Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Kelly-Lochbaum Scattering Junctions

Conservation of energy and mass dictate that, at the impedance discontinuity, force and velocity variables must be continuous

$\displaystyle f_{i-1}(t,cT)$ $\displaystyle =$ $\displaystyle f_i(t,0)$ (G.59)
$\displaystyle v_{i-1}(t,cT)$ $\displaystyle =$ $\displaystyle v_i(t,0)$  

where velocity is defined as positive to the right on both sides of the junction. (Force/stress/pressure is scalar.) Equations (G.57), (G.58), and (G.59) imply the following scattering equations (a derivation is given in the next section for the more general case of $ N$ waveguides meeting at a junction):
$\displaystyle f^{{+}}_i(t)$ $\displaystyle =$ $\displaystyle \left[1+k_i(t) \right]f^{{+}}_{i-1}(t-T) - k_i(t) f^{{-}}_i(t)$  
$\displaystyle f^{{-}}_{i-1}(t+T)$ $\displaystyle =$ $\displaystyle k_i(t)f^{{+}}_{i-1}(t-T) + \left[1-k_i(t)\right]f^{{-}}_i(t)$ (G.60)

where

$\displaystyle k_i(t) \isdef \frac{ R_i(t)-R_{i-1}(t) }{R_i(t)+R_{i-1}(t) }$ (G.61)

is called the $ i$th reflection coefficient. Since $ R_i(t)\geq 0$, we have $ k_i(t)\in[-1,1]$. It can be shown that if $ \vert k_i\vert>1$, then either $ R_i$ or $ R_{i-1}$ is negative, and this implies an active (as opposed to passive) medium. Correspondingly, lattice and ladder recursive digital filters are stable if and only if all reflection coefficients are bounded by $ 1$ in magnitude [275].

Figure G.17: The Kelly-Lochbaum scattering junction.
\includegraphics[scale=0.9]{eps/Fkl}

The scattering equations are illustrated in Figs. G.16b and G.17. In linear predictive coding of speech [460], this structure is called the Kelly-Lochbaum scattering junction, and it is one of several types of scattering junction used to implement lattice and ladder digital filter structures [275].


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]