Recall that Hooke's Law defines a spring constant as the applied force divided by the spring displacement , or (see §J.1.3). An elastic solid can be viewed as a bundle of ideal springs. Consider, for example, an ideal bar (a rectangular solid in which one dimension, usually its longest, is designated its length ), and consider compression by along the length dimension. The length of each spring in the bundle is proportional to the length of the bar, so that each spring constant must be inversely proportional to ; in particular, each doubling of length doubles the length of each ``spring'' in the bundle, and therefore halves its stiffness. As a result, to obtain a counterpart to Hooke's law for solids, we must normalize displacement by length and use relative displacement . We need displacement per unit length because we are working with a spring compliance per unit length.
The number of springs in parallel is proportional to the cross-sectional area of the bar. Therefore, the force applied to each spring is proportional to the total applied force divided by the cross-sectional area . Thus, Hooke's law for each spring in the bundle can be written
We may say that Young's modulus is the Hooke's-law spring constant for the spring made from a specifically cut section of the solid material, cut to length 1 and cross-sectional area 1. The shape of the cross-sectional area does not matter.