the octave filter bank for
real signals. In this case, bands are constructed between dc and
half the sampling rate, and conjugate symmetry is used to auto-
matically construct the desired bands between half the sampling
rate and the sampling rate. The band allocation algorithm there-
fore needs no modification for the real-signal case.
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Figure 11: Channel-frequency-response overlay for a real-signal
octave filter bank, designed using a length 127 Dolph-Chebyshev
window and length 256 FFT size (no downsampling). Compare
the complex-signal filter bank in Fig. 9.

3.5. Optimal Band Filters

In the filter-bank literature, one class of filter banks is called “co-
sine modulated” filter banks. DFT filter banks are similar. The
lowpass-filter prototype in such filter banks can be used in place
of the Dolph-Chebyshev window used here. Therefore, any result
on optimal design of cosine-modulated filter banks can be adapted
to this context. See, for example, [23, 24]. Note, however, that
in principle a separate optimization is needed for each different
channel bandwidth. An optimal lowpass prototype only optimizes
channels having a one-bin passband, since the protype frequency-
response is merely shifted in frequency (cosine-modulated in time)
to create the channel frequency response. Wider channels are made
by summing such channel responses, which alters the stopbands.

In practice, the Dolph-Chebyshev window, used in the exam-
ples of this paper, typically yields a filter bank magnitude fre-
quency response that is optimal in the Chebyshev sense because

1. there can be only one lowpass prototype filter in any mod-
ulated filter bank (such as the DFT filter bank),

2. the prototype itself is the optimal Chebyshev lowpass filter
of minimum bandwidth, and

3. summing shifted copies of the prototype frequency response
generally improves the stopband rejection over that of the
prototype, thus meeting the Chebyshev optimality require-
ment for the filter-bank as a whole.

All channel bands, whatever their width, are constructed by some
linear combination of shifted copies of the lowpass protoype fre-
quency response. The Dolph-Chebyshev window is precisely opti-
mal (in the Chebyshev sense) for any passband that is one bin wide.
Summing shifts of the window transform to synthesize wider bands
has been observed to invariably improve the stopband rejection
significantly. The examples shown above illustrate the margin be-
yond 80 dB stopband rejection achieved for the octave filter bank.

The Dolph-Chebyshev window has faint impulsive endpoints
on the order of the sidelobe level (about 50 dB down in the 80-
dB-SBA examples above), and in some applications, this could be
considered an undesirable time-domain characteristic. To elim-
inate them, an optimal Chebyshev window may be designed by
means of linear programming with a time-domain monotonicity
constraint [9].8 Alternatively, of course, other windows can be
used, such as the Kaiser, or three-term Blackman-Harris window,
to name just two [9]. In this paper we use only the Chebyshev win-
dow in order to facilitate comparisons. Effects changing the win-
dow type have exactly the same effect as one would expect from
experience with the window method for FIR filter design [16, 9].

4. TIME VARYING NONUNIFORM FFT FILTER BANKS

As is well known, the STFT can be modified independently from
one frame to the next over time [14, 9]. In the present context,
it is natural to consider the case of changing the spectral partition
(or spectral overlap-add decomposition more generally) from one
frame to the next.

In the time-invariant case discussed above, there was no reason
not to use a length M rectangular window and hop size M for the
underlying STFT. That is, there was no reason to use overlapping
(in time) or tapered blocks of the input signal. However, when the
filter-bank (spectral partition/OLA-decomposition) changes from
frame to frame, it may be preferable to use some tapered window,
such as the triangular (Bartlett) or raised-cosine (Hann) window
along with a compatible overlap (such as 50% for triangular or
Hann). This gives the effect of cross-fading from one spectral par-
tition to the next, instead of suddenly introducing the new filtering
at a frame boundary.

An effect similar to cross-fading is obtained by using zero-
phase (instead of causal) channel filters. When the channel filters
are zero phase, the current output frame consists of the superpo-
sition of itself filtered by the current spectral partition, plus the
causal “ringing” from the previous frame, plus the anticausal “pre-
ring” from the next frame. Zero-phase channel filters can of course
be used in conjunction with a time-domain overlap-add decompo-
sition of the input signal [9].

If a time-varying filter bank is used with downsampling, the al-
gorithm presented above may cause the downsampling factor may

8https://ccrma.stanford.edu/˜jos/sasp/-
Window Design Linear Programming.html
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vary over time in a given band. Using the rule of “zero-padding”
(widening) each band-plus-its-transitions to the next higher power
of two can cause the sampling rate in a given channel to change
by factors of two over time. Allowing this would yield successive
frames at different sampling rates in the time domain. When it is
desired to have only one sampling rate for each filterbank channel
(especially needed when time-frames overlap), one simple solu-
tion is to zero-pad to the same power of two for each time-frame
of a given band, given simply as its maximum over time. That is,
a fixed sampling rate is chosen for the time-varying band that ac-
commodates its maximum bandwidth over time. Thus, uniformly
sampled time-varying bands must have a maximum bandwidth im-
posed (or measured in the offline case).

5. CONCLUSIONS

An approach to the design and efficient implementation of nonuni-
form, perfect- and near-perfect-reconstruction, FFT filter banks,
with controllable aliasing, was presented. These filter banks can
be viewed as an extension and generalization of the FFT-based
constant-Q transform to the FFT filter-bank case. Alternatively,
they may be seen as a new class of nonuniform FIR filter banks
based on FFT block processing, with arbitrarily accurate recon-
struction and controlled aliasing in the downsampled case. While
only auditory (approximately constant-Q) filter banks were con-
sidered here as examples, arbitrary nonuniform spectral partitions
and/or spectral overlap-add decompositions are just as easily im-
plemented. Moreover, time-varying nonuniform filter banks may
be implemented using no more than the usual additional consider-
ations that arise in time-varying STFT processing of any kind.
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