Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Feedback Delay Networks (FDN)

Figure 1.22: Order 3 MIMO Feedback Delay Network (FDN).
\begin{figure}\input fig/FDNMIMO.pstex_t
\end{figure}

The FDN can be seen as a vector feedback comb filter,2.6obtained by replacing the delay line with a diagonal delay matrix (defined in Eq. (1.10) below), and replacing the feedback gain $ g$ by the product of a diagonal matrix $ {\bm \Gamma}$ times an orthogonal matrix $ \mathbf{Q}$, as shown in Fig. 1.22 for $ N=3$. The time-update for this FDN can be written as

$\displaystyle \left[\begin{array}{c} x_1(n) \\ [2pt] x_2(n) \\ [2pt] x_3(n)\end...
...gin{array}{c} u_1(n) \\ [2pt] u_2(n) \\ [2pt] u_3(n)\end{array}\right] \protect$ (2.6)

with the outputs given by

$\displaystyle \left[\begin{array}{c} y_1(n) \\ [2pt] y_2(n) \\ [2pt] y_3(n)\end...
...array}{c} x_1(n-M_1) \\ [2pt] x_2(n-M_2) \\ [2pt] x_3(n-M_3)\end{array}\right],$ (2.7)

or, in frequency-domain vector notation,
$\displaystyle \mathbf{X}(z)$ $\displaystyle =$ $\displaystyle {\bm \Gamma}\mathbf{Q}\mathbf{D}(z)\mathbf{X}(z) + \mathbf{U}(z)$ (2.8)
$\displaystyle \mathbf{Y}(z)$ $\displaystyle =$ $\displaystyle \mathbf{D}(z) \mathbf{X}(z)$ (2.9)

where

$\displaystyle \mathbf{D}(z) \isdef \left[\begin{array}{ccc} z^{-M_1} & 0 & 0\\ [2pt] 0 & z^{-M_2} & 0\\ [2pt] 0 & 0 & z^{-M_3} \end{array}\right]. \protect$ (2.10)



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]