
Virtual electric guitars and associated audio effects in
Faust and C++

Julius O. Smith III (jos@ccrma.stanford.edu) , Nick Porcaro, and Nelson Lee
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

Poster 1674 — July 3, Acoustics 2008

Paris, FRANCE

Long-Term Objective:

Free, open-source, reference implementations for
virtual musical instruments and associated audio
effects

Immediate Objective:

Compare Faust and Synthesis Tool Kit (STK)
programming tools

1

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/


Prior Work

This poster can be considered a follow-on to

Virtual Electric Guitars and Effects Using Faust
and Octave, by J.O. Smith, Linux Audio
Conference (LAC-2008), Cologne, March 2008.

• That paper was focused on implementations in the
Faust language by Yann Orlarey

• Resulting new Faust libraries:

– osc.lib: four filter-based sinusoidal oscillators

– filter.lib: variable elementary filter sections,
Lagrange (FIR) and Thiran (allpass) interpolation

– effect.lib: brightness filter, cubic distortion,
Moog VCF, digitized CryBaby wah pedal, and
Rauhala piano-string dispersion filter

• Pointers:

– LAC-2008 Paper:
http://lac.linuxaudio.org/download/papers/22.pdf

– LAC-2008 Overheads:
http://lac.linuxaudio.org/download/slides/22/

– Supporting website:
http://ccrma.stanford.edu/realsimple/faust strings/

2

http://lac.linuxaudio.org/download/papers/22.pdf
http://lac.linuxaudio.org/download/slides/22/
http://ccrma.stanford.edu/realsimple/faust_strings/


Virtual Electric Guitar Architecture

Gain
Feedback
Amplifier

...

Pre-distortion output level

Pre-distortion gain Distortion output level

Nonlinear Distortion

Amplifier Feedback Delay

String 1

String N

Guitar Output

Guitar Output Output SignalSpeaker BPWah Pedal

String Model

Hβ(z)

Hη(z) Hs(z)

HL(z)

Hd(z)

z−N

where (see third pointer above for full details) . . .

3



N = pitch period (2× string length) in samples

Hβ(z) = 1 − z−βN = pick-position comb filter, β ∈ (0, 1)

Hd(z) = string-damping filter (one/two poles/zeros typical)

Hs(z) = string-stiffness allpass filter (several poles and zeros)

Hρ(z) = first-order string-tuning allpass filter

HL(z) = dynamic-level lowpass filter

STK Implementation

• Reference implementations at CCRMA are typically
written directly in C++ using the Synthesis Tool Kit
(STK) originated and maintained by Perry Cook and
Gary Scavone

• Since the Faust implementations reported at
LAC-2008, STK implementations have been
developed (primarily by Nick Porcaro) for substantially
the same virtual electric guitars and audio effects

• We wish to compare the relative merits of Faust and
the STK as reference-implementation vehicles

• We also wish to integrate Faust and STK resources:

– Incorporate STK objects into Faust programs

– Create new STK objects from Faust compilations

4



Faust and STK Compared

Commonalities:

• Both specify C++ implementations

• Both support Linux, Mac OS-X, and Windows

Faust Advantages:

• Higher level language for signal processing and GUI
specification

• Reference implementations are compact

• Automatic block diagram generation

• Multiprocessing support (in alpha)

• Strong optimization of generated C++ code

• Platform-independent specification

• Automatic generation of plugins for many platforms:

– Pure data (Pd)

– LADSPA

– VST

– SuperCollider

5



– and others, as well as various stand-alone programs

To add a new plugin or stand-alone program type,
just create a new architecture file from one of the
existing examples

Faust Disadvantages:

• Because Faust syntax is designed primarily for
traditional left-to-right signal flow with occasional
feedback, it can be unwieldy for specifying physical
models which require “bidirectional” signal paths
between physical blocks

• Some traditional programming constructs can be
unwieldy to specify:

– If-then conditional expressions

– Table look-ups

• No vector support (yet) — signals are real or int

• Multiple sampling rates not supported (yet)

The Faust future-development road-map includes vector
and multirate signal support. Tables will be facilitated by
the planned extensions, as will block-based processing
(such as FFTs)

6



C++/STK Advantages:

• More general language features
(anything C++ can express)

• Potentially faster compiled code (since hand-written)

C++/STK Disadvantages:

• Lower level programming language

• Program source typically more voluminous

• Program specification is slightly platform-dependent
(e.g., the StkFloat data type can be arbitrarily
redefined)

• No built-in multiprocessing support

• GUI specification handled externally (in TCL/Tk) and
more laboriously

• No automated plugin generation
(no “architecture file” counterpart)

• More difficult for making Pd externals. The FLEXT
interface by Thomas Grill helps - see, e.g.,
http://ccrma.stanford.edu/realsimple/stkforpd/

7

http://ccrma.stanford.edu/realsimple/stkforpd/stkforpd.html


Another Faust-STK commonality is that Pd externals
consisting of a set of modules arranged in a feedback
loop must normally be fused into a single external:

• Must use send~ and receive~ to form a signal
processing loop (cannot simply connect Pd signal
objects in a loop)

• Such a loop will have at least a 64-sample delay
inserted (the current chunk size in Pd)

• Since module run-order cannot be specified in Pd, an
unknown number of additional 64-samples of delay
may be inserted as well

• As a result, we placed the entire STK instrument in a
single Pd external (as in the Faust case)

• The FLEXT Pd external interface by Thomas Grill
was used for the STK case (latest CVS required)

• The Faust puredata.cpp architecture file and
companion Q script faust2pd, both by Albert Graef,
make it very easy to generate Pd plugins from Faust
programs. To provide such facility in the STK
environment, one could define an STK
instrument-definition language (analogous to
instrument definitions in Music V, CSound, or SAOL),
and a companion stkins2pd utility, for example.

8



Faust and STK Integration

We presently incorporate STK objects inside C-function
wrappers that are declared as a Faust “foreign functions”

Simple example (white noise generator):

• Complete Faust program:

stknoise = ffunction(float StkNoise(int),

"stkf/stkf.h", "stkf/libstkf.a,libstk.a");

seed = 10; // any int

process = seed : stknoise;

• Separately compiled C function:

#include <Stk.h>

#include <Noise.h>

Noise *theNoise;

float StkNoise(int seed) {

if (theNoise == NULL) {

theNoise = new Noise(seed);

}

return theNoise->tick();

// Future: theNoise->tick(theFrame,0);

}

9



Limitations:

• A Faust ffunction must return a single float

• Arguments can only be type float or int

• No explicit state-initialization support
(work-around: static init variable in C wrapper
function, as in above example)

• No explicit instance support
(work-around: use an integer signal argument to serve
as “instance number” — argument seed in above
example can be viewed in this way)

Future solution: The Faust road map includes “foreign
objects” (fobject) and vector-valued signals

Faust and STK Benchmarks

We compared the run-times of Faust and STK
implementations of elementary signal-processing modules
used in the virtual electric guitar

Methodology

• The Faust architecture file bench.cpp, distributed
with Faust, was used to measure all run-times

10



– One block of 128 signal samples computed

– Run time = elapsed time in cycles of system clock

– Each benchmark defined as the minimum over 100
executions of the benchmark program

• STK modules integrated as foreign functions, as
described above

– The type StkFloat was changed from double to
float throughout the STK by editing Stk.h

– Since many STK modules support vectorization
while ffunctions can only return a single float,
each STK ffunction call was run internally for 128
samples, using the method tick(frames,chan)

implemented in Filter.cpp, etc., and the
resulting run-time reported by bench.cpp was
divided by 128 (the number of samples in frames)

• C++ compiler optimization was set to -O3 for the
STK library libstk.a, the Faust-generated
<module>-bench.cpp file, and for the separately
compiled ffunction wrappers for STK classes

• C++ compiler = gcc version 4.1.2 (Fedora 8)

• Faust version 0.9.9.4f was used (CVS July 1, 2008)

• STK version 4.3.0 was used, with Cubicnl.cpp added

11



Results

Linear Congruential Random Number Generation
(White Noise):

Cycles

STK Module: Noise.cpp 12076
Faust Function: noise (music.lib) 692

Cycles Ratio: 17.45

Note: The system rand function is called each sample
in the STK version

Two-Pole, Two-Zero Filter:

Cycles

STK Module: BiQuad.cpp 9151
Faust Function: TF2 (music.lib) 1576

Cycles Ratio: 5.81

12



Notes:

• The STK BiQuad class uses the C++ vector class
from the Standard Template Library (STL) for both
filter coefficients and input/output signal history

• The vectorized tick method could be reimplemented
for greater speed. Its overhead nearly negates the
value of vectorized processing

• Coefficients were fixed. Updating them once per
signal block would add little additional computation.

Linearly Interpolated Delay Line:

Cycles

STK Module: DelayL.cpp 10373
Faust Function: fdelay (music.lib) 829

Cycles Ratio: 12.5

Notes: The cycle count per block for the non-vectorized
STK module was found to be almost the same (10393
cycles), again presumably due to the use of virtual
StkFrames& tick(StkFrames& frames, unsigned

int chan).

13



Cubic Nonlinearity Distortion:

Cycles

STK Module: Cubicnl.cpp (new) 7395
Faust Function: cubicnl (effect.lib) 3387

Cycles Ratio: 2.18

Note: Nonlinearity parameters were fixed. Updating
them once per signal block would add little additional
computation.

Conclusions

Based on experiences to date, we conclude:

• If a software module is reasonably easy to code in
Faust, then a Faust implementation is preferable over
using the STK library. (Of course, there is still no
substitute for architecture-dependent, hand-written
assembly language when true optimality is required.)
For high-level reference implementations, however,
Faust generally wins over the STK in terms of
performance and in terms of many useful ancillary
features. Even STK applications should consider
using library replacement modules generated by Faust.
A possible drawback for some, when Faust fits the
bill, is having to learn the language (

. .
⌣)

14



• The Faust white-noise generator was measured to be
17.5× faster than the STK white-noise generator,
even after STK ffunction-call overhead was made
negligible (inner loop run for 128 samples)

• The Faust biquad (two-pole, two-zero filter) was
measured to be 5.8× faster than the STK BiQuad,
again with ffunction-call overhead made negligible

• The Faust linearly interpolated delay line was
measured to be 12.5× faster than the STK version

• The Faust cubic nonlinearity distortion was measured
to be 2.2× faster than the STK version

• Note that the STK was designed with C++
readability and modularity in mind, not minimized
execution time. In particular, each STK module
originally computed only a single sample in its
tick() method, and the STK still supports this.
Single-sample ticks give the important advantage of
introducing only one sample of pipeline delay in a
module loop (since module run-order is usually always
specified in an STK program). However, when
feedback pipeline delay is not at issue, performance
can be increased greatly in principle by computing a
block of samples in the inner-loop of each module, as

15



is done in CSound, the Music Kit, Pd, and so on.
Such “vectorization” enables much better
optimization for modern superscalar processor
architectures. The relatively recent tick(frames,
chan) method in the STK appears to provide such
performance-enhancing vectorization, but very little
performance increase is realized due to its relatively
high-level implementation in C++ as a “virtual
function”.

Related Future Plans

• Further integration of Faust and C++/STK software

• Score-file support for Pd-resident Faust plugins
and/or STK-FLEXT modules
(e.g., SKINI → MIDI → Pd)

• New string excitation models

• More instruments

Acknowledgment

Thanks to Yann Orlarey and Perry Cook for helpful
feedback based on an earlier draft of this poster.

16


